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Abstract 

Background:  Primary glomerulonephritis (GN) is the leading cause of chronic kidney disease (CKD) and frequently 
progresses into end stage renal diseases (ESRDs). Shorter leukocyte telomere length (LTL) has been implicated in the 
CKD susceptibility and diminished kidney function, however, it is unclear whether the variants in telomerase genes 
contribute to risk to GN/CKD/ESRD. Here we address this issue by determining their association with the genetic 
variants of rs12696304 at the telomerase RNA component (TERC) and rs2736100 at the telomerase reverse transcriptase 
(TERT) loci.

Methods:  The study includes 769 patients (243 primary GN-derived CKD and 526 ESRD cases) and sex-/age-matched 
healthy controls. Genomic DNA was extracted from peripheral blood of both controls and patients. Genotyping of 
rs12696304 and rs2736100 variants was carried out using PCR-based assays. Leukocyte telomere length (LTL) was 
determined using quantitative PCR (qPCR).

Results:  A significantly higher frequency of TERC rs12696304 G allele was observed in patients and associated with 
increased disease risk (C vs G: OR = 1.334, 95% CI 1.112–1.586, P = 0.001; CC + GC vs GG: OR = 1.334, 95% CI 1.122–
1.586, P = 0.001). Further analyses showed that such significant differences were only present between female con-
trols and patients (C vs G: OR = 1.483, 95% CI 1.140–1.929, P = 0.003; CC + GC vs CC: OR = 1.692, 95% CI 1.202–2.383, 
P = 0.003), but not males. There were no differences in rs2736100 variants between controls and patients, but female 
ESRD patients carried significantly higher C allele frequencies than did female controls (A vs C: OR = 1.306, 95% CI 
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Background
The prevalence of chronic kidney disease (CKD) has sig-
nificantly increased in the last decades, affecting more 
than 10% of the adult population worldwide [1]. In gen-
eral, primary glomerulonephritis (GN) is a leading cause 
of CKD and frequently progresses into end stage renal 
disease (ESRD) [1, 2], which has been a great burden to 
the public health care system [3]. The precise pathogen-
esis of primary GN/CKD is unclear, but the host-genetic 
background is implicated in the disease onset and pro-
gression [4–6]. Epidemiological studies showed striking 
geographic and ethnical variations [2, 4]. Consistently, 
recent genome-wide association studies (GWAS) and 
genetic analyses revealed a panel of genetic variants asso-
ciated with the disease susceptibility and/or complica-
tions [4–9].

Human linear chromosomes terminate with telomeric 
TTA​GGG​ repeat sequences essential for genomic stabil-
ity and integrity [10–12]. Telomeric DNA is synthesized 
by telomerase, an RNA dependent DNA polymerase with 
telomerase reverse transcriptase (TERT) and telomerase 
RNA template (TERC) as its core components [11–13]. 
Most human somatic cells express no or low levels of tel-
omerase activity, which, together with “the end-replica-
tion problem”, results in progressive telomere shortening 
with cellular divisions [10–12]. When telomere becomes 
too short (dysfunctional) to protect chromosomes, the 
DNA damage response is activated, thereby triggering 
the permanent growth arrest of cells so-called replicative 
senescence. Thus, telomere erosion serves as a mitotic 
clock recording the number of cell divisions and limit-
ing their life-span, and is widely accepted as a biomarker 
for aging and age-related conditions [10–12, 14]. Indeed, 
short leukocyte telomere length (LTL) has been shown 
to be associated with cancer, increased mortality, cardio-
vascular disorders, stroke, diabetes, and other age-related 
disorders [10, 15]. Similarly, shorter LTL-carriers were 
reported to display significantly decreased glomerular 
filtration rate while increased urinary albumin-creatinine 
ratio [16–18]. Carrero et al. and others further observed 
that CKD or ESRD patients had accelerated telomere 
attrition coupled with increased mortality [19, 20]. These 
findings suggest that shorter LTL is likely associated with 
CKD prevalence/occurrence or declining kidney func-
tion. However, there are published reports showing the 

lack of such an association [17]. In addition, because 
adverse environmental factors are capable of driving pre-
mature telomere erosion, the causal relationship between 
shortened LTL and GN/CKD/ESRD remains unclear.

There exist multiple single nucleotide polymorphisms 
(SNPs) in the telomerase genes and some of them are 
significantly associated with LTL in the general popula-
tions, and risk of disorders as described above [21–29]. 
However, the relationship between these SNPs and GN/
CKD/ESRD risk has not been explored yet so far. Moreo-
ver, unlike LTL, these germline variants are not affected 
by environmental elements. In the present study, we thus 
sought to determine whether rs12696304 at the TERC 
and rs2736100 at the TERT loci, two well characterized 
LTL-related SNPs, contribute to susceptibility to primary 
GN/CKD/ESRD.

Methods
Study populations
The case–control individuals include 515 healthy con-
trols and 769 primary GN/CKD/ESRD patients and they 
were all Han Chinese. Primary non-end stage GN/CDK 
patients (n = 243) were recruited from the out-patient 
service/department or ward, at Shandong University Sec-
ond Hospital, Shandong University Qilu Hospital, Shan-
dong Provincial Hospital and the Affiliated Hospital of 
Shandong University of Traditional Chinese Medicine, 
between June 2016 and Jan. 2018. ESRD patients, devel-
oped from primary GN, were included from Shandong 
University Second Hospital, between Jan. 2012 and Dec. 
2017 and blood was collected before they underwent 
kidney transplantation. Five hundred and fifteen unre-
lated healthy controls who were age- and sex-matched 
to cases were recruited from the Physical Examination 
Center of Shandong University Second Hospital. All of 
the included controls had normal kidney function. The 
study was approved by the Ethics Review Committee of 
Shandong University Second Hospital and informed con-
sent was obtained from all participants.

DNA extraction and genotyping of the TERC rs12696304 
and TERT rs2736100 variants
Genomic DNA was extracted from peripheral blood 
cells using TIANGEN DNA extraction kits. The TERC 
rs12696304(C/G) and TERT rs2736100 (A/C) genotyping 

1.005–1.698, P = 0.046; AA vs CC: OR = 1.781, 95% CI 1.033–3.070, P = 0.037). There was no difference in LTL between 
controls and patients.

Conclusions:  Our results reveal that the TERC rs12696304 and TERT rs2736100 polymorphisms, but not LTL per se, 
contribute to GN/CDK/ESRD risk.
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was carried out using pre-designed TaqMan SNP geno-
typing assay kits on an ABI 7500 Life Tech (Applied Bio-
systems), as described [30]. Both positive and negative 
controls were included in all assays and the running con-
dition was as followed: 95  °C for 5  min, followed by 40 
cycles of 92 °C for 15 s and 60 °C for 30 s.

LTL assay
Genomic DNA was isolated from peripheral blood cells 
as described above and LTL was assessed using real-
time PCR as previously described [31, 32]. Briefly, 2  ng 
of DNA were used for each PCR reaction. The primer 
sequences for human telomere (Tel 1b and Tel 2b) and 
β-globin (HBG3 and HBG4) were: Tel1b: 5′-CGG​TTT​
GTT​TGG​GTT​TGG​GT-TTG​GGT​TTG​GGT​TTG​GGT​
T-3′; Tel2b: 5′-GGC​TTG​CCT​TAC​CCT​TAC​CCT​TAC​
CC-TTA​CCC​TTA​CCC​T-3′; HBG3: 5′-TGT​GCT​GGC​
CCA​TCA​CTT​TG-3′, and HBG4: 5′-ACC​AGC​CA-CCA​
CTT​TCT​GAT​AGG-3′. T/HBG values were determined 
using the formula T/S = 2−ΔCt, where ΔCt = average 
Cttelomere − average Ctβ-globin. The T/S ratio was arbitrar-
ily expressed as LTL. Age-adjusted LTL for each control 
and patient was done by subtracting the subject’s linear 
predicted LTL from the observed one.

Statistical analyses
The evaluation of distribution differences of selected 
variables and alleles of the TERC rs12696304 and TERT 
rs2736100 between GN/CKD/ESRD patients and healthy 
controls were done using χ2 test. Hardy–Weinberg equi-
librium of the genotype distribution among the con-
trols and cases were tested by a goodness-of-fit χ2 test. 
Unconditional univariate and multivariate logistic regres-
sion analyses were used to estimate Odd ratios (ORs) 
for risk of GN/CKD/ESRD and their 95% confidence 
intervals (CIs). The LTL difference between patients and 
healthy controls was assessed using Student T test. All 
the tests were computed using SPSS17.0 software. For 
comparison of rs12696304 and rs2736100 alleles and 
genotypes between healthy controls and GN/CKD/ESRD 
patients, P values of < 0.05 were considered as statistically 
significant.

Results
Characteristics of study subjects
A total of 769 patients with primary GN/CKD/ESRD 
were included in the present study. Age and sex distri-
butions are shown in Table  1. Five hundred and fifteen 
unrelated healthy adults used as controls were age- and 
sex-matched (Table  1). Both controls and patients were 
genotyped for TERC rs12696304 and TERT rs2736100 
variants. LTL was assessed in 327 controls and 592 
patients.

The association between the rs12696304 G allele or GG 
genotype and susceptibility to primary GN/CKD/ESRD
We first determined rs12696304 and rs2736100 allele/
genotype distribution in both controls and patients with 
GN/CKD/ESRD. Genotyping was successfully performed 
on DNA from all 515 controls and 757/769 patients for 
rs2736100, and all 515 controls and 759/769 patients 
for rs12696304, respectively. The results, summarized 
in Table  2, showed a significantly increased frequency 
of rs12696304 G allele in the patient group compared to 
that in controls (C vs G: OR = 1.465, 95% CI 1.170–1.834, 
P = 0.001; Table  2). Similarly, a higher frequency of the 
rs12696304 GG genotype was observed in the patient 
group (CC + GC vs GG: OR = 1.334, 95% CI 1.122–1.586, 
P = 0.001; Table 2). Because our previous studies showed 
that telomerase gene variant-associated disease suscepti-
bility was gender-dependent [32, 33], we compared males 
and females separately. The significant difference was 
only confined to female controls and patients (C vs G: 
OR = 1.483, 95% CI 1.140–1.929, P = 0.003; CC + GC vs 
CC: OR = 1.692, 95% CI 1.202–2.383, P = 0.003; Table 2), 
whereas not seen in the male groups (Table  2). These 
findings thus suggest that the rs12696304 G allele and 
GG genotype are significantly associated with primary 
GN/CKD/ESRD risk in females.

Because certain protective variants may accumulate 
during disease progression from GN/CKD to ESRD, we 
divided the patients into two categories: non-end stage 
GN/CKD and ESRD, and then analyzed their associa-
tion with rs12696304 variants separately. For CKD cases, 
both G allele and GG genotype were significantly higher 
compared to those in controls (C vs G: OR = 1.555, 95% 
CI 1.215–1.990, P = 0.0001; CC + GC vs CC: OR = 1.634, 
95% CI 1.201–2.234, P = 0.002; Table 3). Again, we only 
observed such differences between female controls 
and patients (C vs G: OR = 1.816, 95% CI 1.248–2.641, 

Table 1  Characteristics of  primary GN/CKD/ESRD patients 
& healthy controls

GN Glomerulonephritis, CKD chronic kidney disease, ESRD end-stage renal 
disease

Primary GN Healthy controls

CKD (non-end 
stage)

ESRDs

Number 243 526 515

Age (year)

 Range 13–81 15–83 15–86

 Mean ± SD 43 ± 14 46 ± 11 46 ± 12

Gender

 Male 133 301 289

 Female 110 225 226
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P = 0.002; CC + GC vs CC: OR = 1.959, 95% CI 1.233–
3.114, P = 0.006; Table 3). There was no difference in the 
male groups (Table 3).

Similar distribution patterns of rs12696304 SNPs as 
seen above were also observed in the ESRD group: When 
a comparison including both males and females was 
made, the patient group exhibited significantly increased 
frequencies of G allele and GG genotype (C vs G: 
OR = 1.245, 95% CI 1.031–1.503, P = 0.022; CC + GC vs 
CC: OR = 1.392, 95% CI 1.089–1.778, P = 0.010; Table 4); 
whereas again a separate analysis showed that the differ-
ence was confined to the female groups (Table 4).

The association between the rs2376100 C allele or CC 
genotype and susceptibility to ESRD
The TERT rs2736100 genotyping was performed in these 
same controls and patients, and the obtained allele and 
genotype distribution is shown in Table 2. There was no 
significant difference in allele or genotype frequencies 
between controls and patients, or between males and 
females. However, the analysis of the ESRD subgroup 
revealed significantly increased frequencies of rs2736100 
C allele and CC genotype in female patients compared to 
their matched healthy controls (A vs C: OR = 1.306, 95% 
CI 1.005–1.698, P = 0.046; AA vs CC: OR = 1.781, 95% CI 
1.033–3.070, P = 0.037; Table 4).

LTL in healthy controls and patients
LTL was assessed in 327 controls and 592 patients. In 
both controls and patients, LTL was negatively corre-
lated with age (P < 0.001) (Fig. 1a). LTL, as assessed using 
qPCR, was 1.187 ± 0.539 and 1.189 ± 0.593 (mean ± SD) 
for controls and patients, respectively, which did not dif-
fer significantly (P = 0.967) (Fig. 1b). Because females in 
general harbour longer LTL than men, and our results 
showed an association of telomerase gene variants with in 
female patients, we further compared LTL between con-
trols and patients according to sex. A total of 159 male 
controls had LTL 1.160 ± 0.5359, while 363 male patients 
had LTL 1.193 ± 0.6013 (P = 0.967) (Fig.  1c). In females, 
a slightly shorter LTL was observed in patients (n = 229) 
compared to that in controls (n = 168) (1.182 ± 0.580 vs 
1.213 ± 0.542, however, the difference did not reach a sig-
nificant level (P = 0.590).

As TERC rs12696304 and TERT rs2736100 variants 
are both correlated with LTL [21, 22, 24–28, 33, 34], 
we compared LTL among different genotypes of con-
trols and patients. LTL was 1.055 ± 0.456, 1.210 ± 0.570 
and 1.204 ± 0.521 for control CC-, GC- and GG-carri-
ers, respectively, and while 1.129 ± 0.525, 1.230 ± 0.628 
and 1.167 ± 0.574 for patient CC-, GC- and GG-car-
riers, respectively (Fig.  1d). There were no differences 
among the three different genotypes of both controls 

and patients, or between controls and patients with the 
same genotype (Fig. 1e). The comparison of LTL among 
rs2736100 variants similarly showed the lack of any asso-
ciation between controls and patients irrespective of sex.

Discussion
Numerous studies have revealed an intimate association 
between the variants of the TERT or TERC gene and 
susceptibility to cancer, aging-associated disorders and 
many other pathological conditions [15, 21–28, 34, 35], 
however, their relationship with primary GN/CKD/ESRD 
has never been explored. In the present study, we inves-
tigated the influence of rs2736100 and rs12696304 vari-
ants on primary GN/CKD/ESRD risk, and the obtained 
results demonstrate significantly higher frequencies of 
the rs12696304 G allele and GG genotype in patients 
than in healthy controls, which indicate that the TERC 
rs12696304 G allele serves as a biomarker to GN/CKD/
ESRD risk. We further observed that such susceptibility 
occurred only in females with the G allele/GG genotype. 
The rs2736100 variants are in general not associated 
GN/CKD risk, but the proportion of female ESRD C 
allele-carriers was significantly higher compared to their 
matched control counterparts, suggesting its role in CKD 
progression. Thus, the present findings provide evidence 
that the telomerase gene SNPs contribute to susceptibility 
to primary GN/CKD/ESRD.

An autoimmune etiology is strongly implicated in the 
pathogenesis of primary glomerular diseases/CKDs/
ESRDs, while telomerase and telomeres have long been 
established to play an important role in regulating immu-
nological activity [36, 37]. Activation of telomerase via 
induction of TERT and TERC expression occurs in acti-
vated lymphocytes for their proliferation and clonal 
expansion in response to infectious challenge [36, 37]. 
Shorter LTL was associated with increased susceptibility 
to experimentally induced acute upper respiratory infec-
tion and clinical illness in adults [38]. Mechanistically, 
shorter telomeres limit proliferative potentials of immune 
cells and compromise immune response to pathogens, 
thereby lowering host resistance to infection [36, 37]. In 
addition, telomerase insufficiency and shorter TL due to 
defective TERT and TERC expression were observed in 
naïve CD4 T cells from patients with rheumatoid arthri-
tis, through which premature senescence of T cell subsets 
occurred and subsequent autoimmunity was triggered 
[39, 40]. Moreover, this scenario was also present in other 
autoimmune disorders [40]. TERT and TERC are two key 
components of the telomerase enzyme and it is thus con-
ceivable that their genetic variants may affect telomerase 
activity. Likely, TERT and TERC variants modify risk of 
GN/CKD/ESRD by influencing the host immune activity.
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However, the LTL comparison between healthy con-
trols and GN/CKD/ESRD patients did not reveal a 
significant difference, which indicates that telomere 
homeostasis is not substantially impaired. In addition, 
the rs12696304 G allele-carriers were previously shown 
to have significantly shorter LTL in both Chinese and 
western populations [22, 24–26], but we did not find such 
scenario in either healthy controls or patients, and there-
fore the association between rs12696304 G allele and 
increased GN/CKD/ESRD risk is unlikely attributable to 
telomere length regulation. Telomere lengthening is the 
canonical function of telomerase, whereas recent studies 
have demonstrated its multiple properties independently 
of telomere homeostasis [11, 41–48]. TERC or TERT has 
been shown to stimulate the activation of NK-κB path-
way to promote inflammatory response independently of 
telomerase-mediated telomere extension [41, 48], while 
NK-κB is critical to drive CDK development and progres-
sion [49]. The rs12696304 G allele may be involved in a 
host auto-immune response targeting glomerular tissues 
via TERC-mediated activation of the NF-κB signalling 
pathway, which calls for further investigations.

It is intriguing that there exists an association between 
rs12696304 G allele or GG genotype and GN/CKD/
ESRD risk only in females. Because estrogen and proges-
terone are known to activate the transcription of TERT 
and TERC genes [50–53], female sex hormones may play 
a putative part. As described above, impaired TERT or 
TERC expression in T cells are involved in the patho-
genesis of rheumatoid arthritis. There may be a possibil-
ity that female hormones interact with the rs12696304 G 
allele, thereby contributing to dysregulation of TERC and 
subsequently leading to an auto-immune attack to glo-
merular tissues. Further studies are required to elucidate 
this issue.

Interestingly, we notice a significant difference in the 
rs12696304 variant distribution between Chinese Han 
and other ethnical populations. The results reported by 
us and other investigators showed that the CC geno-
type was restricted to 9 to 11% in the Chinese popu-
lation [24], while it was present in more than 30% of 
Caucasians [22, 25, 26]. It has been well documented 
that the prevalence of primary GN/CKD/ESRD includ-
ing IgA nephropathy is substantially higher in China 
than in Europe and North America, and the genotype 

difference in rs12696304 likely contributes to this dif-
ference in incidence patterns [2]. Similarly, we recently 
observed the different genotype distribution in the 
TERT rs2736100 between Swedish and Chinese popu-
lations [33]. A significantly higher fraction of rs2736100 
C, a risk allele associated with myeloproliferative neo-
plasia (MPN), was seen in Swedish individuals, which 
is coupled with a higher incidence of MPN (than that 
in China) [33]. Collectively, different genotype distribu-
tions of telomerase SNPs between Eastern and Western 
countries may contribute to their different susceptibili-
ties to a wide spectrum of diseases including glomeru-
lar diseases.

Our findings also showed that the rs2736100 C allele 
was associated with ESRDs, but not with non-end stage 
CKDs. It is likely that this allele contributes to CKD pro-
gression or ESRD risk. On the other hand, it may play 
a protective role in the disease evolution from CKD to 
ESRD, which thus leads to the selective accumulation of 
ESRD C allele-carriers.

Conclusions
The results presented here reveal an association between 
the rs12696304 G allele or GG genotype and susceptibil-
ity to primary glomerular diseases including CKD and 
ESRD in females. The G allele was shown to be correlated 
with shorter LTL in a number of studies, but we failed to 
see such difference in LTL between C and G allele-carri-
ers in both controls and patients. Moreover, we further 
found that the TERT rs2736100 C allele or CC genotype 
frequency was higher in female ESRD patients but not in 
those with CKD, and it is currently unclear whether this 
is due to evolutional selection during disease progres-
sion. Premature telomere erosion has been reported in 
patients with CKD/ESRD, however, LTL differences were 
not observed between controls and patients here. Col-
lectively, the TERC rs12696304 variant, and likely the 
TERT rs2736100 polymorphism, but not LTL per se, are 
associated with an increased risk of primary glomerular 
diseases. The present findings provide new insights into 
telomerase biology and glomerular disease etiology, and 
may be implicated in the precision prevention/interven-
tion of CKD/ESRD.

Fig. 1  Leukocyte telomere length (LTL) in controls and patients with GN/CKD/ESRD. LTL was assessed using qPCR as described in Methods. a 
The negative correlation between LTL and age in both controls and patients. b No differences in LTL between controls and patients. Left: All 
controls and patients; Middle and right: Male and female controls and patients, respectively. c No differences in LTL among different genotypes 
of rs12696304 in controls (left) and patients (right). d Lack of differences in LTL among different genotypes of rs2736100 in controls (left) and 
patients (right). e Lack of association of LTL with rs12696304 CC or GG genotypes between controls and patients. Left and right panels: CC and GG 
genotypes, respectively

(See figure on next page.)
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