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In brief

This study presents RiboStrike, a deep-

learning platform that identifies small

molecules targeting microRNAs,

specifically miR-21, a known driver of

breast cancer. From an extensive

screening of nine million molecules and

ensuring specificity, eight were identified,

with three showing promising anti-miR-

21 activity in both reporter assays and

RNA sequencing experiments. The

potential of these findings is underscored

by a significant reduction in lung

metastases in a breast cancer mouse

model, marking a notable advancement in

targeted cancer therapy.
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THE BIGGER PICTURE RiboStrike is a deep-learning framework, or a type of machine learning, that navi-
gates the vast chemical space to identify molecules capable of modulating microRNA activity.
MicroRNAs are short, single-stranded RNAmolecules that modulate different cellular processes, including
gene expression, and are implicated in several diseases, such as cancer. The traditional approaches to ther-
apeutically target microRNAs in cancer usually face several experimental limitations. Deep-learning-based
strategies, such as RiboStrike, represent a significant change from these more traditional methods and a
stride forward to innovations where machine learning assists in unraveling the complexities of disease
mechanisms and discovering effective and targeted treatment strategies.
SUMMARY
MicroRNAs are recognized as key drivers in many cancers but targeting themwith small molecules remains a
challenge.We present RiboStrike, a deep-learning framework that identifies small molecules against specific
microRNAs. To demonstrate its capabilities, we applied it to microRNA-21 (miR-21), a known driver of breast
cancer. To ensure selectivity toward miR-21, we performed counter-screens against miR-122 and DICER.
Auxiliary models were used to evaluate toxicity and rank the candidates. Learning from various datasets,
we screened a pool of nine million molecules and identified eight, three of which showed anti-miR-21 activity
in both reporter assays and RNA sequencing experiments. Target selectivity of these compounds was as-
sessed using microRNA profiling and RNA sequencing analysis. The top candidate was tested in a xenograft
mouse model of breast cancer metastasis, demonstrating a significant reduction in lung metastases. These
results demonstrate RiboStrike’s ability to nominate compounds that target the activity of miRNAs in cancer.
INTRODUCTION

As a class of short non-coding RNAs, microRNAs (miRNAs) are

among the essential regulators of cellular homeostasis. They

oversee gene expression and regulate protein synthesis across

many target regulons. The dysregulation of these post-transcrip-

tional regulatory programs has been shown to contribute to tu-

mor formation and progression.1 Since miRNAs regulate a vari-

ety of gene regulatory programs, they play an important role in

the emergence of various oncogenic hallmarks, such as metas-

tasis,2 angiogenesis,3 and resistance to apoptosis.4 There is

recent evidence that they may contribute to the suppression of
This is an open access article under the CC BY-N
the immune response within the tumor microenvironment as

well. It has also been established that miRNAs are involved in

drug resistance in multiple cancers.5 Among miRNAs, miRNA-

21 (miR-21) has been one of the most well-studied drivers of

oncogenesis.6 miR-21 dysregulation has been implicated in

ovary, gallbladder, colorectal, pancreatic, and many other

cancers.

Much effort has been dedicated to targeting oncogenic miR-

NAs such as miR-21 to combat various tumors.7 This is largely

achieved through the synthesis and delivery of antisense oligo-

nucleotides (ASOs). For example, researchers developed

ASOs that are capable of targeting miR-155, which is known to
Patterns 5, 100909, January 12, 2024 ª 2023 The Authors. 1
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Figure 1. Overview of the RiboStrike pipeline

(A) Stages of discovery from input molecular data and deep-learning techniques to candidate selection and experimental validation. Molecular data are collected

from multiple sources for training virtual screening models in multitask learning mode where different datasets are grouped together and share learned repre-

sentations. A task recommender algorithm helps choose the grouping of the tasks for multitask learning to maximize performance. Nine million candidate

molecules are filtered based on the predictions of the models on bioactivity, interactions, and toxicity and the uncertainty in those predictions. After clustering for

a diverse selection, eight of the top candidates are experimentally validated.

(B) Computational pipeline and the flow of data within the GCNN network. Molecules are represented as graphs with calculated node and bond features. The

convolution layers learn distinctive representations, which are pooled into fixed-length vectors and used for classification by the fully connected network. Once a

multitask learning model is trained, an in-house algorithm is used to recommend task grouping for another round of multitask learning.
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be involved in multiple types of cancer, including breast and lung

tumors.8 However, delivering ASOs to cancer cells is often chal-

lenging due to their poor permeability, and short ASOs may also

bind to other RNAs with similar sequences, leading to unin-

tended off-target effects. To overcome these limitations, some

researchers have focused on developing small molecules that

bind and inhibit miRNAs.9,10 Unlike ASOs, small molecules are

typically easier to formulate and have better bioavailability, mak-

ing themmore suitable for drug development. In recent years, re-

searchers have made progress in developing small molecules

that target various types of RNAs, both coding and non-coding.9

Dovitinib, for example, is a small molecule in early stages of dis-

covery for its ability to treat triple-negative breast cancer and Al-

port syndrome by inducing the degradation of miR-21 via RNase

L recruitment. As another example, risdiplam is an US Food and

Drug Administration (FDA)-approved drug for its ability to treat

spinal muscular atrophy (SMA) by targeting SMN2 pre-mRNA

exon 7-intron junction.9

It has been challenging, however, to structurally inhibit the ac-

tivity of RNAs with small molecules, especially small RNAs such
2 Patterns 5, 100909, January 12, 2024
as miRNAs. Unlike proteins, they typically have a dynamic struc-

ture11 and often lack the canonical pockets found in druggable

proteins. Therefore, conventional docking approaches have

not been successful for miRNAs.11 Furthermore, structurally

binding a small molecule to miRNAs does not necessarily impair

their functionality.12 Another approach to targeting miRNAs is to

inhibit their upstream regulators, but outside of the miRNA

biogenesis pathway, which is shared among all miRNAs, selec-

tive regulators of miRNA activity are largely unknown and poorly

characterized. Despite significant research efforts, miRNAs are

still considered to be largely undruggable,13 and a platform

that enables selective inhibition of miRNAs remains an important

problem in the field.

In this study, we use artificial intelligence to develop a small

molecule drug discovery platform called RiboStrike, which

aims to inhibit miRNA activity rather than disrupt their structure.

Our approach is built on the capabilities of advanced deep-

learning architectures to learn representations from molecular

data and discover hidden patterns in an abstract and non-linear

manner. As shown in Figure 1, we used graph convolutional



Table 1. Summary of the datasets

Dataset Type Tasks # Molecules Active (%)

miR-2117 VS 1 315.16K 4.29

Cancer VS 48 535.45K 2.54

PCBA18 VS 128 439K 1.39

Combined VS 139 540.42K 2.39

Recommended VS 7 448.87K 4.53

Toxicity20 AUX 58 8.36K 18.73

Toxicity recommended AUX 5 8.36K 19.64

DICER21 Off 1 46.72K 6.05

ZINC16 MS – 9.20M –

Asinex19 MS – 3,652 –

FDA approved22 MS – 157 –

SAR sample23 MS – 37 –

Datasets used for virtual screening (VS), auxiliary modeling (AUX), and

molecule selection (MS) as well as the number of tasks (assays), number

of molecules, and the percentage of active molecules within each data-

set. K, thousands; M, millions.
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neural networks (GCNNs)14 to aid the virtual screening of small

molecules against the oncogenic miR-21 in silico, solely relying

on the simplified molecular-input line-entry system (SMILES) en-

coding of small molecules as input. We used multitask learning

to learn the relationship between chemical groups andmolecular

activity across multiple data sources, including large publicly

available assays from PubChem.15 Furthermore, we developed

several additional modules to improve our model’s performance

and utility, such as uncertainty prediction, auxiliary modeling

(e.g., toxicity prediction), and molecular diversification, to help

prioritize molecules for wet-lab follow-up experimentation and

validation.

As we demonstrate, RiboStrike selected eight candidate com-

pounds from a pool of more than nine million molecules in the

ZINC15 database.16 We then performed a battery of functional

andmolecular experiments, in cell culture and inmice, to function-

ally validate the anti-miRNA activity of our hit compounds. Taken

together, our results indicate thatRiboStrikecan identifycandidate

inhibitorymoleculeswithout the need for the structural information

of the target. Additionally, in this work, we have introduced a pre-

diction-based algorithm for recommending input datasets formul-

titask learning inorder to improve the performance of themodeling

for the discovery of molecules that inhibit miR-21 activity.

RESULTS

Aggregating data for miR-21, cancer, and off-target
interactions
We used three different data modalities to train RiboStrike for

optimized hit selection. First, we used datasets relevant to the

virtual screening task to train models that predict the effect of

a particular small molecule on the activity of miR-21. In this cate-

gory, we combined nearly 14,000 inhibitors of miR-21 activity

(measured by a reporter assay in a 315,000-compound library),17

assays designed to identify cancer-fighting candidates (cell-

based and biochemical assays), and the PCBA dataset (a collec-

tion of overlapping PubChem assays18). Combining all these da-
tasets resulted in a total of 139 classification tasks; however, in

order to create a more focused training dataset that is optimal

for multitask learning, we used a supervised task recommender

algorithm to narrow down the output of ourmodel to seven tasks.

Additionally, we also took advantage of a dataset that measures

DICER inhibition to perform an in silico counter-screening.

DICER is one of the main processing enzymes for miRNAs and

its inclusion allowed us to select against inhibitors of DICER ac-

tivity and identify miR-21 selective inhibitors as opposed to sys-

temic inhibitors of miRNA biogenesis. This model, alongside a

model trained on general cellular toxicity, guides the pipeline’s

prediction to maximize on-target efficacy and specificity and fil-

ter overtly toxic compounds. Finally, we used large-scale li-

braries of drug-like in silico compounds as inference datasets

to find candidates for further screening. These datasets include

ZINC16 for its diverse and large collection of molecules and Asi-

nex19 for its selection of molecules (including potential RNA

binders). A summary of all datasets used for training, inference,

and filtering in this research is listed in Table 1. As mentioned

above, our model receives SMILES strings as input, in canonical

formwith isomeric information included. As for the outputs, each

instance carries multiple binary labels denoting the existence of

bioactivity or property classes for each of the output tasks.

Computational pipeline: Training GCNNs on small
molecules
In learning from molecular data, RiboStrike utilizes GCNNs as its

primary modeling approach. Graph-based models are well suited

for handling small molecules since nodes represent atoms within

molecules and edges represent bonds between them.14,24 In this

graph representation, each node contains features that describe

the atomand its properties. Through the use of these features dur-

ing training, abstract representations of the nodes can be formed

by applying graph convolution, which can then be pooled into a

representation for the givenmolecule through the graph gathering

layer.WeandothershaveusedGCNNs toeffectively learn the rela-

tionshipbetween inputmoleculesand their physicochemicalprop-

erties,25 their impact on a given target’s function,26 and virtual

screening.27 Other models, such as pretrained transformers

(e.g., ChemBERTa28), which rely on masked token prediction

fromSMILES sequence or tensor field networks29 and extract fea-

tures from coordinate clouds, were also considered for this work.

However, GCNNs were ultimately chosen due to their simplicity,

smaller size, and training efficiency (empirical comparison of per-

formance to ChemBERTa can be found in Table S2). In this study,

wehave also taken advantage of evidential deep learning30 to pro-

vide an estimate of the uncertainty of a prediction given an input

molecule, which shows the confidence of the model and guides

themolecule selection process to have less uncertainty. As shown

in Figure 1, we trained GCNN models to predict miR-21 activity

suppression, DICER inhibition, and toxicity profiles of each input

molecule, given their canonical SMILES. We have illustrated our

pipeline for the flow of data in this study in Figure 1B.

Task recommendation: Tailoring the training dataset for
miR-21
The high number of tasks that results from combining all assays

often degrades the model’s performance. A particular problem

often arises during multitask learning and stochastic gradient
Patterns 5, 100909, January 12, 2024 3



Figure 2. The AP score of different sub-models for the task recom-

mender algorithm

The tasks above the threshold line make predictions matching the miR-21

ground truth to a higher degree than the rest of the tasks. These tasks are the

recommended tasks and are selected for training a new multitask model with

narrower scope.

Table 2. Performance of different models on the test set of the

miR-21 dataset

Model # Task ROC-AUC Precision AP

Single task 1 0.8170 12.52 23.03

Multitask: cancer 48 0.8239 11.10 20.62

Multitask: all 139 0.8325 10.14 20.43

Random selected tasks 7 0.8027 18.11 21.04

Recommended tasks 7 0.8305 20.93 24.72*

Models have different types of training data, yet all contain the samemiR-

21 task for fair comparison. AP score is the main metric for performance

comparison. Asterisk indicates best performance.
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descent (SGD)when trainingonmultiple tasksmay reduce theper-

formance on one ormore of the tasks (e.g., some tasks differ from

others regarding the gradient direction), which results in a less effi-

cient training process.31 To address this challenge in a principled

way, we implemented a prediction-based recommendation algo-

rithm to select a subset of tasks from the entire dataset and to

create a smaller dataset that is optimized for higher performance

for the specific tasks that are of our interest. Using this algorithm,

sub-modelswith similar predictions to the target task (for example,

miR-21) are identified, and the top-ranking tasks relating to these

sub-models are selected as recommendations. Figure 2 provides

an overview of the scores for all sub-models on the target miR-21

task as well as the threshold line we selected. Using our recom-

mender technique, we identified seven tasks that scored higher

than the threshold of the mean plus two standard deviations (the

tasks are identified in Table S2).

As expected, the counter-screen assay for miR-21 activity,32

which was an assay to detect false positives in the main screen

by measuring the activator of the firefly luciferase, is positioned

as one of the recommended tasks. This is intuitive due to this

counter-screen’s direct association with the main task and the

importance of molecular patterns and activity labels contained in

this dataset. Interestingly, the remaining recommended tasks

were not directly related tomiR-21 andwere included solely based

on the observation that the output of their trained sub-model is

similar to that of themiR-21 sub-model. In otherwords, themodels

trained on these recommended tasks perform better in predicting

the effect onmiR-21 activity than the rest of the sub-models, mak-

ing their respective training data suitable for use in the recommen-

ded model.

Virtual screening results: Task recommendation offers
the best performance
Following identification of the optimized tasks and implementa-

tion of all training scenarios, we compared a variety of modeling
4 Patterns 5, 100909, January 12, 2024
techniques to ascertain which dataset and training regimen re-

sulted in the best-performing model. The results on the test

set, 10%of the original miR-21 dataset that was held out and iso-

lated throughout model training, were calculated and summa-

rized in Table 2. The confusion matrices for three different

training scenarios are shown in Figure 3.

As was expected, the prediction-based task recommender al-

gorithm resulted in the highest-performing model using the rec-

ommended tasks, compared to random tasks, all tasks, or the

single miR-21 task, as the model trained on the recommended

tasks achieves the highest average precision score. Since our

model is conservative, it has a lower tendency to predict mole-

cules as active, and therefore shows a lower performance in

recall (in comparison to Figures 3A and 3B). It is evident, howev-

er, from the precision score in Table 2 and the confusionmatrix in

Figure 3C that molecules that are predicted to be active aremore

likely to be true positives, which is a desirable behavior for virtual

screening models. This is because follow-up experimental vali-

dations are often costly and we therefore have a higher tolerance

for false negatives than false positives in virtual screens.

Evaluation of the RiboStrike model on held-out datasets
To independently verify the performance of our best-performing

model, we took advantage of data from an independent study,

namely the structural activity relationship sample dataset,23 which

included 37 previously unseen molecules derived from two inhib-

itors of miR-21. Our virtual screening model successfully classi-

fied 33 out of the 37 molecules as ‘‘active,’’ closely matching

the results of the related study,23 demonstrating the potential for

this model in the context of structural activity relationship (SAR)

scenarios. For the four misclassified molecules, our model was

uncertain (with uncertainty of 100% for all four misclassified

cases). This is likely because, for the most part, these molecules

were in the last iteration of SAR and were therefore significantly

altered. Consequently, these molecules are outside the familiarity

zone of our model’s training set, resulting in an uncertain predic-

tion for the model.

Auxiliary models for selecting molecule candidate:
DICER inhibition modeling results
As mentioned earlier, miRNAs are transcribed and matured

through a predefined pathway. DICER is the main processing

enzyme for miRNA biogenesis and inhibiting its activity will reduce

the activity of all miRNAs and not just miR-21. To ensure that our

model is resistant to thispossibility,weaddedacounter-screening



Figure 3. Confusion matrix for models trained using different learning methods

(A) Single task, (B) multitask for all tasks, and (C) multitask for recommended tasks. Balance between true positives (predicted correctly as positive) and false

negatives (predicted incorrectly as positive) is needed for virtual screening. Due to imbalanced data, false negatives hurt candidate pool quality drastically.

Table 3. Performance of toxicity and DICER inhibition models on

their corresponding test sets

Model # Task ROC-AUC Precision AP

DICER single task 1 0.6631 12.22 12.53*

Tox multitask 58 0.7408 41.13 38.41

Tox recommended 5 0.7483 38.27 38.73*

The models belonging to the toxicity category are comparable. Asterisks

indicate best performance.
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against DICER to ensure miR-21 specificity of the model.33 For

this, we trained a specialized model on data from an assay

regarding DICER-mediated maturation of pre-miRNA34 to predict

inhibitory activities against the DICER as a way to identify and

avoid unwanted inhibitory effects. The performance of this model

is shown in Table 3.

Auxiliary models for selecting molecule candidate:
Toxicity modeling results
It is imperative that candidates for drug development are non-

toxic and have as few off-target interactions as possible. As a

way to filter any unwanted inhibitory effects on selected targets

that could lead to cell toxicity, we trained two toxicity models. In

order to determine molecular toxicity against cell viability, we

used data from HepG2, a liver cell line that is used as a standard

model. Moreover, we trained additional auxiliary GCNN models

on the Tox21 dataset,20 which includes 58 different toxicity

tasks, with the purpose of filtering compounds that may be

broadly toxic to cells. Overall, the molecules with few toxicity

predictions (out of 58) and the lowest uncertainty on HepG2

toxicity prediction pass satisfy this filter. The performance of

these two models is described in Table 3. As shown in Table 3,

the model trained on the recommended tasks is capable of pre-

dicting HepG2 toxicity with a higher average precision (AP). This

model is used to predict HepG2 toxicity and uncertainty,

whereas the multitask model is used to perform the remainder

of the toxicity predictions.

Selecting diverse candidates by clustering the learned
small molecule embeddings
Once the virtual screening model and the auxiliary models have

been trained, they can be used to screen unseen molecules for

their potential as drug candidates. Given its large and diverse

collection of drug-like and synthesizable compounds, we used

the ZINC15 library for our virtual screening; however, we also

included compounds from the Asinex library, which represents

an out-of-distribution collection and allows us to assess the

generalizability of our model. We used our trained model to

screen these datasets for suitable molecules that are most likely

to specifically inhibit miR-21 activity with fewer potential side ef-

fects and least likely to cause overt toxicity. We first used our

multitask virtual screening model trained on the seven recom-

mended tasks to predict miR-21 activity inhibition across nine

million molecules in silico.
To obtain a more complete understanding of how diverse the

inference molecules are, we performed unsupervised analysis

and clustering of themolecular embeddings learned by themodel.

This analysis also enabled us to select molecules from various re-

gions of the molecular space. To accomplish this, the embedding

features of the trainedmodel were extracted, projected into a two-

dimensional (2D) uniform manifold approximation and projection

(UMAP) space for visualization, and clustered using the k-means

algorithm. By separating molecules into clusters, different regions

of the molecular space can be accessed to select more diverse

molecules for follow-up and testing (Figure 4). In Figure 4A, this

molecular space is depicted using the positively predicted candi-

dates from theZINCdatabase,which occupies awide range of the

embedding space. Figure 4B depicts the same embedding space

but for themolecules used for model training, showing the overlap

between the positive and negative compounds in the training set.

In Figure 4C, we have shown clusters within the feature space as

well as the top eight compounds that were selected from these

clusters using the RiboStrike algorithm.

Assessment of the learned small-molecule embeddings
and selection of hit compounds for further validation
It is evident from Figure 4A that the molecules from the ZINC

database that have been predicted to be positive cover most

of the projected space, demonstrating that the model is not

learning a singular molecular feature. It is also apparent that

FDA-approved drugs22 are concentrated in certain clusters,

which likely makes the selection of hit molecules from their vicin-

ity favorable. Moreover, the positive and negative training data

distributions in Figure 4B have a substantial overlap, which high-

lights the challenge in virtual screening for miR-21. By clustering

the hit molecules into 10 groups across the embedding space,

we ensured that our selected hit compounds were sampled

from varying clusters and therefore retained molecular diversity.
Patterns 5, 100909, January 12, 2024 5
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Figure 4. UMAP of the inner features of the

model for the inference and training data for

(A) ZINC data predicted to be active as the candidate

space to select from, (B) the training data and the

positive molecules from the FDA-approved set,

showing that the candidate space spans the same

area as the training set, and (C) the 10 clusters

applied to this space for the inference sets (ZINC

and Asinex) and the final selected molecules from

these clusters to ensure diversity in selection.
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Using clustering as the basis for the selection of molecules,

those hit compounds that are predicted to affect the activity of

miR-21with high confidence were selected and virtually screened

against DICER inhibition and cellular toxicity. To conclude, we

selected a total of 10molecules across the two inference datasets

(ZINC and Asinex) specifically from embedding clusters where

FDA-approved molecules are well represented. We also required

them to have low uncertainty in predicted inhibition of miR-21’s

activity, with few or no toxic activity predictions and without pre-

dicted activity against DICER. Overall, six molecules were

selected from the ZINC dataset and four from Asinex. Of these,

we successfully acquired eight molecules, six from ZINC and

two from Asinex. We ensured that none of these molecules had

previously been studied in this context and by and large repre-

sented new chemical entities. The selected molecules are identi-

fied by their IDs and SMILES in Table S3.

RiboStrike training on miR-122 data for generalization
and counter-screening purposes
While we had focused the bulk of our study to training RiboStrike

against the oncogenic miR-21, the platform itself is general in

concept and can be applied to other miRNAs or even other

RNAs, for which activity can be measured in scalable formats.
6 Patterns 5, 100909, January 12, 2024
To demonstrate this possibility, we trained

RiboStrike using an NIH dataset that

measured miR-122 activity using a reporter

system, similar to the dataset we had used

for miR-21. As shown in Figure S4,

RiboStrike achieved a performance compa-

rable to theoneweachieved formiR-21,with

regard to recall and true-negative rate. In

addition to establishing the possibility of ex-

tending RiboStrike to other miRNA targets,

this model also allowed us to assess the

target selectivity of our predictions between

the miR-21 and miR-122 models This

counter-screen enabled us to confirm that

the selected miR-21-inhibitor molecules

were specific to miR-21 and did not affect

other miRNAs in silico (Table S4).

Gene expression profiling to
measure miR-21 activity in response
to treatment with the selected hit
compounds
SincemiR-21 is apost-transcriptional regu-

lator of RNA stability, reducing its activity
results in an increase in the RNA levels of its target regulon. To

experimentally verify the anti-miR-21 activity of our selected

compounds, we used an RNA sequencing (RNA-seq) strategy

amenable to scalable gene expression profiling, namely

QuantSeq-Pool. For experimental testing, we used MDA-MB-

231 cells, an established model of triple-negative breast cancer

metastasis that is known to be driven by miR-21.34 Inhibition of

miR-21 in these cells should significantly reduce their metastatic

potential. We first used CellTiter-Glo to calculate the IC20 (inhib-

itory concentration of 20%) for each of our compounds, to ensure

a regimen in which the key cellular processes are not affected by

each treatment. We then performed QuantSeq-Pool on MDA-

MB-231 cells treated at IC20 for 72 h in biological replicates.

We also included DMSO-treated control samples. For positive

control, we used an established anti-miR-21 ASO and included

a non-targeting ASO as control. Upon measuring the gene

expression changes induced by each compound, we asked

whether they caused a systematic effect on the expression of

miR-21 target RNAs.We used the set of RNAs that are annotated

as miR-21 targets (based on Targetscan35) to perform gene set

enrichment analyses (Figure S3). As expected, in the miR-21

ASO samples, we observed a significant enrichment of miR-21

targets among genes that were upregulated upon treatment.
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From the eight selected compounds, two showmiR-21 target up-

regulation similar to that of the ASO, and a total of five show some

activity (with a confidence score of over 85%). Based on these re-

sults, our model has a hit rate of 62.5%, higher than the in silico

predicted precision score of 20.93% for our model.

Reporter assays for targeted measurement of miR-21
activity in dose-response assays
For the five compounds showing anti-miR-21 activity based on

RNA-seq data, we also used a reporter assay for an independent

confirmation at multiple doses. For this, we designed a GFP re-

porter harboring twomiR-21 recognition sites in its 30 untranslated
region (UTR) and transfected it into MDA-MD-231 breast cancer

cells. This construct also drives the expression of an mCherry

gene, which serves as an endogenous control for the construct.36

Through the use of miR-21 ASOs, non-targeting ASOs, and flow

cytometry,weconfirmed that inhibitingmiR-21 resulted in a signif-

icant increase in GFP expression in these reporter cell lines. We

then performed this experiment for each compound separately.

As shown in Figure 5A, three (Ribo21D-1, Ribo21D-2, and

Ribo21D-3) of the five compounds also showed significant

dose-dependent activity against miR-21. Taken together, our

platform showed an experimentally confirmed hit rate of 37.5%

for entirely new chemical entities that were predicted in silico.

Total RNA and small RNA-seq for deeper analysis of the
top three anti-miR21 compounds
To perform a high-resolution analysis of gene expression

changes, we performed total RNA-seq for MDA-MB-231 cells

treated with the three validated compounds (Ribo21D-1,

Ribo21D-2, and Ribo21D-3) as well as DMSO control cells, in bio-

logical triplicates. We also performed RNA-seq for cells trans-

fected with anti-miR21 ASOs and non-targeting controls (also in

triplicates). First to confirm our results from QuantSeq-Pool and

the ability of these compounds to decrease miR-21 activity, we

defined a putative miR-21 target regulon by combining predic-

tions from TargetScan35 and miR-DB.38 We then assessed the

changes in the expression of this putative target regulon across

each treatment. We performed this analysis in two ways: first,

we performed the gene set enrichment analysis we have previ-

ously described,39 where the genes are sorted based on their

log fold changes in each treatment and divided into equally popu-

lated bins. The enrichment or depletion of the target regulon is

then assessed and visualized for each expression bin. The result-

ing heatmap showed an expected depletion in the leftmost bins

(i.e., genes with lower expression uponmiR-21 inhibition) and sig-

nificant enrichment in the rightmost bins (i.e., genes with

increased expression). The overall statistical association was

measured using mutual information and the associated Z score

(Figure 5B, left). In all three cases, we observed a significant

depletion and enrichment pattern, mirroring the pattern observed

for the ASO positive control. As a complementary analysis, we

also performed t test between the log fold change (logFC) values

for the putative miR-21 targets and the rest of the transcriptome.

Consistent with our gene set enrichment analysis, all three treat-

ments significantly increased the expression of this putative regu-

lon above background (Figure 5B, right).

To ensure that our results were not biased by our selection of

putative miR-21 targets, we also assembled an empirical miR-21
target regulon. For this, we intersected mRNAs bound by RNA-

induced silencing complex (RISC) complex loaded with miR-21

based on the microCLIP dataset37 with those upregulated in

our cells upon transfection with the anti-miR21 ASO. Similar to

the putative regulon, this empirical miR-21 target set showed a

similarly significant increase in their expression in each of our

treatments (Figure 5C). Together, our results confirm the role of

our hit compounds in increasing the expression of miR-21 regu-

lon, which is consistent with the lower activity of this miRNA.

ThesecompoundsmaybeaffectingmiR-21expressionoractiv-

ity. In the former, weexpect reducedmiR-21 levels due to a reduc-

tion in its biogenesis, whereas, in the latter mechanism, miR-21

levels do not change. The anti-miR21 ASOs are an example of

this mechanism as they bind and sequester miR-21 and reduce

its activity but not expression. To determine whether these com-

pounds are working upstream or downstream of miR-21 and

whether their effect is specific to miR-21, we performed small

RNA-seq to profile miRNAs upon treatment of MDA-MB-231 cells

in biological triplicates. As shown in Figure 5D, two out of three

compounds, namely Ribo21D-1 and Ribo21D-3, resulted in a sig-

nificant reduction in miR-21. However, a broader look at all miR-

NAs revealed that Ribo21D-3 resulted in a significant reduction

in the expression of multiple additional miRNAs (Figure S3).

Ribo21D-1, however, proved to be quite selective against miR-

21, as no other miRNA was observed to be downregulated upon

treatment. We did observe higher expression of four miRNAs,

namely miR-663, miR-3196, miR-1908, and miR-941; however,

the higher expression of these miRNAs is downstream of miR-21

downregulation. This is because these miRNAs are also upregu-

lated upon anti-miR21 transfection, resulting in logFC values of

0.7, 1.1, 1.3, and 1.35 for these miRNAs, respectively. Together,

our results confirm the anti-miR-21 activity of our selected

compounds and highlights the fact that these compounds likely

function through independentmechanisms. Ribo21D-1 is a selec-

tive inhibitor ofmiR-21biogenesis,Ribo21D-2actsdownstreamof

miR-21 modifying its activity, and Ribo21D-3 is a non-specific

regulator of miRNA biogenesis and lowers the expression of

several miRNAs. This diversity in mechanism of action is consis-

tent with our effort in selecting diverse compounds fromour virtual

screening hits.

Measurement of anti-metastatic activity in xenograft
mouse models
As mentioned earlier, miR-21 is a driver of metastasis in breast

cancer. Therefore, we expect the inhibition of this miRNA to

result in lower metastatic potential in breast cancer. To confirm

this, we treated MDA-MB-231 breast cancer cells for 72h with

the most promising candidate molecule, Ribo21D-1. We then in-

jected these cells, alongwith DMSO-treated controls, into immu-

nocompromised NOD-SCID gamma (NSG) mice via their tail-

veins. We used in vivo imaging to monitor the colonization and

growth of cancer cells in the lungs of mice over a period of

roughly 40 days. As shown in Figure 5E, we observed that,

consistent with anti-miR-21 activity, pre-treating breast cancer

cells with Ribo21D-1 resulted in a significant reduction in their

lung colonization capacity. Therefore, this compound not only

reduced miR-21 expression and activity, as measured by small

RNA-seq, RNA-seq, and reporter assays, but also reduced met-

astatic lung colonization in xenografted mice (Figure 5E).
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Figure 5. Experimental validation results

(A) Dosage response assay in reporter cell lines for Ribo21D-1, Ribo21D-2, and Ribo21D-3.

(B) Enrichment and depletion patterns of putative miR-21 targets across gene expression changes for anti-miR21 as well as Ribo21D treatments (left). For this

analysis, gene expression changes (log2 fold changes) were first sorted and divided into equally populated bins, from downregulation (left) to upregulation (right).

For each analysis, the mutual information value (in bits) and its associated Z score are provided. The heatmaps show the enrichment and depletion patterns from

the onePAGE package. Blue marks depletion and goldmarks enrichment. Expression bins with statistically significant depletion or enrichment of miR-21 putative

targets are marked by a dark blue or red border. As an alternative visualization, we have also shown the logFC values for the miR-21 targets and the background

set of genes (right). The p values were calculated using t test.

(C) Expression of empirically determined miR-21 targets (microCLIP37 plus anti-miR transfections) in response to the top three compounds.

(D) Expression of miR-21 determined using small RNA-seq across the three treatments. The p values were calculated using DESeq2.

(E) In vivo lung colonization assays were used to measure impact of Ribo21D-1 on lung metastasis. Normalized lung photon flux, which measures luciferase

activity in labeled cancer cells, as a function of time for each cohort (n = 5) is shown. Two-way ANOVA and Mann-Whitney U tests were used to assess statistical

significance. Also shown is a representative mouse and lung image.
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Together, our findings establish the utility of RiboStrike as an

effective platform for discovering compounds against miRNAs.

DISCUSSION

In light of the dynamic structure and small size of miRNAs, the

discovery of inhibitory small molecules against them presents

a number of challenges. This is further compounded by the

fact that miRNA ligands do not necessarily interfere with the

function and activity of miRNAs. Considering this, we propose

discovering candidate hits that instead focus on targeting

miRNA activity. The goal of this study was to implement a virtual

screening platform that leverages deep learning to enable the se-

lection of early hit candidates out of a large collection of diverse

molecules. Multiple methods were implemented in order to

ensure the practicality of the computational methods, as well

as rigorous experimental characterization, resulting in the valida-

tion of multiple compounds in vitro and for our top hit also in vivo.

The first step involved the use of deep-learning models to train

on a large number of small molecule datasets to learn the chem-

ical language underlying miR-21 activity. We also introduced a

new task recommendation technique, which identified the

optimal configuration for combining datasets to maximize

training potential. The third methodology involved calculating

uncertainty for all predictions made by the models, which

enabled the ranking of molecules in spite of their binary nature.

To finalize, the internal features of the model were used to repre-

sent molecules during inference, and clustering of these embed-

ding features allowed the selection of a diverse set of molecules

for experimental testing. Finally, we conducted additional

training of the RiboStrike model using miR122 inhibitor data.

The objective of this model was to filter potential miR-21 activity

inhibitors and ensure the selectivity of the chosenmolecules. It is

crucial to note that the primary aim of this project was not to

identify molecular binders of miR-21 but rather to uncover mole-

cules capable of inhibiting miR-21 activity. Consequently, these

molecules could potentially bind to an unidentified regulator of

miR-21 to produce the desired effect. In total, the RiboStrike

platform identified multiple hit candidates that were subse-

quently confirmed, demonstrating the advantage of using

graph-based deep learning to identify hidden patterns of molec-

ular hits against the activity of miRNAs without the need for

sequence reading or structural information. The ultimate objec-

tive of utilizing miR-21 data is to construct a model capable of

identifying molecules exhibiting ASO mimicry, rather than

focusing on elucidating the precise molecular mechanisms

behind miR-21 inhibition. Additionally, we integrated data from

miR-122 and DICER, incorporating biological insights into po-

tential inhibitors with fewer cellular side effects. It is likely that

these compounds target molecular pathways upstream of miR-

NAs that regulate their processing, lifespan, and function. There-

fore, once identified and validated, these hits can be used as toy

compounds to identify their direct targets (e.g., using CRISPRi

screen with miRNA reporter expression as readout).40 The not

only is identification of these direct targets required for additional

genetic and biochemical validations of their impact on the activ-

ity of specificmiRNAs but this knowledge provides an avenue for

further optimization of our tool compounds using traditional SAR

and medicinal chemistry. Therefore, this approach may provide
us with a better understanding of themechanisms by whichmiR-

NAs are regulated through the discovery of crucial unknown

players upstream.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Hani Goodarzi (Hani.

Goodarzi@ucsf.edu).

Materials availability

This study did not generate any new unique reagents.

Data and code availability

The data and code used in this work are available through our GitHub repos-

itory at https://github.com/LumosBio/RiboStrike. The version of this code and

data at the time of publication is also captured and saved through Zenodo at

https://doi.org/10.5281/zenodo.10068059.41

Data sources

Three categories of data are used throughout the RiboStrike pipeline: virtual

screening datasets, off-target interaction datasets, and inference datasets,

which are explored further in the following subsections. Each dataset is pre-

processed to contain canonical SMILES as well as appropriate binary labels

for the activity of molecules, and the details of this process can be found in

the supplemental information. SMILES is a widely used molecular descriptor

that encapsulates the structure of a molecule, serving as an input for models.

Graph convolutional neural networks (GCNNs) utilize the SMILES input to

create a graph representing the molecule, which in turn is used for feature rep-

resentation learning. For instance, the SMILES descriptor "Cc1cc(C(=O)

CSc2ccccn2)c(C)n1C" represents the molecular structure of Ribo21D-1.

Virtual screening training datasets

The datasets used to train the main virtual screening model or to help its per-

formance via multitask learning are as follows.

d miR-21 Data: primarily, an HTS (high throughput screening) dataset

from miR-21 inhibition screening as a target is used in this study, a

data repository originating from National Center for Advancing Transla-

tional Sciences (NCATS) and deposited in PubChem (ID: AID 228917).

The aim of this assay had been the discovery of molecules with an inhib-

itory effect on miR-21 to finally induce cell apoptosis and tumor sup-

pression. They used a cell-based firefly luciferase reporter gene assay

optimized for qHTS (quantitative high throughput screening).

d Cancer-related data: to assist the multitask training process, different

cancer-related assays are collected fromPubChem and the PCBA data-

set. These assays include 20 tasks directly from the PubChem data-

base, and 38 cancer-related tasks from the PubChem BioAssay

(PCBA) dataset.18.

d PCBA dataset: PCBA is a collection of datasets aggregated from

PubChem consisting of the biological activities of small molecules

generated by high-throughput screening. In this work, a subsection of

PCBA with 128 bioassays is used with over 400,000 molecules, similar

to the previous benchmarking methods.18 This dataset was selected

due to its size, high number of tasks, and high molecular overlap with

the miR-21 dataset. Due to these features, this dataset can be com-

bined with the miR-21 dataset to create a large non-sparse training

set for multitask learning.

Two further datasets are created from the mentioned dataset; the ‘‘com-

bined’’ dataset from aggregating all data points, and the ‘‘recommended’’ da-

taset from algorithmically selecting tasks from the combined dataset using the

task recommendation approach (discussed in the ‘‘prediction-based task

recommendation’’ section). The preprocessing code for the miR21 data can

be found in the GitHub repository under preprocessing_mir21 script. Once

preprocessed, these data are augmentedwith the auxiliary datasets in the pre-

processing_merge_pcba script in the GitHub repository.
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Off-target interactions datasets: Toxicity and DICER inhibition

To increase the probability of any predicted bioactive molecule to be a drug

candidate, the toxicity properties and the effect of these molecules on the

DICER’s function are predicted. Therefore, two datasets related to these sub-

jects are used for training in this work:

d Toxicity in the twenty-first century (Tox-21): the most popular source

available for the analysis of the toxicity of molecules.20 This dataset con-

sists of 58 distinct tasks, each tested on an important protein target of

humans. Candidate drugs that interact with those targets are likely to

cause side effects and cellular toxicity. Therefore, we used 58 tasks

from tox21 to filter out molecules that would show side effects in future

steps.

d DICER dataset: the DICER protein plays an important role in the matu-

ration of several RNAs, not just miR-21. Therefore, if a candidate drug

decreases the activity of the miR-21 by inhibiting the DICER protein, it

would show significant side effects downstream. The dataset for this

task is taken from PubChem data source of AID 1347074.21 This dataset

was created using click chemistry and was selected due to the fact that

this assay identified inhibitors of DICER based on pre-miR-21.

The preprocessing code for the auxiliary datasets can be found in the pre-

processing_merge_pcba script of the GitHub repository.
Inference data: Sources for drug candidate selections

There are multiple datasets used in this work for the drug candidate selection:

d ZINC: ZINC database is a diverse molecular library typically used for vir-

tual screening.16 It contains millions of molecules that are indexed for

search and properties. We used the drug-like subset (molecular weight:

250–500 g/mol, logP: �1 to 5) of the ZINC15 database, consisting of

nine million molecules that had three-dimensional (3D) representations,

standard reactivity, reference pH, a charge of �2 to +2, and were in

stock for purchase.

d Asinex: Asinex is a molecular library vendor that sells varieties of

different classes of molecules, including macrocycles, alpha helix mi-

metics, and peptidomimetics. This vendor also offers a small-molecule

library specifically designed to target RNA,19 which is a suitable candi-

date for this project. Moreover, the candidates in this set are different

from the training set, allowing for testing the model’s generalizability.

d FDA approved: this dataset was taken from a study22 that found 86 mol-

ecules that were suppressors of miR-21 activity from a pool of 696 com-

pounds from the Bioactive Compound Library and 262 compounds from

FDA-approved Drug Library. In this work, these molecules are deleted

from the mentioned inference datasets, to avoid selection of previously

discovered molecules. Moreover, these molecules will be used to assist

the selection of the final molecules by identifying the favorable clusters

as described in the ‘‘molecule selection’’ section.

d SAR sample: this dataset originates from a study23 that takes two mol-

ecules that are known inhibitors of miR-21 and uses SAR to optimize

these molecules and assist in overcoming chemoresistance in renal

cell carcinoma. Overall, 37molecules are tested and shown to be active,

which can create a small validation set for this work.

After training, the inference data are loaded and preprocessed with the

same steps as the training data. Then the trained model is used to make pre-

dictions on the inference sets as well as to attach uncertainty values to these

predictions. The inference script within the GitHub repository contains the

code for these necessary steps.
Graph convolutional neural network training

In recent years, GCNNs have proved to be helpful in learning representations

from small molecules and modeling tasks such as virtual screening,26 molec-

ular property prediction,25 and drug-target interaction.42,43 This success is

owed to two facts: first, small molecules are inherently similar to graphs,

with atoms represented as nodes and bonds represented as edges, making

GCNNs suitable tools for handling this data type. Second, the feature extrac-

tion in the GCNN model, which is inspired by traditional circular fingerprint
10 Patterns 5, 100909, January 12, 2024
extraction from molecules, results in useful and often superior inner features

due to the automatic representation learning aspect of deep learning.14,24

In this work, the GCNN implementation from the DeepChem library is

used.44 In this model, the molecules are converted to graphs and atoms,

then featurized to include features such as atom type, number of directly

bonded neighbors, implicit valence, formal charge, and hybridization type.

Isomeric information is also added to the features in the form of a vector

with length of three (whether chirality is possible, right-hand, and left-hand).

The model is trained in a multitask learning manner, with the intent to share

the representation learning mechanism between multiple datasets and in-

crease the efficiency of the training and the performance of the final model.

This multitask learning approach is paired with an in-house algorithm that rec-

ommends a unique grouping of the tasks in multitask learning to optimize the

final performance of the model. The logits of the model are viewed through the

lens of evidential deep learning to attach uncertainty values to each prediction,

The code used for model training can be found in the training script in the

RiboStrike GitHub repository.

The molecular data are split using Murcko scaffolds to create training, vali-

dation, and test sets. The hyper-parameters of this model as well as the length

of the training are found through hyper-parameter optimization in a grid-search

manner via monitoring the performance of the model on the validation set. The

code for this optimization can be found in the hyper_opt script within the

GitHub repository (more on hyper-parameter optimization can be found in

the supplemental information).

Evaluation metric

The metric used for evaluation in this work is the AP score. This metric com-

putes the area under the precision-recall curve and was chosen due its fair-

ness toward imbalanced datasets, where the positive label discovery is of

importance. This is the case with most virtual screening tasks, where the num-

ber of active molecules is often much lower than the number of inactive mol-

ecules, resulting in highly imbalanced datasets. Moreover, discovery of these

active candidates is of utmost importance in an early drug-discovery pipeline

since these candidates will be passed on to the next steps of the drug discov-

ery process. Therefore, AP score is favored in this work for comparison of

models, different architectures, or different epochs during training. The results

are also reported for accuracy, recall, precision, and the area under the

receiver operator curve (ROC-AUC).

Optimizing the tasks for multitask learning

Multitask learning has proved to be beneficial in many instances via providing

multiple tasks for the model to simultaneously learn from, with the hope that

the learned representations for these tasks benefit from being shared within

the same model. However, this is not the case in all scenarios and, in some

cases, negative transfer occurs, where multitask learning hurts the perfor-

mance of a given task when compared to single-task learning.31 In this

work, to address the problem of negative transfer, the method of prediction-

based task recommendation is proposed, which narrows the number of tasks

selected for multitask learning via recommending a few tasks in an algorithmic

manner.

Prediction-based task recommendation

To begin the process of task recommendation and selection of fewer training

tasks, a multitask learning model is trained on all available tasks. After training,

one target task is selected (e.g., miR-21 dataset) and inference is performed on

the validation set of this target task. Since the model is trained on multiple

tasks, it will have multiple predictions for each input molecule, each assigned

to one input task. Given N total training tasks and M molecules in the target

task’s validation set, the predictions of the model will then have a shape of

M✖N, with each row representing the output of the sub-model assigned to

one input task, denoted by Outputi. After this output is calculated, each

Taski is scored using the scoring metric in Equation 1.

Scorei = AveragePrecisionScore
�
Labeltarget ;Outputi

�
(Equation 1)

Here, Labeltarget denotes the ground truth labels for the target task. As can be

seen from this equation, the labels are kept constant on the target set while the

sub-model changes, which is the main difference between this method and
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simple inference. Using this scoring mechanism, the predictions of different

sub-models are compared to the ground truth labels of the target task, with

the sub-models that have more similar predictions to the target labels having

a higher score. Through the identification of sub-models with similar predic-

tions, this approach identifies their corresponding training tasks and selects

the highest-scoring tasks for training. The recommended tasks are selected

via applying a threshold of mean plus two standard deviations to the scores.

This threshold is arbitrary and can be replaced with a simple selection of top

K scores. The recommended tasks are then passed on as training data to

the hyper-parameter optimization and training step for the final model. This

recommendation process is repeated for the toxicity model as well, with the

target task of HepG2. The code for this recommendation algorithm can be

found in the training script of the RiboStrike GitHub repository.
Molecule selection: Inference and uncertainty prediction

After different categories of models are trained, the final models are used to

predict the properties of the molecules from the inference datasets. All training

data, as well as the FDA-approved data,22 are removed from the inference da-

tasets to avoid the selection of redundant or previously discovered molecules.

During the inference process, a binary label is predicted for each given mole-

cule, reflecting its predicted effect on miR-21’s function. Having only binary la-

bels to distinguish between different molecules is problematic, since mole-

cules with the same predictions (e.g., active) become indistinguishable and

no ranking can be assigned to the molecules for further drug candidate

selection.

In order to overcome the selection challenges, an uncertainty prediction

method is applied on the last layer of the model. To do so, evidential deep

learning is used,30 which applies a Dirichlet distribution on the class probabil-

ities and computes uncertainty for each prediction. This uncertainty score

ranges from zero to one, with lower scores demonstratingmore certain predic-

tions. With this uncertainty score, the predictions become distinguishable and

the molecules that are predicted to be active with low uncertainty become

desirable. The code for this molecule selection process is located within the

inference script of the RiboStrike GitHub repository.
Molecule selection: Neural fingerprints clustering

After the uncertainty is predicted, one challenge is faced, which is the lack of

diversity in the top selected molecules with low uncertainty. The reason for this

phenomenon is that similar molecules result in similar predictions and uncer-

tainty, and the most certain predicted molecules are similar to each other and

they populate the top of the certainty ranking list. This creates a problem in the

further stages and specifically in vitro screening, where diversity among the

candidates is needed to increase the chance of activity against different

targets.

To enforce diversity within the selected molecules and create variety within

the final selection, the molecules are clustered and a few molecules are

selected from some of the clusters. To do so, the neural fingerprints of themol-

ecules are extracted from the Graph Gather layer of the trained model. This

fingerprint is the inner features of the model for an input molecule and is a nu-

merical vector that canmeaningfully represent thismolecule. Neural fingerprint

clustering allows themolecules belonging to different clusters to both be struc-

turally different and exist in different locations within the feature space of the

trained network. After the features are extracted, KMeans (K = 10) clustering

is applied to the features, then visualized using 2D UMAP, resulting in 10 clus-

ters formed from the inference molecules. The code for ensuring diversity

within the final selection is located under the clustering script within the

GitHub repository.
Molecule selection: Five criteria for final selection

After the molecules are clustered and uncertainty and bioactivity are predicted

for all of them, five different criteria were checked for the final molecules to be

selected:

(1) Potency as miR-21 activity inhibitor: the selected molecules should be

predicted to inhibit the function of miR-21.

(2) Certainty: the molecules that had the least uncertainty in each cluster

were considered.
(3) Diversity: molecules should belong to different clusters in regard to the

clustering of the neural fingerprint. Clusters that include more of the

FDA-approved molecules are more likely to be selected from.

(4) Passmajority of toxicity tests: the selectedmolecules are more likely to

be predicted as non-toxic in most of the toxicity tests with low uncer-

tainty for specifically the HepG2 test.

(5) Low chance of interaction with miR-122: the selected molecules are

predicted to be specific to miR-21 and do not interact with other

miRNA, specifically miR-122.

(6) Low chance of inhibiting the DICER: the selected molecules are more

likely to be predicted to not affect the function of the DICER with low

uncertainty.

Following these criteria, the inference molecules are first narrowed down to

those predicted to be active with high certainty and then filtered via selecting

top molecules from each 10 clusters. Afterward, the final molecules are

selected from this list with consideration of toxicity and DICER activity and

their uncertainties. In the end, eight molecules are selected from the inference

datasets (ZINC and Asinex) and progress to the in vitro screening stage.
Cell culture

The MDA-MB-231 (MDA-parental, ATCC HTB-26) human breast cancer cell

line; its highly metastatic derivative, MDA-LM245; its triple reporter version,

MDA-MB-231tr; and HEK293T cells (ATCC CRL-3216) were cultured in Dul-

becco’s modified Eagle’s medium supplemented with 10% fetal bovine serum

(FBS), penicillin, streptomycin, and amphotericin B. Cells were all incubated at

37�C at 5% CO2 in a humidified incubator.
CellTiter-Glo cell viability assay

MDA-MB-231 cells were seeded at 1,000/well in white opaque 96-well plates

(Corning 3917) and treated with serial dilutions of drug candidates ranging

from 3.2 pM to 1 mM for 72 h in triplicate. Cell viability was measured using

CellTiter-Glo 2.0 Assay (Promega G9243) to find IC20 concentrations.
High-throughput sequencing data generation

MDA-MB-231 cells were seeded at 3,000/well in clear 96-well plates and

treated with drug candidates at IC20 for 72 h in duplicate. Controls were trans-

fected with oligo inhibitors targeting either mir-21 or non-targeting controls in

duplicate. For transfection of control wells, we added 0.5 mL of 100 mM oligo

inhibitor, 100 mL of OptiMEM (Thermo Fisher Scientific 31985088), and

2.5 mL of Lipofectamine 2000 (Thermo Fisher Scientific 11668019), which

were incubated together for 20min at room temperature. Cells were then incu-

bated at 37�C for 72 h. RNA was extracted using the Quick-RNA 96 kit (Zymo

Research R1052) and concentrations were determined using Nanodrop. Li-

braries were prepared using the QuantSeq-Pool Sample-Barcoded

30mRNA-Seq kit (Lexogen 139) with 10 ng of input RNA. Libraries were

sequenced using NovaSeq 6000 SP (100 cycles).
High-throughput sequencing data generation for RNA-seq and

smRNA-seq

MDA-MB-231 cells were seeded at 13 105/well on 24-well plates and treated

with either Ribo21D-1, Ribo21D-2, or Ribo21D-3 at 0.1 mM for 72 h in triplicate.

Controls were transfected with oligo inhibitors targeting either mir-21 or non-

targeting controls in triplicate. For transfection of control wells, we added

0.5 mL of 100 mM oligo inhibitor, 100 mL of OptiMEM (Thermo Fisher Scientific

31985088), and 2.5 mL of Lipofectamine 2000 (Thermo Fisher Scientific

11668019), which were incubated together for 20 min at room temperature.

Cells were then incubated at 37�C for 72 h. RNA was extracted using Direct-

zol Mini-prep Kit (Zymo Research R2051). RNA RIN values and concentrations

were assessed using the Agilent D1000 ScreenTape System and an Agilent

Tapestation 4200 according to manufacturer’s instructions. RNA-seq libraries

were prepared using the SMARTer Stranded Total RNA-seq V3-Pico Input

Mammalian: cDNA kit (Takara 634486) with 5 ng of input RNA. The smRNA-

seq (small non-coding RNAs) libraries were prepared using the SMARTer

smRNA-Seq Kit (Takara 635031) with 30 ng of input RNA. Libraries were

sequenced on a HiSeq4000.
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QuantSeq-Pool data analysis

The QuantSeq-Pool data were demultiplexed and preprocessed using an im-

plementation of the pipeline provided by Lexogen (https://github.com/

Lexogen-Tools/quantseqpool_analysis). The outputs of this step are gene-

level counts for all samples. The raw counts matrix used for differential expres-

sion analysis was prepared using the DESeq2 package.46 The logFCs from

multiple differential expression comparisons used gene set analysis

(Figure 5A).

Finally, we aimed to sort molecules based on their systematic effect on

expression of miR-21 target mRNAs through gene set enrichment analysis.

Thus, we downloaded TargetScan prediction of hsa-mir-21 3p target genes

from miRBase dataset (miRBase: MI0000077). Then, we use a modified

version of iPAGE39 (we call it onePAGE from here on) in which you can perform

the gene set enrichment analysis powered by mutual information evaluation

and statistical tests for a single gene set. The onePAGE analysis here reports

enrichment of miR-21 target gene list in three bins of logFC values; from left to

right, (0) lowest bin of log2FC (i.e., downregulated), (1) log2FC around zero (i.e.,

no expression change), (2) highest bin of log2FC (i.e., upregulated). After

running this analysis for differential expression log2FC of all drugs and control

conditions, we sorted drugs based on resulted Z score keeping miR-21 vs.

negative control (nc) at the top (Figure 5A). From this step, we selected the

top five drugs for further evaluation.

All scripts for preprocessing, differential expression, and onePAGE enrich-

ment analysis are accessible in this GitHub repository (https://github.com/

goodarzilab/targeting-miR-21-RNA-seq).

RNA-seq and small RNA-seq data analysis

For RNA-seq, salmon (v0.14.1) was used to measure gene expression (gen-

code v44 basic annotation). Tximport (v1.14) and DESeq2 (v1.24) were used

to compare gene expression changes between treatments and controls. For

putative targets, miR-21-5p targets from TargetScan7.1 and MirDB were

downloaded from mirBase and combined into a unified set. onePAGE, as

described above, was used to perform gene set enrichment analysis. For

empirical targets, we used miR-21 microCLIP binding sites and intersected

them with those upregulated upon anti-miR21 transfection.

For smRNA-seq, cutadapt (v3.5) was used to remove linkers and bowtie2

(v2.3.5). UMI-tools (v1.0.0) and UMICollapse were used to account for UMIs

and remove duplicates. Annotated small RNAs were then counted and miRNA

expression was compared using DESeq2 (v1.24).

Generation of MDA EGFPmiR-21 reporter cell line

The vector backbone for the reporter plasmids was generated from a vector

with a bidirectional cytomegalovirus (CMV) promoter-driven lentiviral reporter,

expressing eGFP and DlnGFR. This vector was a gift from David Erle.47 The

DlnGFRORF in the vector was replaced by a PuroR-T2A-mCherry fusion using

Gibson assembly as previously described.48 In order to generate the eGFP-

miR-21 reporter plasmid, two miR-21 binding sites were added to the end of

eGFP using the NEBuilder HiFi DNA Assembly Cloning Kit. MDA-MD-231 cells

were engineered to stably express the reporter plasmid using lentiviral delivery

of the vector.

d hsa-miR-21-5p

d TCAACATCAGTCTGATAAGCTA

d Sequences for reporter cell line generation were obtained frommiRBase
FLOW cytometry analysis of miR-21 reporter cell line

MDA EGFPmiR-21 reporter cell lines were seeded at a density of 23 104 cells

per well of a 96-well plate. Cells were treated for 3 days with serial dilutions of

the six most promising drugs (dilutions determined by IC20 curves). Addition-

ally, anti-miR controls (anti-mi21 and non-targeting) were also transiently

transfected into cells using Lipofectamine 2000 (Thermo Fisher) according to

the manufacturer’s protocol. Cells were collected after 3 days and fluores-

cence output was measured on a BD FACSCelesta flow cytometer.

Animal studies

All animal studies were performed according to IACUC guidelines (IACUC

approval number AN194337-01G). Age-matched female NSG mice (Jackson
12 Patterns 5, 100909, January 12, 2024
Labs, 005557) were used for metastatic lung colonization assays. These as-

says were performed with MDA-MB-231 cells, which were seeded at 1.5 3

105 cells in two wells of a six-well plate on day 1. After 24 h 0.1 mM MCULE-

9082109585 and 0.5% DMSO were added dropwise to one well each. After

48 h, MCULE-9082109585 and 0.5% DMSO medium was removed and the

cells were prepped for tail vein injections. Cells were resuspended in 2 mL

of PBS and each mouse received 5 3 104 cells/100 mL of PBS. Metastasis

was measured by bioluminescent imaging (IVIS).
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