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Abstract

Targeting epigenetic mechanisms has shown promise against
several cancers but has so far been unsuccessful against
glioblastoma (GBM). Altered histone 3 lysine 4 methylation
and increased lysine-specific histone demethylase 1A (LSD1)
expression in GBM tumours nonetheless suggest that epige-
netic mechanisms are involved in GBM. We engineered a
dual-action prodrug, which is activated by the high hydrogen
peroxide levels associated with GBM cells. This quinone
methide phenylaminecyclopropane prodrug releases the
LSD1 inhibitor 2-phenylcyclopropylamine with the glutathione
scavenger para-quinone methide to trigger apoptosis in GBM

Glioblastoma (GBM) is the most common primary and
malignant brain tumour in adults. GBM is an aggressive
tumour that proliferates and migrates rapidly (Demuth and
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cells. Quinone methide phenylaminocyclopropane impaired
GBM cell behaviours in two-dimensional and three-dimen-
sional assays, and triggered cell apoptosis in several primary
and immortal GBM cell cultures. These results support our
double-hit hypothesis of potentially targeting LSD1 and
quenching glutathione, in order to impair and kill GBM cells
but not healthy astrocytes. Our data suggest this strategy is
effective at selectively targeting GBM and potentially other
types of cancers.

Keywords: apoptosis, glioblastoma, LSD1, methylation,
oxidative stress.
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Berens 2004), leaving patients with a median survival of
12—15 months (McLendon and Halperin 2003; Verhaak
et al. 2010). To improve treatment outcomes, the search for

!Joint first authors: M.E. led the biology experiments and Y.S.G. led the
chemistry experiments.
These two authors denote joint senior authorship.

Abbreviations used: 2-PCPA, trans-2-phenylcyclopropylamine; 4-
OHT, 4-hydroxytamoxifen; CPA, cyclopropylamine; GBM, glioblas-
toma; GSH, glutathione; H3K4, histone 3 lysine 4; LSDI, lysine-specific
histone demethylase 1A; NMR, nuclear magnetic resonance; QAC,
quinone methide aminocyclopropane; QM, quinone methide; Q-PAC,
quinone methide phenylaminocyclopropane; ROS, reactive oxygen
species.

© 2018 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of 535
International Society for Neurochemistry, J. Neurochem. (2019) 149, 535-550

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

ORIGINAL ARTICLE


https://orcid.org/0000-0001-7602-1340
https://orcid.org/0000-0001-7602-1340
https://orcid.org/0000-0001-7602-1340
https://orcid.org/0000-0002-2707-6270
https://orcid.org/0000-0002-2707-6270
https://orcid.org/0000-0002-2707-6270
https://orcid.org/0000-0001-8105-4470
https://orcid.org/0000-0001-8105-4470
https://orcid.org/0000-0001-8105-4470
https://orcid.org/0000-0002-9963-5924
https://orcid.org/0000-0002-9963-5924
https://orcid.org/0000-0002-9963-5924
https://orcid.org/0000-0001-9241-8268
https://orcid.org/0000-0001-9241-8268
https://orcid.org/0000-0001-9241-8268
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/
https://cos.io/our-services/open-science-badges/

536 | M. Engel et al.

new targets against GBM has turned towards the contribution
of epigenetic mechanisms to GBM formation and progres-
sion (Mack et al. 2015). Transcriptional activation and
repression of tumorigenesis-relevant genes is influenced by
local histone methylation. For example, methylation at
histone 3 lysine 4 (H3K4) residues, which is associated with
increased gene expression (Santos-Rosa ef al. 2002; Liang
et al. 2004; Schneider er al. 2004), is reduced in severe
GBM cases (Liu ef al. 2010). The catalysing enzymes of
these non-permanent epigenetic markers are thus of partic-
ular interest for therapeutic approaches.

Lysine-specific histone demethylase 1A (LSD1) belongs to
the flavin adenine dinucleotide-dependent amine oxidase
family and catalyses the demethylation of monomethylated
(mel) and dimethylated (me2) H3K4 residues (Shi ez al. 2004;
Forneris et al. 2005). In combination with transcription
factors, such as repressor element 1-silencing transcription
factor, LSDI activity and the removal of H3K4 methylation
are associated with gene repression (Ooi and Wood 2007). In
concert with reduction in H3K4 methylation, GBM cells have
increased LSD1 protein levels (Singh ef al. 2011; Sareddy
et al. 2013; Zheng et al. 2015), with evidence for the
functional involvement of LSD1 in GBM proliferation (Suva
et al. 2014). Positive results from pharmacological inhibition
of LSD1 in other tumours with increased LSD1 expression,
such as leukaemia, lung and breast cancers (Fiskus et al. 2014;
Kumarasinghe and Woster 2014; Murray-Stewart et al. 2014;
Mohammad et al. 2015), indicate a promising treatment
potential for GBM by targeting LSD1 inhibition.

To increase the prospective success of a LSD1 inhibitor-
based GBM drug, employment of a cancer-selective mech-
anism is needed to reduce undesired effects in healthy tissue.
Cancer cells produce higher levels of reactive oxygen species
(ROS), including H,0O,, than non-cancerous cells (Reuter
et al. 2010), while being able to withstand 10- to 100-fold
higher H,O, concentrations (Hagen ef al. 2012). Activation
of a prodrug by high H,O, levels can therefore reduce oft-
target effects in healthy tissue (Peng and Gandhi 2012;
Singer et al. 2015). Hagen et al. (2012) have elegantly
shown the activation of an aminoferrocene-based anti-cancer
prodrug by H,0,, which takes advantage of high extracel-
lular H,O, levels in close proximity to cancer cells to
increase selectivity (Zieba et al. 2000; Lim et al. 2005).
Their prodrug undergoes oxidative break down to release
glutathione (GSH)-scavenging quinone methide (QM) and a
Fe catalyst for ROS generation, which work in concert to
amplify accumulation of ROS in cancer cells (Hagen et al.
2012). Similarly, Noh et al. (2015) developed a dual stimuli-
responsive anti-cancer prodrug activated by H,O, and acidic
conditions to generate QM and ROS-generating cinnamalde-
hyde. Importantly, cancer cells survive high ROS by
up-regulation of the ROS scavenger GSH (Ogunrinu and
Sontheimer 2010). Both these prodrugs and other anti-cancer
drugs therefore directly or indirectly target the GSH

mechanism to further elevate intracellular ROS and kill their
target cells (Alexandre et al. 2006; Badr ef al. 2013;
Kohsaka er al. 2013; Noh et al. 2015). However, cancer-
cell-selective prodrugs based on the common LSDI1 inhibitor
trans-2-phenylcyclopropylamine (2-PCPA/tranylcypromine)
are almost unexplored to date. The group of Suzuki made a
seminal contribution in this field, with their development of a
prodrug that conjugated 2-PCPA with the anti-oestrogen
agent 4-hydroxytamoxifen (Ota et al. 2016). Their prodrug
selectively released 4-hydroxytamoxifen in the presence of
LSD1, which has increased expression in breast cancer tissue
(Lim et al. 2010). As such, the prodrug was able to inhibit
the growth of breast cancer cells via inhibition of LSD1 and
oestrogen receptor alpha, while not exhibiting cytotoxicity
towards normal cells.

Advancing on existing (pro)drugs that focus primarily on
amplification of oxidative stress, we have developed a dual-
action prodrug that releases the LSD1 inhibitor 2-PCPA and
the GSH scavenger QM following H,0O, activation via an
aryl boronate trigger. This dual-action prodrug was more
effective than either 2-PCPA or QM precursors alone or
when applied together as independent compounds. The
quinone methide phenylaminocyclopropane prodrug (Q-
PAC) impaired key GBM cell behaviours and triggered cell
apoptosis through its hybrid action in several primary and
immortal GBM cell cultures. Our data support the double-hit
hypothesis of targeting LSD1 and scavenging GSH, in order
to selectively impair and ultimately kill GBM cells over
healthy astrocytes.

Materials and methods

Chemical synthesis and analysis

All reactions were conducted in oven-dried glassware under
nitrogen atmosphere. Reaction solvents were dried by passing
through a column of activated alumina and then stored over 4 A
molecular sieves. Progress of reactions was tracked by thin-layer
chromatography (TLC) and was performed on aluminium-backed
silica gel sheets (Grace Davison, Columbia, MD, USA, UV254).
TLC plates were visualized under UV lamp at 254 nm and/or by
treatment with one of the following TLC stains: phosphomolybdic
acid stain: phosphomolybdic acid (10 g), absolute EtOH (100 mL);
Potassium permanganate stain: KMnO, (1.5 g), 10% NaOH
(1.25 mL), water (200 mL); Vanillin stain: Vanillin (15 g), con-
centrated H,SO,4 (2.5 mL), EtOH (250 mL). Column chromatogra-
phy was performed using silica gel (40-75 pum) as the solid phase.
For nuclear magnetic resonance (NMR) spectroscopy, analytes were
dissolved in deuterated chloroform unless stated otherwise. NMR
spectra for each compound were collected from one of the following
instruments: Mercury 2000 spectrometer operating at 500 and
125 MHz for 'H and '>C NMR, respectively, or a Varian
spectrometer operating at 300 and 75 MHz for 'H and 3C NMR,
respectively. NMR data are expressed in parts per million (ppm) and
referenced to the residual chloroform in the deuterated solvent
(7.26 ppm for 'H NMR and 77.16 ppm for '*C NMR). The
following abbreviations are used to assign the multiplicity of the 'H
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NMR signal: s = singlet; bs = broad singlet; d = doublet;
t = triplet; q = quartet; quin = quintet; dd = doublet of doublets;
m = multiplet. For mass spectrometry analytes were dissolved in
HPLC grade methanol. High-resolution mass spectra were collected
from a Waters Xevo Gl QTOF mass spectrometer [Rydalmere,
NSW, Australia, electrospray-ionization mass spectrometry (ESI-
MS) or atmospheric solids analysis probe mass spectrometry
(ASAP-MS)] or Thermo Fisher Scientific Australia (North Ryde,
NSW, Australia) LTQ Orbitrap XL (ESI). Infrared spectra were
obtained from a Shimadzu IRAffinity-1 Fourier transform infrared
spectrophotometer with an ATR attachment (Shimadzu, Kyoto,
Japan). The log BB value for Q-PAC was calculated using
ChemDraw Professional 15.0 (PerkinElmer, Hopkinton, MA, USA).

Synthesis details of Q-PAC (4-(4,4,5,5-tetramethyl-1,3,2-dioxabor-
olan-2-yl)benzyl (2-phenylcyclopropyl)carbamate)

Triethylamine (0.4 mL, 290.4 mg, 2.87 mmol, 1.2 equiv) and
diphenylphosphoryl azide (0.58 mL, 742.4 mg, 2.70 mmol, 1.1
equiv) were added to a solution of 2-phenylcyclopropane-1-
carboxylic acid (399.6 mg, 2.46 mmol, 1 equiv) and 4-(hydro-
xymethyl)phenylboronic acid pinacol ester (637.6 mg, 2.72 mmol,
1.1 equiv) in dry dioxane (5 mL). The reaction solution was heated
at 105°C for 4 h then cooled to 22°C. Solvent was evaporated under
reduced pressure and the compound was purified by column
chromatography (25% ethyl acetate in hexane). The title compound
was obtained as a colourless oil (513.6 mg, 1.31 mmol) in 53%
yield.

'H NMR (500 MHz, CDCl3): & 7.79 (d, J = 7.5 Hz, 2H), 7.33
(d, J =17.5 Hz, 2H), 7.25-7.23 (m, 2H), 7.17-7.09 (m, 3H), 5.23
(bs, 1H), 5.12 (s, 2H), 2.75 (bs, 1H), 2.06 (bs, 1H), 1.33 (s, 12H)
and 1.18 (bs, 2H) ppm. *C NMR (75 MHz, CDCl5)": § 156.8,
140.5, 139.5, 135.1, 128.4, 127.2, 126.6, 126.2, 83.9, 66.7, 32.7,
24.9° and 16.2 ppm. IR (Neat): 3318, 2977 and 1706 cm™'. High
resolution mass spectrometry (HRMS) (ESI) Found: M+, 393.2102.
Cy3HsBNO, requires M+, 393.2111.

Synthesis of quinone methide aminocyclopropane (QAC) is
included in the supplemental methods. 4-(hydroxymethyl) Phenyl-
Boronic acid pinacol Ester was purchased from AKScientific
(AMTBI135; Union City, CA, USA), 2-PCPA from Sigma-Aldrich
(P8511; Castle Hill, NSW, Australia).

Prodrug activation assay

Following the procedure of Hagen et al. (2012) a solvent system of
9 : 1 acetonitrile : water (v : v) was used to prepare a solution of
Q-PAC and triethylamine (both 0.9 mM) for activation with
hydrogen peroxide (9 mM). At 5 min intervals out to 30 min
aliquots were diluted 90-fold in solvent for analysis via electrospray
ionization mass spectrometry on either a Thermo LTQ ion-trap or
LTQ Orbitrap XL. Both utilized an Ion Max ESI source operated in
positive mode with nitrogen as the desolvation gas. The following
conditions were employed on the single-trap instrument: 5 pL/min
infusion rate, 3.5 kV source voltage; sheath, auxiliary and sweep
gases set to 12, 0 and O (arbitrary flow), respectively; capillary

“The carbon directly attached to boron was not detected, likely as a
result of quadropolar relaxation (Wray 1979).
POverlap of two signals.
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temperature 200°C and voltage 46 V; tube lens 130 volts. Settings
for Orbitrap analysis: 10 pL/min infusion rate, 4.2 kV source
voltage; sheath, auxiliary and sweep gases set to 10, 0 and O
(arbitrary flow), respectively; capillary held at 275°C and 50 volts;
tube lens 150 volts. The infusion syringe, tubing and ESI probe
were rinsed with solvent until the ionized Q-PAC signal was
reduced to background levels prior to analysis of a particular
sample. Spectra reported here constitute the average between 50 and
100 scans and were analysed to monitor reaction species relative to
Q-PAC as a function of reaction time.

LSD1 inhibition assay

The effect of Q-PAC on the demethylase activity of LSD1 was
assessed in vitro using the fluorometric LSD1 Assay Kit (# 700
120; Cayman Chemical, Ann Arbor, MI, USA) according to the
manufacturer’s instructions. Each concentration was assessed in
duplicate alongside no inhibitor controls and enzyme-only reactions,
with the average fluorescence intensity from three consecutive
measurements used (FLUOstar Optima; BMG Labtech (Morning-
ton, Vic., Australia), excitation/emission 540 nm/580 nm).

Cell culture assays

Culture details

US7MG cells (ECACC Cat# 89081402, RRID:CVCL_0022, Acc
Nr.: 89081402, obtained in 2014, Female astrocytoma, identity
confirmed via short tandem repeat profiling by Garvan Institute
(Sydney, NSW, Australia) in 2015) were maintained in Dulbecco’s
Modified Eagle Medium with F12 supplement (Life Technologies,
Carlsbad, CA, USA, #10565-018), 10% foetal bovine serum
(Bovogen, Keilor East, Vic., Australia, #SFBS-F) and seeded at
20 000 cells/cm?. Cells were used between passages 8 and 15,
absence of mycoplasma confirmed every 3 months (MycoAlert;
Lonza, Basel, Switzerland). The U87MG line is listed by ICLAC for
contamination of the ATCC version. We used the ECACC version
in this study, which shows to be not identical to the ATCC version,
or was contaminated with other cell lines based on our short tandem
repeat profiling analysis.

Primary glioblastoma cultures provided by the Brain Cancer
Research Unit of the QIMR Berghofer Medical Research Institute
(2015) were established from untreated biopsy samples of different
glioblastoma subtypes (Verhaak et al. 2010; Day et al. 2013)
(SJH1: 72 years male, neural; RN1: 56 years male, classical; JK2:
75 years male, proneural). Approval for this study was obtained
from the Human Research Ethics Committee of The University of
Wollongong (HE16/324). Cells were maintained in Knockout-
Dulbecco’s modified Eagle’s medium/F12 (Life Technologies,
#12660-012) with StemPro supplement (Life Technologies,
#A10508-01), human epidermal growth factor (20 ng/mL) (Life
Technologies, #PHGO0314) and human FGF2 (10 ng/mL) (Life
Technologies, #PHG0024), and seeded at 35 000 cells/cm? on
matrigel (Corning, NY, USA, #354277, 1/100 dilution). Cells were
used between passages 5 and 13 in 2015 and 2016, absence of
mycoplasma confirmed every 3 months (MycoAlert, Lonza).

Human astrocyte cultures were generated from human foetal
brain tissue, which was obtained from 17- to 20-week-old foetuses
collected after therapeutic termination following informed consent.
Approval for this study was obtained from the Human Research
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Ethics Committee of Macquarie University (#5201200411). Written
informed consent was obtained from the participants. Astrocytes
were prepared using a protocol adapted from previously described
methods (Guillemin et al. 1997) with slight modification. One gram
of brain was washed thrice with phosphate-buffered saline (PBS)
containing 1% antibiotic/anti-mycotic to remove contaminating
blood. Visible blood vessels were removed with sterile scissors.
Next, the tissue was placed in RPMI medium (Sigma-Aldrich)
supplemented with 10% fetal bovine serum and 2% antibiotic/anti-
mycotic and dissociated mechanically by pipetting with a serolog-
ical pipette. After 1 week in culture, the medium was removed and
the culture was washed with PBS to remove unattached tissue
fragments followed by addition of fresh medium. Once confluent,
the culture was subjected to successive passage with trypsin-EDTA
(0.25%) (Life Technologies) to remove contaminating cells and
seeded at 20 000 cells/cm® for experiments. Cells were used
between passages 2 and 5 in 2016, and absence of mycoplasma was
confirmed after collection (MycoAlert, Lonza).

Confluence assay

Culture confluence was monitored in 96-well plates (Greiner Bio-
One, Kremsmiinster, Austria) imaged every 2 h using an IncuCyte
Zoom (Essen Bioscience, Ann Arbor, MI, USA) at 10x magnifi-
cation (1.22 pm/pixel resolution) with three images per well. Pre-
and post-treatment confluence was quantified through the inbuilt
basic analyser algorithm (Essen Bioscience) adjusted to the
individual morphology of each culture type.

Migration assay

For migration assays, cells were seeded into ImageLock 96-well
Plates (Essen Biosciences) and maintained until 70% confluent. The
700-800 pm scratch wounds were made in each well using the 96
well WoundMaker (Essen Biosciences) directly prior to drug
treatment. Plates were imaged every 2 h and migration into the
wound area was quantified using the inbuilt Scratch Wound
algorithm (Essen Biosciences), adjusted to the individual morphol-
ogy of each culture type.

Invasion assay

Cell invasion was examined in real time using the xCELLigence
RTCA DP System (Roche Applied Science, Penzberg, Germany).
The xCELLigence system (Roche Applied Science) allows contin-
uous quantitative monitoring of cellular behaviour including
invasion by measuring electrical impedance at a porous membrane
(pore size 8 um). U87 cells were seeded at 22 500 cells/well into
specialized two-layer cell invasion and migration plates coated with
20 pL matrigel (Corning, 1 : 30 dilution) and cultured without FBS
for 24 h in the presence or absence of Q-PAC. Lower layer wells
were filled with Dulbecco’s modified Eagle’s medium/F12 with
10% FBS as chemoattractant. Invasion was continuously monitored
in real time over a period of 24 h. Data analysis was carried out
using RTCA Software 1.2.1 (Roche Applied Science) supplied with
the instrument.

Apoptosis assay

For apoptosis assays, the culture media were supplemented with
caspase 3/7 NucView 488 enzyme substrate (2.5 pM final concen-
tration; Biotium, Fremont, CA, USA, #10402) 2 h prior to drug

treatment. Phase-contrast and fluorescent images were captured
using an IncuCyte Zoom (green emission/excitation at 460 nm/
524 nm) at 2 h intervals and 10x magnification. Caspase substrates
were quantified using the inbuilt basic analyser algorithm (Table 1)
from a minimum of three images per well and time point.

Cell viability assay

Culture viability was assessed with the resazurin-based Presto Blue
cell viability reagent (Life Technologies, #A13261) according to the
manufacturer’s instructions (2 h incubation) and quantified on a
FLUOstar Optima (BMG Labtech, excitation/emission 540 nm/
580 nm).

Immunocytochemistry

Cultures were fixed (4% paraformaldehyde, 15 min) and blocked
(5% goat serum, 1 h) before incubation with MCM2 polyclonal
rabbit antibody [Cell Signaling Technology, Beverly, MA, USA,
#4007, RRID:AB_2142134, 1 : 500 in 5% bovine serum albumin
(BSA)] overnight at 4°C. This was followed by incubation with goat
anti-rabbit IgG conjugated to Alexa 488 (Life Technologies,
#A11008, RRID:AB_143165, 1 : 1000, 1% BSA) for 1 h at 22°C
and reddot2 (Biotium, #40061-1, 1/200) as a nuclear counterstain.
Images were captured on an Incucyte Zoom in phase-contrast, green
and red (emission/excitation 585 nm/635 nm) at 20 x magnification
with three images per well. The fraction of MCM2-positive cells
was determined through automatic counting of reddot2 and MCM2-
positive cells per image (see Table 1 for mask parameters).

Western blot

For histone modification quantification, cultures were lysed in triton
extraction buffer (PBS containing 0.5% Triton X 100 (v/v), 1%
protease inhibitor cocktail (P8340-1ML; Sigma-Aldrich) and 0.02%
(w/v) NaN3) and histones extracted in 0.2 M HCI at 4°C over 16 h.
Reduced samples were separated on 15% polyacrylamide gels and
transferred onto polyvinylidene difluoride membranes (Millipore
Corporation, Bedford, MA, USA). Membranes were immunoblotted
at 4°C over 16 h for monomethylated H3K4 (5% milk block;
Abcam, Cambridge, UK, #ab8895, RRID:AB_306847, 1 : 10 000
in 1% BSA), dimethylated H3K4 (5% milk block; Abcam, #ab7766,
RRID:AB_2560996, 1 : 10 000 in 1% BSA) and acetylated H4 (3%
milk block; Millipore #06-866, RRID:AB_310270, 1 : 4000 in 3%
milk) followed by goat anti-rabbit IgG-horseradish peroxidase
(Millipore, #AP307P, RRID:AB_11212848, 1 : 2500 in 1% milk)
and detected by chemiluminescence. LSD1 expression was quan-
tified in whole-cell lysates, separated on Criterion TGX Stain-Free
Precast Gels (4-20%; Bio-Rad Laboratories, Hercules, CA, USA,
#567-8095) and transferred onto polyvinylidene difluoride mem-
branes. Total protein loading was quantified by UV imaging of
trihalo transferred from the gels. Membranes were immunoblotted at
4°C over 16 h for LSD1 (5% milk block; Cell Signaling Technol-
ogy, #C69G12, RRID:AB_2070132, 1 : 1500 in 5% milk), fol-
lowed by goat anti-rabbit IgG-horseradish peroxidase (Sigma, St
Louis, MO, USA, #A0545, RRID:AB_257896, 1 : 3000 in 2.5%
milk) and detected by chemiluminescence.

GSH assay
Reduced GSH of cell lysates was measured with a fluorometric kit,
according to the manufacturer’s instructions (Abcam, #ab138881)
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Table 1 Mask parameters for Incucyte Basic analyser image analysis
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Minimum Maximum
Targets Channel Exposure (ms) Background correction Edge sensitivity particle size (um?) particle size (um?)
Caspase 3/7 Green 400 Top-Hat (10 um, 2 GCU) 0 10 (o]
Substrates
MCM2 Green 400 Top-Hat (20 um, 0.4 GCU) 0 7 ©o0, maximum eccentricity: 0.96
Reddot2 Red 800 Top-Hat (20 pm, 0.3) -1 15 o

and fluorescence intensity monitored on a FLUOstar Optima
(excitation/emission 490 nm/520 nm). Sample GSH concentration
was determined through a serial-diluted GSH calibration curve
(150 nM to 20 pM).

ROS quantification

Oxidative stress in live cultures was assessed with CellROX Green
(Life Technologies, #C10444), which remains non-fluorescent until
oxidized by intracellular ROS. The fluorescent signal intensity is
proportional to the levels of intracellular free radicals. Cultures were
plated in black optical bottom plates (Thermo Fisher, #NUN165305)
and incubated in CellROX Green for 30 min after treatment,
followed by 2x PBS washes prior to imaging. Images were captured
on an Incucyte Zoom in phase contrast and green at 20x
magnification (0.61 pm/pixel resolution) with three images per
well. Mean Green Intensity was normalized to culture confluence for
each image.

Blinding and statistical analysis

Experimenter conducting the sample analysis for the GSH assay and
western blot assays were blinded to the sample treatment details.
Confluence, migration and caspase substrate experiments were
automatically quantified through standardized algorithms and
therefore not blinded. No randomization was performed to allocate
samples in this study. There were no differences in sample size
between the beginning of the experiments and their conclusion. This
study was not pre-registered.

Analyses were performed using Graphpad Prism (GraphPad
Software Inc., San Diego, CA, USA). Treatment effects were
assessed using one-way or two-way analysis of variance (ANOVA) as
relevant, followed by Bonferroni’s multiple comparisons test where
appropriate. All cell culture experiments were conducted with at
least three independent biological replicates and at least two
technical replicates each. Significance was accepted at p < 0.05
and data presented as mean =+ standard error of mean (SEM) for
biological replicates. Number of replicates (n) in figure legends
indicates independent experiments, with averages of technical
replicates within each experiment.

Results

Design and synthesis of Q-PAC

The prodrug Q-PAC was designed so that it would
simultaneously release the LSD1 inhibitor 2-PCPA and
QM in the presence of high concentrations of H,O,. Q-PAC
was synthesized using a Curtius rearrangement as the key
step and its chemical structure assigned by NMR and mass

spectrometry (Fig. la and Figure S1). The presence of the
carbamate linkage in Q-PAC was confirmed by a '*C
resonance at 156.8 ppm (Figure Sla) and the four methyl
groups of the pinacol boronic ester were observed as a 12H
singlet at 1.33 ppm in the 'H NMR (Figure S1b). This
spectral data, in combination with a shift of the methylene
protons from 4.72 ppm in the starting 4-(hydroxymethyl)
phenylboronic acid pinacol ester to 5.12 ppm in Q-PAC
provided confirmation that the coupling of the two active
fragments of the prodrug had taken place. Using the same
route we also prepared control compound QAC, which
would generate quinone methide like Q-PAC, but releases
LSDI inactive cyclopropylamine in place of 2-PCPA.
Similar to Q-PAC, the formation of QAC was indicated by
the OCH, signal at 5.11 ppm in 'H NMR (Figure S2a) and
carbamate signal at 157.0 ppm in '*C NMR (Figure S2b). In
QAC the aminocyclopropane-generating fragment lacks a
phenyl group, which is essential for LSD1 inhibition, and
QAC is therefore used as a control to demonstrate that the
QM and LSD1 inhibitor components of Q-PAC act syner-
gistically.

Q-PAC is activated by hydrogen peroxide

It was envisaged that prodrug Q-PAC activation with H,O,
would yield QM and 2-PCPA (Fig. la). In the absence of
GSH, QM can react with 2-PCPA to yield adduct QMAL,
which can then further react with another QM to form adduct
QMA?2 (Fig. la). We used positive-mode electrospray ion-
ization mass spectrometry (+ESI-MS) to examine this
activation process. Prior to H,O, addition to a Q-PAC
solution a signal detected at m/z 416 is assigned to [Q-PAC +
Na]* (Fig. 1b). Under identical instrument conditions the
appearance of m/z 107 and 134 following 5 min treatment
with H,O, indicates the presence of initial products QM and
2-PCPA, respectively (Fig. 1b). Longer reaction times
(Fig. 1b, 10 min and 25 min) show further relative increase
in QM and 2-PCPA and production of QMA1 and QMA2
adducts evidenced by m/z 240 and 346 signals respectively.
These results are consistent with the activation mechanism
and adduct formation illustrated in Fig. 1(a). Experiments
were repeated on a LTQ Orbitrap XL for high-resolution
mass analysis to further support assignment. Figure 1(a)
includes the exact mass for each compound and the
corresponding errors calculated using the accurate masses
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Fig. 1 Quinone methide phenylaminocyclopropane (Q-PAC) is acti-
vated by hydrogen peroxide (a) Activation of Q-PAC by hydrogen
peroxide liberates quinone methide (QM) and trans-2-phenylcyclopro-
pylamine (2-PCPA). In the absence of glutathione (GSH), subsequent
formations of adducts QMA1 and QMA2 were detected by MS. (b) (+)
ESI-MS data were collected at selected times after Q-PAC treatment
with hydrogen peroxide. Sodiated Q-PAC resulting from analysis of the
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untreated prodrug is labelled in the time-zero spectrum at m/z 416.
Peaks corresponding to activation products and adducts shown in
panel (a) are also labelled. All other peaks have been accounted for as
background with the exception of m/z 306. Accurate mass data (not
shown) support assignment to the phenol derivative of Q-PAC (sodium
adduct), which is the structure obtained by boronate oxidation prior to
breakdown to QM and 2-PCPA.

acquired from averaged Orbitrap analyses (data not shown);
all errors fall within 2 ppm.

The prodrug Q-PAC reduces migration and viability of U87
glioblastoma cells

To investigate the two-pronged approach of Q-PAC against
GBM, we first explored its anti-cancer properties in the
immortal U87 cell line, commonly used to assess novel GBM
treatments. Q-PAC treatment dose dependently reduced U87
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confluence within 48 h (F(7,42) = 73.94, p < 0.0001;
Fig. 2a). Q-PAC treatment also reduced the migration
(F(6,13) = 16.93, p < 0.0001; Fig. 2b) and invasion through
matrigel (F(4,14) = 5.324, p = 0.0081, Figure S3e) of U87
cells, and reduced viability after 48 h treatment
(F(6,28) = 9.47, p < 0.0001, Figure S3f). Cells responded
within 4 h to Q-PAC, showing a prominent change in
morphology (Fig. 2¢) and migration at concentrations above
1 pM.

Confluence,
24 h after treatment

300 uM
100 pM
30 uM
10 uM
1uM
0.3 uM
0uM

12 18 24 30 36 42 48
Treatment time (h)

Fig. 2 Quinone methide phenylaminocyclopropane (Q-PAC) impairs
mobility of primary glioblastoma (GBM) cells but not healthy astrocytes.
Algorithm-based confluence (n = 6) and 2D migration (n = 4) analysis
of phase-contrast microscope images of GBM cultures (a—f) and
primary human astrocytes (g-i) treated with Q-PAC. Data represent

"0 6 12 18 24 30 36 42 48
Treatment time (h)

mean + SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
compared to vehicle control. (c, f, i) Representative images of U87
cultures treated with Q-PAC. Cultures treated with vehicle (EtOH) or
100 uM Q-PAC were captured in phase-contrast images 24 h after
treatment at 10x magnification (scale bar = 50 um).
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To identify the contribution of the distinct components of
Q-PAC to the observed responses, we assessed the need for
QM (using 2-PCPA) and the requirement for LSDI
inhibition (using a phenyl-free form of Q-PAC (QAC) that
would release QM and non-LSD1 inhibitor cyclopropy-
lamine (CPA)). Neither 2-PCPA, CPA nor QAC affected
the culture viability (Figure S4b), confluence (Figure S4c—e)
or migration ability (Figure S4f-h) at concentrations up to
300 uM for up to 48 h. These data demonstrate that
combining QM with 2-PCPA provides the resulting com-
pound with anti-cancer properties, which neither of the
individual components possesses.

Q-PAC shows higher selectivity for glioblastoma cells over
healthy astrocytes

To probe for the selectivity of Q-PAC against GBM cells, we
evaluated the treatment response in primary GBM cultures
and primary cerebral astrocyte cultures (human and mouse).
The GBM cultures were grown from untreated biopsy
samples of three different GBM subtypes (RN1: classical,
JK2: proneural, SJH1: neural), which have been character-
ized previously (Day et al. 2013). Q-PAC dose dependently
reduced the culture confluence in the primary GBMs
(p <0.001 for each line, Fig. 2d and Figure S3a and c),
and impaired migration in the scratch wound assay
(p <0.001 for each line, Fig. 2e and Figure S3b and d).
While the three primary GBMs show different proliferation
and migration rates, Q-PAC treatment impaired both char-
acteristics at concentrations above 10 pM. GBM culture
viability dropped within 48 h of Q-PAC treatment at
concentrations of 30 uM and above (Figure S3f). Impor-
tantly, the potent LSD1 inhibitor Triazole 6 (Kutz et al.
2014) had no effect on viability, confluence or caspase
activity in the primary GBM RN1 cells, and only reduced
migration at 100 pM (Figure S5). In contrast to the GBM
cultures, healthy astrocytes treated with Q-PAC at concen-
trations up to 300 uM for 48 h showed no reduction in cell
viability (F(6,53) = 0.56, p = 0.76; Figure S3f), or a change
in their migratory behaviour (F(6,12) =0.47, p = 0.82;
Fig. 2h). Confluence of primary astrocyte cultures differed
following Q-PAC treatment (F(6,38) = 15.3, p < 0.0001;
Fig. 2g), at 30 pM Q-PAC (80.1% of vehicle after 48 h,
p < 0.001; Fig. 2g), but to a lesser extent than for any of the
GBM cultures at the same concentration (RN1: 32.7%, JK2:
64.6% and SJHI1: 62.7% of vehicle). These results demon-
strate the higher vulnerability of GBM cells to Q-PAC
treatment compared to healthy astrocytes in vitro.

Q-PAC causes apoptosis through GSH reduction following
H3K4 methylation

Q-PAC combines the LSDI1 inhibitor 2-PCPA with the
glutathione scavenger QM. While GBM cultures reacted
strongly to Q-PAC treatment, neither 2-PCPA nor QAC
treatment resulted in such a response. We therefore

investigated the mechanisms underlying the Q-PAC treat-
ment effect, whether it affects the epigenetic profile of
histones or performs its functions through other
mechanisms.

Q-PAC increases H3K4 mono and dimethylation without
affecting H4 acetylation

Q-PAC was designed to be selective for GBM over healthy
cells via LSD1 inhibition as increased LSD1 protein levels
have been observed in GBM (Singh ef al. 2011; Sareddy
et al. 2013; Zheng et al. 2015). We assessed the LSDI1
inhibition properties of Q-PAC, in comparison to 2-PCPA
and the potent LSD1 inhibitor Triazole 6, showing that Q-
PAC has a similar LSD1 inhibition profile as 2-PCPA
(Figure S6). We consequently quantified LSDI levels in our
cultures. In line with published results, the protein expression
levels differed between culture types (F(5,12) = 17.24,
p < 0.0001; Figure S7a and b), with RN1 and SJH1 cultures
expressing higher levels of LSD1 compared to healthy
astrocytes, while U87 and JK2 expression levels did not
differ from healthy astrocytes. We quantified H3K4 mono
(mel) and dimethylation (me2), as well as H4 pan acetyla-
tion, after treating U87 (low LSD1 levels) and primary RN1
(high LSD1 levels) cultures for 4 h, as changes in migration
and confluence were observed within 4 h in response to
Q-PAC treatment (Fig. 2). In U87 cells Q-PAC had no effect
on H3K4mel (F(5,18) =1.024, p =043; Fig. 3a),
H3K4me2 (F(5,12) = 0.25, p = 0.93; Fig. 3a) or H4 acety-
lation (F(5,17) = 1.13, p = 0.38; Fig. 3a). In primary
glioblastoma RN1 cells, however, 4 h of Q-PAC treatment
showed a concentration-dependent effect on H3K4mel
(F(5,12) = 3.18, p=0.05; Fig.3b and c), H3K4me2
(F(5,12) = 2.74, p = 0.07; Fig. 3b and c) but not pan H4
acetylation (F(5,12) = 1.51, p = 0.26; Fig. 3b and c). Both
mel and me2 of H3K4 peaked at 10 uM Q-PAC, while not
differing to control levels at lower or higher concentrations
(Fig. 3b). When assessing the selectivity of Q-PAC for
GBM, we found that 10 M Q-PAC after 4 h did not affect
H3K4me2 (t = 0.26, df = 6, p = 0.814; data not shown) in
healthy astrocytes (H3K4mel was not detected in the healthy
astrocytes).

Q-PAC triggers concentration-dependent caspase 3/7
activity increase in GBM cells

LSDI1 inhibitors have been shown to cause cell cycle arrest
in breast cancer cells (Pollock er al. 2012). We therefore
investigated whether cell cycle arrest is contributing to the
reduction in cell viability and confluence observed in the
GBM cultures after Q-PAC treatment. After quantifying
the expression of minichromosome maintenance 2
(MCM2), part of the DNA replication machinery that is
only expressed in proliferating cells (Williams and Stoeber
2007), we found that 48 h of Q-PAC treatment did not
alter the proportion of MCM2-positive U87 or primary

© 2018 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
International Society for Neurochemistry, J. Neurochem. (2019) 149, 535-550



GBM cells (Figure S7c). Thus, the reduction in viable
cells appears not to be caused by driving cancer cells out
of the cell cycle.

Apoptosis is a possible alternative explanation for the
reduction in cell viability after Q-PAC treatment, especially
as increased apoptosis following the inhibition of LSD1 has
been shown in colon and blood cancer cells (Wen et al.
2012; Ding et al. 2013). To assess whether Q-PAC treatment
results in apoptosis, we monitored caspase 3/7 activity in
treated GBM cells and healthy astrocytes. Q-PAC dose
dependently increased caspase 3/7 activity in US87
(F(6,11) = 24.30, p <0.0001; Fig. 4a), RNl (F(5,22) =
6.2, p = 0.001; Fig. 4b), SJH1 (F(6,7) = 4.83, p = 0.028;
Figure S7d) and JK2 (F(5,6) = 5.7, p = 0.027; Figure S7e)
cultures, consistent with an increase in apoptosis in these cell
types, without affecting caspase 3/7 activity in healthy
astrocytes (F(5,12) = 2.67, p = 0.08; Fig. 4c¢).

Q-PAC reduces GSH levels in GBM cells

Work by Noh ef al. (2015) shows that an increase in caspase
3/7 activity in cancer cells can be the result of GSH depletion
through scavengers such as QM, a component of Q-PAC
(Fig. 1). We consequently quantified GSH and ROS levels
following Q-PAC treatment for 4 h, as this time point reflects
the onset of treatment effects on confluence and migration
(Fig. 2). GSH levels dose dependently decreased in U87 and
RN cells, but not in healthy astrocytes (Fig. 4d), after Q-
PAC treatment. At the same time, Q-PAC treatment
increased ROS levels in U87 (F(7,33) = 5.03, p < 0.001;
Fig. 4e) and RNI1 cultures (F(6,28) = 5.76, p < 0.001;
Fig. 4e) after 4 h in a concentration-dependent manner.

Discussion

Here, we describe the synthesis of the novel anti-GBM drug
Q-PAC and its characterization in vitro. We provide
mechanistic evidence that the prodrug Q-PAC undergoes
oxidation of its boronate functionality to release the active
components QM and 2-PCPA. Our in vitro study shows that
Q-PAC: (i) reduces proliferation, migration, invasion, GSH
levels and viability of GBM cells; (ii) increases caspase 3/7-
mediated apoptosis, intracellular oxidative stress and H3K4
mono- and dimethylation; and (iii) shows a higher potency
against GBM cells than healthy astrocytes. We provide the
first in vitro evidence for a dual-function strategy of possible
LSD1 inhibition and GSH scavenging after activation by
H,0, as a selective treatment avenue against GBM.

The 2-PCPA-based compound Q-PAC impaired several
aspects of U87 cells at concentrations as low as 10 uM,
while even 300 uM 2-PCPA was ineffective against the
immortal GBM cells, despite a similar potency against
LSD1. 2-PCPA treatment effects against breast cancer and
neuroblastoma cells have been shown by several studies
(Schulte et al. 2009; Lim et al. 2010), but required
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Fig. 3 Quinone  methide  phenylaminocyclopropane  (Q-PAC)
increases histone 3 lysine 4 (H3K4) dimethylation in primary glioblas-
toma cells. H3K4me1, H3K4me2 and H4ace levels quantified via
immunoblotting in U87 (a, n = 4) and primary human glioblastoma cells
(b, n = 3) after 4 h treatment with Q-PAC (0-100 pM), adjusted to total
loaded protein. (c) Representative immunoblot for RN1 cell samples,
blotted for H3K4me1 (detected at 15 kDa), H3K4me2 (detected at 16
kDa) and total protein (segment depicting 8-20 kDa) for each Q-PAC
concentration (0-100 uM). Data represent mean + SEM, *p < 0.05
compared to vehicle control.

concentrations up to 20-fold higher than the ICsy for 2-
PCPA (20.7 pM). Similarly, high concentrations of 2-PCPA
have been shown to be ineffective against other immortal
GBM cultures, despite high LSD1 protein levels (Singh et al.
2011). Q-PAC not only performed better than 2-PCPA
against GBM viability, but also reduced the migration and
invasion phenotype of U87 cultures. Aggressive migration
and invasion are key treatment challenges of GBM tumours
(Demuth and Berens 2004). The suppression of cell migra-
tion and invasion following Q-PAC application is thus a
promising treatment characteristic of this novel compound.
Critically, treatment with the two base components (2-PCPA
or QAC) was not effective against U87 cells, highlighting the
need for the local activation of the dual-action prodrug Q-
PAC.

Considering the marked difference in treatment response
of GBM cells to Q-PAC compared with 2-PCPA, we
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Fig. 4 Quinone methide phenylaminocyclopropane (Q-PAC) triggers
apoptosis and oxidative stress in primary glioblastoma (GBM) cells but
not healthy astrocytes. Apoptosis of U87 (a), primary human GBM (b)
and primary human astrocyte cultures (c) treated with Q-PAC.
Apoptosis was quantified through counting of green-fluorescent
caspase 3/7 substrates per mm? in microscope images at 20x
magnification over time (n=3 per concentration and culture). (d)
Intracellular GSH concentration was quantified via fluorometric assay
4 h after treatment with Q-PAC (0-300 pM) in U87, primary GBM cells

questioned whether Q-PAC had retained its LSD1 inhibitor
function. While the enzymatic assay confirmed the inhibition
of LSD1 by Q-PAC, surprisingly, H3K4mel and H3K4me?2
(the primary targets of LSD1 (Lee er al. 2006)) appeared
unaffected by Q-PAC treatment in U87 cells. An inverted u-
shape concentration-dependent effect on H3K4mel and
H3K4me2 was, however, observed in primary GBM cul-
tures, with the peak difference at 10 pM. One reason for
inhibiting LSD1 was to reduce the epigenetic suppression of
tumour suppressor genes, as previously shown for LSDI1
inhibitors in colorectal cancer (Huang et al. 2009). A
reduction in cell proliferation would have been expected
but did not occur in U87 or primary GBM cells following Q-
PAC treatment as suggested by a lack of an effect on MCM2
(Figure S5c). Together with the limited effect on global
H3K4 methylation levels, this finding suggests that Q-PAC
causes only minor global methylation changes at these sites,
but that H3K9me and gene-specific methylation changes are
likely (Schenk et al. 2012; Kidder et al. 2014; Zheng et al.
2015). In addition, LSDI1 suppresses tumour suppressor

(RN1) and primary astrocytes (n = 3 per concentration and cell type).
(e) Oxidative stress levels were quantified via a cell-permeant
fluorogenic probe 4 h after treatment with Q-PAC (0-300 pM) in U87
and primary GBM cells (RN1), normalized to vehicle-treated cultures
(n = 3 per concentration and cell type). Data represent mean + SEM,
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to
vehicle control; $$p < 0.01 compared vehicle control (RN1);
##p < 0.01 compared to vehicle control (U87).

protein 53 (p53) activity (Huang et al. 2007), with loss of
LSDI1 resulting in reduced colon cancer proliferation (Jin
et al. 2013). Q-PAC inhibition of LSD1 could thus result in
reduced p53 promoter and protein methylation, enabling
pS3-mediated apoptosis (Schuler ef al. 2000; Scoumanne
and Chen 2008), which could be assessed via chromatin
immunoprecipitation sequencing in future experiments.

We designed Q-PAC to be activated by H,O,, levels of
which are higher in close proximity to GBM cells, and to
separate into 2-PCPA and QM. QM reportedly alkylates
GSH, preventing its antioxidant function (Hagen et al. 2012;
Marzenell et al. 2013). GBM cells up-regulate GSH to
compensate for their increased ROS production (Ogunrinu
and Sontheimer 2010). Q-PAC and other anti-tumour drugs
(including anti-GBM compounds) therefore target this
mechanism as a possible treatment avenue (Alexandre et al.
2006; Badr er al. 2013; Kohsaka et al. 2013; Noh et al.
2015). In our mass spectrometry assay, while not being a
kinetic assay, we confirmed that prodrug Q-PAC was able to
undergo H,O,-induced oxidative cleavage of its boronate
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functionality to QM, 2-PCPA and QM-derived adducts. This
was critical given the desired dual action of the drug that
required QM to reduce the antioxidant GSH while 2-PCPA
simultaneously inhibits LSD1. Our result is consistent with
the report of Hagen et al. (2012), who demonstrated a similar
breakdown of aminoferrocene-based prodrugs with H,O,.
Unlike Hagen er al., however, we were able to directly detect
QM, as well as its conjugate addition products. Given the
concentration of GSH in cells is higher than the effective
concentration of Q-PAC (Khan ef al. 2012), the desired
reaction between GSH and QM would negate the formation
of adducts QMA and therefore reduce the antioxidant ability
of the cell. In support of this mechanism, we show that Q-
PAC concentration dependently reduces GSH levels in U87
and primary GBM cultures within 4 h of treatment, but not in
primary astrocytes. Oxidative stress levels increased within
the same treatment timeframe in U87 and primary GBM
cells. Similar results have been reported from glioblastoma,
prostate and colon cancer cell studies, where GSH scavenger
treatment caused a reduction in GSH followed by an increase
in ROS levels and apoptosis (Khan et al. 2012; Badr et al.
2013; Noh et al. 2015). Q-PAC treatment likewise resulted
in apoptosis, causing a concentration-dependent increase in
caspase 3/7 activity in U87 and primary GBM cultures
without affecting caspase activity in primary astrocytes.
Caspase 3/7 activity increased at Q-PAC concentrations of
10 pM and above, while a 10-fold higher concentration was
required for the ROS level increase, indicating that GSH
depletion can trigger apoptosis without measurable changes
in ROS production (Khan et al. 2012). The lack of any
treatment effects following the phenyl ring-free Q-PAC
structure (QAC) treatment provides some support for the
required combination of LSD1 inhibition and GSH quench-
ing of this hybrid anti-cancer drug. Furthermore, the lack of
any 2-PCPA effects on GBM cells, a potent monoamine
amine oxidase inhibitor (Yang et al. 2007), suggests that
monoamine oxidase inhibition is not the primary mode of
action of Q-PAC.

A marked feature of Q-PAC across all culture assays
has been the selectivity for GBM cells over healthy
astrocytes. The limited effect against healthy astrocytes is
likely because of three related differences in comparison to
GBM cells: 1) Q-PAC has been designed to be activated
by high local H,O, levels, which are found in the
proximity of GBM cells, but not healthy cells (Reuter
et al. 2010; Peng and Gandhi 2012); 2) the high metabolic
activity of GBM cells results in increased ROS production
and heavy reliance on the antioxidant properties of GSH
(Ogunrinu and Sontheimer 2010; Noh et al. 2015), making
GBM cells highly susceptible to GSH scavenging; and 3)
LSD1 expression is higher in GBM cells than healthy
cells, as shown in the present and previous studies,
increasing the vulnerability to LSDI1 inhibitor treatment
(Schulte et al. 2009; Singh et al. 2011; Sareddy et al.
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2013). While GBM cells would thus be affected by lower
LSD1 inhibitor concentrations than healthy cells, irre-
versible LSD1 inhibitors would nonetheless run the risk of
affecting LSD1 function in healthy cells, with cognitive
deficits being reported after prolonged administration in
mice (Neelamegam et al. 2012). Connecting the LSDI
inhibitor with the GSH scavenging mechanism through an
aryl boronate H,0O, activation trigger appears to add a
beneficial selectivity layer to Q-PAC. LSD1 inhibitors for
lung cancer have progressed to human trials, while pre-
clinical studies with cell and animal GBM models have
been of mixed success (Singh er al. 2011; Sareddy et al.
2016), despite high LSD1 expression in the affected tissue.
After observing the successful activation of Q-PAC, we
evaluated its ability to pass through the blood-brain barrier
by calculating the log BB parameter (Clark 1999; Goodwin
and Clark 2005). The calculated log BB value for Q-PAC
is 0.10, above the —0.3 cut-off for blood-brain barrier
permeability (Rodriguez-Rodriguez et al. 2009), suggesting
that Q-PAC will pass through the blood—brain barrier. Our
promising work thus needs to be followed up by assessing
Q-PAC in xenograft in vivo GBM mouse models for
pharmacodynamics and pharmacokinetics as well as further
assessing the potential role of 2-PCPA.

In conclusion, we have designed and synthesized a novel
prodrug that differs in concept from previous QM-generating
prodrugs in that it does not only rely on redox disruption in
cancer cells. Rather, Q-PAC targets the redox mechanism of
the cancer cells, with a possible role for LSD1 inhibition that
is subject to further investigation. We show that Q-PAC
reduces viability, migration and invasion, and triggers
apoptosis selectively in glioblastoma cells but not healthy
astrocytes. Thus, our double-hit strategy exploiting LSD1
inhibition and GSH reduction in GBM forms the first
fundamental step for a promising treatment approach.
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Figure S2. Spectral data confirming the coupling of the two
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Figure S5. The LSDI inhibitor Triazole 6 has no effect on
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Figure S6. Q-PAC inhibits LSDI.
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ation regulation.
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