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A B S T R A C T   

This study aimed to detect, isolate and to characterize by molecular methods a relapsing fever group (RFG) 
Borrelia in white-eared opossums (Didelphis albiventris) from Brazil. During 2015–2018, when opossums (Didelphis 
spp.) were captured in six municipalities of the state of São Paulo, Brazil, molecular analyses revealed the 
presence of a novel RFG Borrelia sp. in the blood of seven opossums (Didelphis albiventris), out of 142 sampled 
opossums (4.9% infection rate). All seven infected opossums were from a single location (Ribeirão Preto mu-
nicipality). In a subsequent field study in Ribeirão Preto during 2021, two new opossums (D. albiventris) were 
captured, of which one contained borrelial DNA in its blood. Macerated tissues from this infected opossum were 
inoculated into laboratory animals (rodents and rabbits) and two big-eared opossums (Didelphis aurita), which 
had blood samples examined daily via dark-field microscopy. No spirochetes were visualized in the blood of the 
laboratory animals. Contrastingly, spirochetes were visualized in the blood of the two D. aurita opossums be-
tween 12 and 25 days after inoculation. Blood samples from these opossums were used for a multi-locus 
sequencing typing (MLST) based on six borrelial loci. Phylogenies inferred from MLST genes positioned the 
sequenced Borrelia genotype into the RFG borreliae clade basally to borreliae of the Asian-African group, forming 
a monophyletic group with another Brazilian isolate, “Candidatus B. caatinga”. Based on this concatenated 
phylogenetic analysis, which supports that the new borrelial isolate corresponds to a putative new species, we 
propose the name “Candidatus Borrelia mimona”.   

1. Introduction 

Tick-borne spirochetes of the relapsing fever group (RFG) occur in 
sylvatic transmission cycles in tropical and subtropical regions of the 
world, infecting wild vertebrates and mainly ticks of the genus Orni-
thodoros (Margos et al., 2008). Ticks get infected while feeding on spi-
rochetemic vertebrates (e.g. mammals and birds) and maintain the 
infection for several weeks to years (Barbour et al., 2005). Humans may 
be exposed to these pathogens in environments where Ornithodoros spp. 
occur (Barbour et al., 2005). When bitten by infected ticks, humans can 
experience episodes of recurrent fever, which is a typical symptom of 
tick-borne relapsing fever, accompanied by non-specific symptoms 
(Madison-Antenucci et al., 2020). In Brazil, nine species of Ornithodoros 
have already been reported parasitizing humans: Ornithodoros 

brasiliensis, Ornithodoros rostratus, Ornithodoros fonsecai, Ornithodoros 
marinkellei, Ornithodoros mimon, Ornithodoros rietcorreai, Ornithodoros 
rudis, Ornithodoros tabajara and Ornithodoros hasei (Aragão, 1923; Can-
çado et al., 2008; Labruna and Venzal, 2009; Labruna et al., 2011, 2014; 
De Oliveira et al., 2018; Muñoz-Leal et al., 2018, 2021a, 2021b). 
Although six genotypes of RFG Borrelia have been detected in some of 
those human-biting Ornithodoros ticks (Muñoz-Leal et al., 2021a), only 
two species have been isolated in the country: Borrelia venezuelensis from 
O. rudis (Muñoz-Leal et al., 2018), and “Candidatus Borrelia caatinga” 
from an Ornithodoros sp. phylogenetically related to Ornithodoros taba-
jara (Oliveira et al., 2023a). All these findings have been obtained from 
ticks, while vertebrate hosts or reservoirs in nature remain almost 
unknown. 

South American small mammals were implicated as hosts of Borrelia 
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spirochetes at the beginning of the 20th century (Dunn and Clark, 1933; 
Pifano, 1941). More recently, molecular detection of RFG borreliae were 
made in rodents from Chile (Thomas et al., 2020) and in opossums 
(Didelphis marsupialis) from Colombia (López et al., 2023). As there are 
no studies of RFG Borrelia infecting small mammals in Brazil, the present 
study aimed to detect, isolate and to characterize by molecular methods 
a RFG Borrelia detected in white-eared opossums (Didelphis albiventris) 
from Brazil. 

2. Materials and methods 

During 2015–2018, small wild mammals were captured in six areas 
of the state of São Paulo for an extensive study on ticks and tick-borne 
rickettsiae, as reported elsewhere (Serpa et al., 2021). These areas 
were located in six municipalities (Americana, Araras, Piracicaba, 
Pirassununga, Ribeirão Preto, and São Paulo), and were composed by 
degraded/regenerated forest fragments of the Cerrado or Atlantic Forest 
biomes. Descriptions and illustrations of the six areas have been pro-
vided elsewhere (Luz et al., 2019). Small mammals were captured with 
Tomahawk and Sherman-like traps and anesthetized with an intramus-
cular injection of ketamine (100 mg/kg)-xylazine (10 mg/kg), as pre-
viously described (Serpa et al., 2021). Blood samples were collected in 
1.5-ml tubes from all trapped animals (Serpa et al., 2021); however, for 
the present study, we evaluated only the samples collected from opos-
sums (Didelphis spp.). 

2.1. Spirochete detection 

DNA was extracted from opossum blood by using the DNeasy Blood 
and Tissue and Blood Kit (Qiagen, Chatsworth, CA, USA), according to 
the manufacturer’s instructions. To verify the success of extraction, an 
initial PCR targeting the mammalian mitochondrial cytochrome b gene 
(cytb) was performed (Steuber et al., 2005). Positive samples were then 
screened for Borrelia DNA with real-time PCR using genus-specific 
primers and a probe targeting a 148-base pair (bp) fragment of the 
Borrelia 16S rRNA gene (Parola et al., 2011). Real-time PCR-positive 
samples were submitted to different conventional PCR protocols to 
obtain fragments of three borrelial genes, 16S rRNA, flaB, and rrs-rrlA 
intergenic spacer (IGS) (Table 1). PCR assays were performed in a total 
volume of 25 μl, using DreamTaq Green PCR Master Mix (Thermo Sci-
entific, Carlsbad, CA, USA). DNA of B. venezuelensis RMA01 (Muñoz-Leal 
et al., 2018) was employed as a positive control and negative controls 
consisted of ultrapure water. 

PCR products were resolved in 1.5% agarose gels; amplicons with 

expected size were purified and prepared for sequencing with the Big-
Dye kit (Applied Biosystems, Foster City, CA, USA). An ABI-PRISM 3500 
Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) was 
employed for sequencing purposes using the PCR primers. The obtained 
sequences were subjected to BLASTn analyses to check their highest 
identities with the congeneric organisms available in GenBank (Altschul 
et al., 1990). 

2.2. Spirochete isolation 

Because Borrelia DNA was detected by PCR in opossums from one 
specific area during the 2015–2018 field study, in May 2021 we 
attempted to capture opossums by using 60 Tomahawk traps during four 
nights in that same area, with the purpose to obtain samples to isolate 
viable spirochetes. Captured animals were blood-sampled, euthanized 
by increasing anesthetic doses, and necropsied to collect fragments of 
spleen, liver, and lungs. Blood and organs were collected in 2-ml cryo-
tubes, immediately frozen in a box containing dry ice, which was 
transported to the laboratory where the cryotubes were stored in liquid 
nitrogen for further tentative isolation of spirochetes. Moreover, dupli-
cated samples were also collected in 1.5-ml tubes and stored at − 20 ◦C 
for DNA extraction and molecular analyses. 

Blood and spleen samples from the 2021-captured opossums were 
submitted to DNA extraction with the DNeasy Blood and Tissue Kit. A 
PCR targeting the mammalian mitochondrial cytochrome b (cytb) gene 
(Steuber et al., 2005) was performed; then the DNA samples were 
screened for Borrelia DNA with the same above-mentioned real-time 
PCR assay (Parola et al., 2011). Attempts to isolate spirochetes were 
performed with cryopreserved duplicates of blood and spleen of one 
white-eared opossum (D. albiventris) that yielded amplicons by real-time 
PCR screening. For this purpose, the samples were thawed at room 
temperature and both the blood and spleen were macerated together in 
5 ml of sterile phosphate-buffered saline (PBS). The opossum tissue 
homogenate was inoculated intraperitoneally (0.5 ml per animal) into 
two guinea pigs (Cavia porcellus), two vesper mice (Calomys callosus), 
two golden hamsters (Mesocricetus auratus), two New Zealand white 
rabbits (Oryctolagus cuniculus), and two big-eared opossums (Didelphis 
aurita). All these animals were obtained from laboratory animal rooms, 
except for the D. aurita opossums, which were captured three weeks 
before in a small forest fragment of the University of São Paulo campus 
in São Paulo City. At the inoculation day (Day 0), blood samples (≈1 ml) 
were collected from the tail vein of the two opossums immediately prior 
to inoculation and were tested for Borrelia DNA using the PCR method 
described above, to certify that they did not contain borreliae in their 

Table 1 
Primer pairs used in the present study for amplification of three Borrelia genes by conventional PCR assays.  

Gene/Primer  Primer sequence (5′-3′) Amplicon size (bp) Reference 

16S rRNA FD3 F: AGAGTTTGATCCTGGCTTAG 1540 Ras et al. (1996) 
T50 R: GTTACGACTTCACCCTCCT 
FD3 F: AGAGTTTGATCCTGGCTTAG 729a Schwan et al. (2005) 
16S-1 R: TAGAAGTTCGCCTTCGCCTCTG 
16S-2 F: TACAGGTGCTGCATGGTTGTCG 513a Schwan et al. (2005) 
T50 R: GTTACGACTTCACCCTCCT 
Rec-4 F: ATGCTAGAAACTGCATGA 520a Ras et al. (1996) 
Rec-9 R: TCGTCTGAGTCCCCATCT 

flaB FlaLL F: ACATATTCAGATGCAGACAGAGGT 665 Stromdahl et al. (2003) 
FlaRL R: GCAATCATAGCCATTGCAGATTGT 
FlaLL F: ACATATTCAGATGCAGACAGAGGT 485a 

FlaRS R: CTTTGATCACTTATCATTCTAATAGC 
FlaLS F: AACAGCTGAAGAGCTTGGAATG 522a 

FlaRL R: GCAATCATAGCCATTGCAGATTGT 
rrs-rrlA IGS-F F: GTATGTTTAGTGAGGGGGGTG 987 Bunikis et al. (2004) 

IGS-R R: GGATCATAGCTCAGGTGGTTAG 
IGS-Fn F: AGGGGGGTGAAGTCGTAACAAG 945a 

IGS-Fr R: GTCTGATAAACCTGAGGTCGGA 

Abbreviations: F, forward; R, reverse. 
a Amplified by a nested or heminested reaction. 
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blood prior to inoculation). 
One day before inoculation, a drop of blood (≈2.5 μl) was obtained 

from each animal (guinea pigs, mice, hamsters, rabbits, opossums), by 
ear or tail vein-puncture, expressed onto glass slides, and visually 
monitored by dark-field to detect the presence of motile spirochetes. 
This procedure was repeated daily from Day 0 (inoculation day) to 14 
days after inoculation. The animals that did not show any motile spi-
rochetes during this 14-day period were considered negative and were 
not bled anymore. When showing spirochetes, daily examinations by 
dark-field microscopy were extended to Day 30 post-inoculation. The 
mean number of spirochetes per field was calculated by counting the 
total number of motile spirochetes in 50 microscope fields at 200×
magnification, dividing it by 50; results as decimal numbers were always 
rounded up, as previously described (Oliveira et al., 2023a). Within this 
period, blood was collected into 2-ml cryotubes and stored at − 80 ◦C for 
future studies, and in 1.5-ml tubes to perform DNA extraction and ge-
netic characterization of the detected spirochetes (using the same 
above-described PCR protocols). After sequencing those three loci (16S 
rRNA, flaB, and IGS) and identifying by BLASTn analyses (Altschul et al., 
1990) that the detected Borrelia sp. belonged to the RFG, we attempted 
to perform a multi-locus sequence typing (MLST) by amplifying portions 
of the clpA, clpX, pepX, pyrG, recG, nifS, rlpB, and uvrA genes with 
degenerate primers available in the Borrelia MLST database (http 
://pubmlst.org/borrelia). 

2.3. Phylogenetic analyses 

Orthologous sequences recovered from GenBank (Sayers et al., 2020) 
and PubMLST database (https://pubmlst.org/organisms/borrelia-spp) 
coupled with sequences obtained in this study were aligned with MAFFT 
using default parameters (Katoh and Standley, 2013). Subsequently, the 
alignments were curated with Block Mapping and Gathering with En-
tropy (BMGE) using default parameters to map informative regions for 
phylogenetics inferences (Criscuolo and Gribaldo, 2010). 

Phylogenetic analyses were conducted using Maximum likelihood 
(ML) (Felsenstein, 1981) and Bayesian inference (BI) (Rannala and 
Yang, 1996; Yang and Rannala, 1997) methods in IQ-TREE v. 1.6.12 
(Nguyen et al., 2015) and MrBayes v. 3.2.6 (Ronquist et al., 2012), 
respectively. As protein-coding genes present different nucleotide ex-
change rates (heterogeneity) at the first, second and third codon position 
(Yang, 1996; Ronquist et al., 2012); datasets were partitioned into the 
three codon positions (position-1, position-2 and position-3) (Yang, 
1996; Lanfear et al., 2012; Ronquist et al., 2012; Kainer and Lanfear, 
2015). 

ML best-fit evolutionary models and best-partition scheme for 
protein-encoding datasets were calculated using the ModelFinder com-
mand “TESTNEWONLYMERGE -mrate G” (Kalyaanamoorthy et al., 
2017). To assess the robustness of the inferred tree, we employed a 
combination of hill-climbing approaches and a stochastic disturbance 
method, complemented by an ultrafast bootstrap approach (UFBoot) 
with 1000 iterations (Minh et al., 2013; Nguyen et al., 2015). UFBoot 
values < 70%, between 70 and 94%, and ≥ 95% indicated 
non-significant, moderate, and high statistical support, respectively 
(Minh et al., 2013). 

BI phylogenies were constructed based on nucleotide substitution 
models selected with the MrBayes command “lset nst = mixed rates =
invgamma” (Huelsenbeck et al., 2004; Ronquist et al., 2012; Lanfear 
et al., 2012), with partition schemes determined by ModelFinder. The 
robustness of the inferred BI tree was evaluated by sampling trees every 
1000 generations, with the first 25% removed as “burn-in”, imple-
menting four Markov chain Monte Carlo (MCMC) chains through two 
independent tests of 20 × 106 generations. The correlation and effective 
sample size (ESS) of the MCMCs were confirmed using Tracer v1.7.1 
(Rambaut et al., 2018). Nodes with Bayesian posterior probabilities 
(BPP) > 0.70 were considered high statistical support (Huelsenbeck and 
Rannala, 2004). All best-fit models and partitions schemes were selected 

based on Bayesian Information Criteria (BIC) (Schwarz, 1978). Trees 
were visualized and edited with FigTree v 1.4.1 (http://tree.bio.ed.ac. 
uk/software/figtree/) and Inkscape v. 1.1 (https://inkscape.org/es/). 
Consensus trees for both ML and BI were generated following the 
approach outlined by Santodomingo et al. (2022). 

3. Results 

Overall, blood samples were collected from 142 opossums (131 
D. albiventris and 11 D. aurita) during the 2015–2018 field study in six 
areas of the state of São Paulo (Table 2). PCR assays yielded fragments of 
expected size for the borrelial 16S rRNA, flaB and rrs-rrlA (IGS) genes of 
seven blood samples (opossums RP001, RP014, RP018, RP069, RP22, 
RP34 and RP58) all yielding identical sequences for each locus. After 
BLASTn comparisons, the 16S rRNA (1346 bp) and flaB (504 bp) se-
quences were 100% identical with Borrelia sequences retrieved from the 
tick Ornithodoros mimon (MT013211and MT076262, respectively) 
collected from a human household in the urban area of the State of Mato 
Grosso, Brazil (Muñoz-Leal et al., 2021a). The IGS partial sequence was 
88% identical to sequences of a Borrelia sp. (MN598782, MN598783) 
obtained from the blood of yellow-rumped leaf-eared mice (Phyllotis 
xanthopygus) from Chile (Thomas et al., 2020). The seven opossums that 
yielded borrelial DNA were captured in the same area, Ribeirão Preto, at 
different years, as follows: opossum RP001 during 2015; opossums 
RP014, RP018, RP022 and RP034 during 2016; and opossums RP58 and 
RP069 during 2017. No borrelial DNA was detected in the opossums 
from the remaining five sampled areas (Table 2). 

In 2021, we performed a four-night field work in the same forest 
fragment of Ribeirão Preto (Fig. 1), when only two opossums 
(D. albiventris) were captured. No ticks were recovered on the captured 
animals. One of these animals (BW2) had spleen and blood samples that 
produced amplicons of expected size for 16S rRNA, flaB and rrs-rrlA 
(IGS) genes. These sequences were identical to those described previ-
ously from opossums RP001, RP014, RP018, RP022, RP034, RP058 and 
RP069). 

In the attempts to isolate the detected borrelial agent through animal 
inoculations, only the two D. aurita opossums (#1 and #2) developed 
detectable spirochetemia, as shown by motile spirochetes in their blood. 
Some of these spirochetes were also shown by Giemsa-stained blood 
smears (Fig. 2). The other inoculated animals (guinea pigs, vesper mice, 
hamsters, and rabbits) did not show spirochetes in the dark-field mi-
croscopy during the experiment. In opossum #1, a mean of ≤ 1 spiro-
chete/microscope field was visualized from Day 12 to Day 15 post- 
inoculation, then increased to 20 spirochetes/field from Day 16 to Day 
18, decreasing gradually until ≤ 1 spirochete/field on Day 25, the last 
day when spirochetes were observed (Fig. 3). In opossum #2, spiro-
chetes were observed from Day 12 to Day 21 after inoculation, with 
maximal numbers of 4 spirochetes/field on Days 16 and 17. 

We collected blood samples from opossums #1 and #2 at the inoc-
ulation day (Day 0) and on Days 3, 9, 15, 16, and 30 post-inoculation, 
and performed a DNA extraction and real-time PCR to evaluate the 

Table 2 
Results of molecular tests for the detection of Borrelia DNA in the blood of 
opossums (Didelphis spp.) captured in forest fragments in six municipalities of 
the state of São Paulo, Brazil, during 2015–2018.  

Municipality No. of opossums with Borrelia/No. of tested opossums (% 
positivity) 

Didelphis albiventris Didelphis aurita Total 

Americana 0/38 (0)  0/38 (0) 
Araras 0/10 (0)  0/10 (0) 
Piracicaba 0/18 (0) 0/1 (0) 0/19 (0) 
Pirassununga 0/24 (0)  0/24 (0) 
Ribeirão Preto 7/41 (17.1)  7/41 (17.1) 
São Paulo  0/10 (0) 0/10 (0) 
Total 7/131 (5.3) 0/11 (0) 7/142 (4.9)  
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presence of spirochetes in blood. On Days 0, 3 and 30 the real-time was 
negative, on Day 9 it was positive even without spirochetes in dark field 
microscopy observation. Samples from days 15 and 16 were also PCR- 
positive. The sample from Day 16 (spirochetemia peak) from opossum 
#1 was submitted to molecular characterization (MLST) of the borrelial 
isolate. 

As the 16S rRNA (1346 bp) and flaB (504 bp) sequences showed 
100% of identity with Borrelia sp. from O. mimon (MT013211 and 
MT076262, respectively), we did not construct phylogenetic trees with 
these genes because these sequences have been represented in phylo-
genetic trees reported by Muñoz-Leal et al. (2021a). Here, phylogenies 
were inferred for IGS and MLST sequences. The IGS tree depicts the 
detected Borrelia sp. into a monophyletic clade with other two Borrelia 
spp. that matched closer after BLASTn comparisons (Borrelia sp. BoA10 
and Borrelia sp. Bo44) (Fig. 4). In the MLST, expected amplicons were 
obtained for six genes (clpX, pepX, pyrG, recG, rplB, and uvrA). Phylog-
enies inferred from MLST genes positioned the sequenced Borrelia ge-
notype into the clade of the RFG borreliae basally to borreliae of the 
Asian-African group (Fig. 5). Notably, “Candidatus B. caatinga” formed 
a monophyletic group with the Borrelia sp. detected in this study. This 
clade also exhibited a close relationship with “Candidatus Borrelia 
octodonta”, recently reported infecting Ornithodoros octodontus in Chile 
(Santodomingo et al., 2024). Based on this concatenated phylogenetic 
analysis, which supports that the new borrelial isolate corresponds to a 
putative new species, we propose the name “Candidatus Borrelia mim-
ona”, in allusion to the tick species (O. mimon) in which it was firstly 
reported by Muñoz-Leal et al. (2021a). 

4. Discussion 

In this study, we detected a novel RFG borrelial agent, “Candidatus B. 
mimona” infecting opossums (D. albiventris) in the state of São Paulo, 
Brazil. Besides a detection rate of 17.1% of infected opossums in our first 
field campaign during 2015–2018 in Ribeirão Preto (Table 2), we 
further isolated the agent from an opossum that was captured during the 
2021 field-study. Our repeated findings of the agent in different opos-
sums in the same area during different years from 2015 to 2021 in-
dicates that “Candidatus B. mimona” is an agent probably established in 

Fig. 1. Location where Borrelia-infected opossums (Didelphis albiventris) were 
trapped in Ribeirão Preto municipality, Brazil. Note the bamboo grove in the 
background, where the traps were placed in and around for four consecutive 
nights in 2021. 

Fig. 2. Giemsa-stained blood smear of opossum #1 (A) and opossum #2 (B) 
showing spirochetes (black arrows). Original magnification: 1000× . 

Fig. 3. Results of dark-field examination of blood samples of opossums #1 and 
#2 (Didelphis aurita) according to the number of days after inoculation with 
blood- and spleen samples that were collected from a Borrelia-infected opossum 
(Didelphis albiventris) from Ribeirão Preto, Brazil. Values presented as the mean 
number of motile spirochetes per microscope field at 200× magnification in 
each sampling day. 

Fig. 4. Phylogenies of Borrelia spp. inferred for rrs-rrlA intergenic spacer (IGS). 
The IGS tree is based on 13 sequences and an alignment of 501 bp. Best-fit 
evolutionary models calculated for Maximum likelihood and Bayesian infer-
ence methods were HKY+F+I+G4, and M50, M85, M15, M122, M147, M177, M152, 
M157, respectively. The position of “Candidatus Borrelia mimona” is highlighted 
in bold red font. Ultrafast bootstrap values and Bayesian posterior probabilities 
(BPP) are indicated above or below each branch. The scale-bar indicates the 
number of nucleotide substitutions per site. GenBank accession numbers of the 
selected sequences are shown in Supplementary Table S1. 
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the opossum population of the study area of Ribeirão Preto. 
Marsupials of the genus Didelphis are mammals geographically 

restricted to the American continent (Gardner, 2008), and their impli-
cation as a reservoir for borreliae has already been addressed in earlier 
studies in Panama and Venezuela, where spirochetes were visualized in 
blood smears of Didelphis marsupialis (Dunn and Clark, 1933; Pifano, 
1941). Although the opossum species mentioned by Pifano (1941) was 
D. aurita, it is currently accepted that this species does not occur in 
Venezuela, where the only Didelphis species with black ears is 
D. marsupialis (Emmons and Feer, 1997). More recently, López et al. 
(2023) reported the molecular detection of Borrelia puertoricensis in the 
blood of opossums (D. marsupialis) from Colombia. 

Partial sequences of the 16S rRNA and flaB genes of “Candidatus B. 
mimona” were 100% identical to 16S rRNA and flaB haplotypes of 
Borrelia sp. O mimon 2 MT, recently detected in O. mimon from a 
household in the urban area of Cuiabá City, Mato Grosso State, central- 
western Brazil (Muñoz-Leal et al., 2021a). This result indicates that they 
represent the same agent; therefore, O. mimon could represent a possible 
vector of “Candidatus B. mimona”. Interestingly, opossums of the genus 
Didelphis are among the most common hosts of O. mimon in Brazil 
(Labruna et al., 2014; Sponchiado et al., 2015). In fact, at least one of the 
captured opossums of our 2015–2018 field study was infested by 
O. mimon, as reported by Serpa et al. (2021). Indeed, the role of O. mimon 
as vector of “Candidatus B. mimona” must be investigated in further 
studies, especially because O. mimon is a common human-biting tick in 
Brazil (Nogueira et al., 2022), where it colonizes human households, 
most of the times associated with synanthropic opossums (Labruna 
et al., 2014; Dantas-Torres et al., 2022; Oliveira et al., 2023b). 

Phylogenies inferred for alignments of MLST scheme sequences 
showed that “Candidatus B. mimona” grouped within a clade containing 
two other South American borreliae detected in soft ticks (“Candidatus B. 
caatinga”) and rodents (“Candidatus B. octodonta”), and several Asian- 
African Borrelia spp. of the RFG. These results add additional evidence 
that Old and New World RFG spirochetes do not necessarily have 

defined geographical distributions. Unfortunately, we were not able to 
amplify two genes (clpA and nifS) from de MLST scheme, similarly to the 
results of the MLST analysis of “Ca. B. caatinga” (Oliveira et al., 2023a) 
and “Ca. B. octodonta” (Santodomingo et al., 2024). It is likely that this 
South American group of RFG Borrelia species have polymorphic loci or 
diverge genetically, since the primers designed using allochthonous 
species do not anneal. Genome-wide analyses of South American RFG 
borreliae will solve this gap in the future. 

5. Conclusions 

This study reports the detection and isolation of a novel RFG spiro-
chete, “Candidatus B. mimona”, from opossums D. albiventris in south-
eastern Brazil. Experimental infections demonstrated that another 
opossum species, D. aurita, is susceptible to this novel agent, as 
demonstrated by detectable spirochetemia for several consecutive days. 
Phylogenetic analysis indicated that “Candidatus B. mimona” is more 
closely related to Old World than North American RFG Borrelia species. 
The formal description and validation of the taxon “Candidatus B. 
mimona” remains dependent on its establishment in axenic media and 
determination of its entire genome. 
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