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Abstract: Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by exacer-
bated extracellular matrix deposition that disrupts oxygen exchange. Hypoxia and its transcription
factors (HIF-1α and 2α) influence numerous circuits that could perpetuate fibrosis by increasing
myofibroblasts differentiation and by promoting extracellular matrix accumulation. Therefore, this
work aimed to elucidate the signature of hypoxia in the transcriptomic circuitry of IPF-derived
fibroblasts. To determine this transcriptomic signature, a gene expression analysis with six lines
of lung fibroblasts under normoxia or hypoxia was performed: three cell lines were derived from
patients with IPF, and three were from healthy donors, a total of 36 replicates. We used the Clariom
D platform, which allows us to evaluate a huge number of transcripts, to analyze the response to
hypoxia in both controls and IPF. The control′s response is greater by the number of genes and
complexity. In the search for specific genes responsible for the IPF fibroblast phenotype, nineteen
dysregulated genes were found in lung fibroblasts from IPF patients in hypoxia (nine upregulated and
ten downregulated). In this sense, the signaling pathways revealed to be affected in the pulmonary
fibroblasts of patients with IPF may represent an adaptation to chronic hypoxia.
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1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and lethal disease associ-
ated with aging [1]. Its pathophysiology consists of damage to the epithelial cells with an
aberrant response characterized by the production of several mediators for the fibroblast’s
activation. As a result, lung parenchyma is replaced by exacerbated extracellular matrix
deposition, which interrupts the oxygen supply [2,3]. Although hypoxia signaling has been
reported to be active in the lungs of IPF patients, the role of hypoxia in the pathogenesis of
IPF remains unclear [4–6].

Hypoxia is a stress condition that influences cell fate by modifying numerous circuits.
In this context, especially in the “fibroblast foci”, the main histopathological characteristic of
these patients are the mechanisms of hypoxia adaptation that result in profibrotic feedback
signaling, which could perpetuate a fibrotic state [7]. For example, hypoxia and the hypoxia
transcription factors (HIF-1α and 2α) are involved in the differentiation of myofibroblasts,
extracellular matrix deposition, and alteration in the cell cycle [8,9]. In our previous work,
IPF fibroblasts show a particular adaptation to hypoxia because they overexpress the alpha 1
and 2 subunits but not subunit 3 (a negative regulator) of HIF, suggesting a hyperactivation
of this pathway even in the presence of oxygen [9]. Although these transcription factors
are altered, the impact of hypoxia on the transcriptomic profile has not been determined.

Transcriptomic analysis allows us to define the stimulus and landscape of altered
circuits [10]. Therefore, we consider that an analysis of the complete transcriptome under
hypoxic conditions could lead us to elucidate the possible mechanisms involved in the
development of IPF.

2. Materials and Methods
2.1. Human Lung Fibroblasts

The bioethics committees of Instituto Nacional de Enfermedades Respiratorias Ismael
Cosío Villegas (INER) approved this protocol (B29-20; Date: 11 November 2020). The dona-
tion of samples (biopsy) from patients and donors was performed following the relevant
guidelines and regulations with the informed consent of all participants, as previously
described [9]. IPF was diagnosed following the Interstitial Lung Disease Program of the
INER according to the ATS/ERS/ALAT guidelines [11].

Cell culture was performed using Ham’s F-12 medium (Gibco, Waltham, MA, USA)
supplemented with 100 U/mL of penicillin, 100 µg/mL of streptomycin, 2.5 mg/mL of
amphotericin B, and 10% FBS (Gibco Cat No. 11550356), at 37 ◦C, in an atmosphere of
95% air and 5% CO2.

Primary or commercial cell lines from patients with IPF (F1, F2, and F3) and controls
(C1, C2, and C3) were used; cell demographics are shown in Table 1. All experiments were
performed in triplicate.

Table 1. Demographic characteristics of the lung samples.

ID Age Condition Passage Number Primary or Commercial

C1 7 weeks Healthy 12 ATCC CCL-215
C2 >50 years Healthy 12 Primary
C3 79 years Healthy 14 ATCC PCS-201-013
F1 >50 years IPF 6 Primary
F2 >50 years IPF 7 Primary
F3 58 years IPF 7 Primary

All cells were cultured for 48 h in a hypoxic chamber at 1% O2.
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2.2. Hypoxia

For the experiments under hypoxic conditions, the fibroblasts were cultured in a
60 mm culture dish and subsequently transferred and maintained in a modular incubation
chamber (Model MIC-101 of the brand Rothenberg Inc., San Diego, CA, USA), at 37 ◦C,
for 48 h, in a humidified atmosphere with the following mixture of hypoxic gases: 1% O2,
5% CO2, and balanced with N2. An oxygen analyzer (Teledyne Electronic Technologies
60T) with an oxygen sensor (OOM105 from EnviteC-Wismar GmbH, Wismar, Germany)
was used to monitor oxygen concentration.

2.3. Total RNA Extraction

Total RNA was isolated with RNeasy Mini Kit (Qiagen, Redwood City, CA, USA)
according to the manufacturer’s protocol. Approximately 8 × 105 cells were used; once
washed twice with Phosphate Buffered Saline (PBS) in Petri plates of 60 mm, 600 µL of
RLT buffer was added per plate. They were detached with the help of a police rubber, then
were transferred to a tube, and were homogenized for at least 45 s at maximum speed;
afterwards, 70% ethanol was added in a 1:1 ratio and homogenized well; 700 µL of this
mixture was transferred to an RNeasy Mini spin column with a 2 mL collection tube and
centrifuged at 9000 rpm/30 s, discarding what was obtained in the tube. Subsequently,
700 µL of RW1 buffer was added to the RNeasy Mini spin column, and it was centrifuged at
9000 rpm/30 s. Again, what was collected was discarded. Later, 500 µL of Buffer RPE was
added to the RNeasy spin column, and it was centrifuged at 9000 rpm/30 s. This collection
tube was discarded together with what was obtained; a new tube was placed for RNA
storage, and 40 µL of RNase-free water was added directly to the spin column membrane
and centrifuged at 900 rpm/1 min to elute RNA.

Extracted RNA was quantified spectrophotometrically with NanoDrop ND-1000
(Thermo Fisher Scientific, Wilmington, DE, USA). RNA quality was assessed with an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

2.4. Microarray Hybridization

Isolated total RNA was amplified, labeled, and hybridized using the Clariom D
platform, which detects >540,000 transcripts, following the manufacturer’s instructions
(Thermofisher, Cat. 902923, Santa Clara, CA, USA). Briefly, the Affymetrix GeneChip®

WT PLUS Reagent Kit (Santa Clara, CA, USA) was used for cDNA preparation and biotin
labeling. cRNA was purified using an Affymetrix magnetic bead protocol. The Affymetrix
GeneChip Hybridization, Wash, and Stain kits were used for array processing. Arrays were
incubated for 16 h in an Affymetrix GeneChip 645 hybridization oven at 45 ◦C with rotation
at 60 rpm. The chips were subsequently scanned with an Affymetrix GeneChip Scanner
3000. Raw data were analyzed using Affymetrix Expression Console and Transcriptome
Analysis Console software prior to downstream analysis.

2.5. Analysis of Differential Gene Expression

Microarray data can be downloaded from the https://figshare.com/projects/Hipoxia/
141623. The microarray data were analyzed using R software version 4.1.0 [12], and Bio-
conductor version 3.13 [13]. Quality analysis was performed using affycoretools package
version 1.64 [14]. We normalized the data using RMA (Robust Multiarray Average) [15] to
minimize the non-biological variation in signal intensities.

To identify significant differences between gene expression in each condition, we
selected the contrasts specified in Figure S1. In general, we performed two different
analyses. First, we performed a contrast comparing all the IPF fibroblast primary cell lines
vs. all the control fibroblast cell lines, and second, we compared IPF vs. controls in each
cell line individually. All data were analyzed using the limma package version [16] using
a linear model based on Bayes empirical method [17]. Gene annotation was performed
using package pd.clariom.d.human version 8.8 [18]; here, we present only those genes that

https://figshare.com/projects/Hipoxia/141623
https://figshare.com/projects/Hipoxia/141623
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had a NM accession. Genes were considered statistically significant with higher p-values
(adjusted p-value < 0.05), and logFC > 1 or logFC < −1.

2.6. Data Visualization

Ggplot2 version 3.3.5 [19] was used, EnhancedVolcano package version 1.10 [20],
ComplexHeatmap package version 2.8.0 [21], and VennDetail Shiny App (http://hurlab.
med.und.edu:3838/VennDetail/) [22], for PCAs, volcanos, heatmaps, and Venn diagrams,
respectively. The final versions of the figures were edited using Adobe Illustrator program.

2.7. Enrichment Pathways Analysis and Networks Generation

The pathways and networks were generated using the differentially expressed genes
using QIAGEN Ingenuity Pathway Analysis, version 2000–2022 (https://digitalinsights.
qiagen.com/IPA) [23]. An enrichment analysis pathway was also performed on the genes
obtained through the Venn diagrams using EnrichR with the Gene Ontology Biological
Process [24–26].

3. Results
3.1. Transcriptional Response to Hypoxia in Control and IPF-Derived Lung Fibroblasts

To evaluate the effect of hypoxia on control lung fibroblasts and lung fibroblasts
from IPF patients, the cells were cultured for 48 h in a hypoxic chamber at 1% O2. For
this, three lines of fibroblasts from healthy lungs were used as controls (C1, C2, and C3),
and three primary lines of lung fibroblasts from patients with IPF (F1, F2, and F3) were
used to address the heterogeneity of cell lines and the variability in the hypoxic stimuli.
Subsequently, the samples were analyzed with the Clariom D platform (Figure 1).

Figure 1. Design of the experiment. This figure was created with Biorender.

Analysis was carried out in two ways: first, by the bulk of cell lines by condition
(normal or fibrotic) and, second, by determining the specific response for each cell line. It is
essential to mention that when the dispersion was analyzed in the PCAs, control or fibrotic
(C or F) cell lines were clustered together in their respective condition group (Figure S2).
Cell lines (C or F) also cluster together, suggesting that gene expression changes are similar
(Figure S3).

http://hurlab.med.und.edu:3838/VennDetail/
http://hurlab.med.und.edu:3838/VennDetail/
https://digitalinsights.qiagen.com/IPA
https://digitalinsights.qiagen.com/IPA
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Analysis by condition revealed a strong transcriptional response to hypoxia in control
fibroblasts, which showed 1006 differentially expressed genes (DEGs) (Figure 2A,C). In
sharp contrast, IPF-derived fibroblasts displayed a modest response with only 241 DEGs
(Figure 2B,D). This phenomenon could be explained because IPF fibroblasts were previously
exposed to this stimulus, suggesting preadaptation to this condition [9]. Despite the
difference in number of genes, both IPF and controls depict the same biological pathways
and processes according to Gene Ontology analysis (GO): cellular response to hypoxia
(GO:0071456) including the cellular response to decreased oxygen levels (GO:0036294)
(Figure 2E,F and Table S1).

Figure 2. Response to hypoxia for 48 h in control and IPF fibroblasts. (A) Volcano plot (control
fibroblasts). (B) Volcano plot (IPF fibroblasts). (C) Heatmap (control fibroblasts). (D) Heatmap (IPF
fibroblasts). (E) GO gene ontology biological process (control fibroblasts). (F) GO gene ontology
biological process (IPF fibroblasts). In subfigures (A–D), the colors red and blue correspond with
upper and lower levels of expression.
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Network analysis using Ingenuity Pathway Software (IPA) shows a transcriptomic
landscape in normal fibroblasts during hypoxia revealing metabolic changes regulated
by HIF-1α (Figure 3A,B). These changes showed a central role of HIF-1α in YTH N6-
Methyladenosine RNA Binding Protein 2 (YTHDF2)-mediated cell cycle regulation which
promotes mRNA decay during the cell cycle in somatic reprogramming (Figure 3A). Con-
sistent with that, TP53, a master cell cycle regulator implicated in aging, senescence, and
fibrosis, was upregulated (Figure 3C). The radial diagram of TP53 and its targets reveals its
central role in the regulation of autophagy-related processes (ATG4a and ATG4b), topologi-
cal stress (TOP2B), glycolysis (TIGAR), and insulin-like growth factor regulation (IGF) and
transport and uptake by insulin-like growth factor binding proteins (PAPPA). In summary,
controls have a complex network involving more genes in the hypoxia adaptation and
antagonistic mechanisms such as autophagy regulation. IPA also identified alterations in
the AKT signaling in IPF; AKT can negatively regulate autophagy in the opposite direction
to controls (Figure 3D).

Figure 3. Networks in response to hypoxia in control and IPF fibroblasts. Radial diagrams of HIF1
surrounded by its targets (A) (control fibroblasts) and (B) (IPF fibroblasts). (C) Radial diagram of
TP53 surrounded by its targets in control fibroblasts. (D) Radial diagram of AKT surrounded by its
targets in IPF fibroblasts. Colored nodes refer to genes in our dataset (green down-regulated; red
up-regulated). Uncolored nodes were not identified as differentially expressed in our experiment
and were integrated into the computationally generated IPA networks. Arrows identify predicted
relationships (orange leads to activation, blue leads to inhibition, yellow finds inconsistency with
downstream molecules, and grey is no effect predicted).



Cells 2022, 11, 3014 7 of 16

To further evaluate possible directional consequences and inferred upstream regulator
activity in HIF-1α signaling in hypoxia in both control and fibrotic fibroblasts, we used the
IPA tool Molecular Predicted Map on our data set, where it is also shown that the controls
have greater complexity in the signaling pathways (Figures 4 and 5).

Figure 4. HIF-1α Signaling Pathways in control Fibroblasts. Colored nodes refer to differentially
expressed genes found in our dataset control fibroblasts hypoxia vs. normoxia (green down-regulated;
red up-regulated). Uncolored nodes were not identified as differentially expressed in our experiment
and were integrated into the computationally generated IPA networks. This figure was created
with Ingenuity Pathway Analysis, Version 2000–2022 QIAGEN. For further information about the
symbols, please go through their web page: https://qiagen.secure.force.com/KnowledgeBase/
articles/Knowledge/Legend.

https://qiagen.secure.force.com/KnowledgeBase/articles/Knowledge/Legend
https://qiagen.secure.force.com/KnowledgeBase/articles/Knowledge/Legend
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Figure 5. HIF1α Signaling Pathways in Fibroblasts from Idiopathic Pulmonary Fibrosis. Colored
nodes refer to differentially expressed genes found in our dataset IPF fibroblasts hypoxia vs. normoxia
(green down-regulated; red up-regulated). Uncolored nodes were not identified as differentially
expressed in our experiment and were integrated into the computationally generated IPA networks.
This figure was created with Ingenuity Pathway Analysis, Version 2000–2022 QIAGEN. For further
information about the symbols, please go through their web page: https://qiagen.secure.force.com/
KnowledgeBase/articles/Knowledge/Legend.

3.2. Shared Hypoxic Genes Float in a Sea of Doubts

The Venn diagram of Figure 6A shows us that there are 346 DEGs shared between con-
trol cell lines, and Figure 6B shows that there are 54 DEGs shared between lung fibroblasts
from patients with IPF in hypoxia.

The number of unique DEGs that are not shared with any other cell lines is heteroge-
neous in number; the control lines C1, C2, and C3 have 1412, 209 and 540 genes, respectively
(Figure 6A), while in the three lines of patients with IPF, we can observe that F1, F2, and F3
possess 845, 49, and 274 genes, respectively (Figure 6B).

The pathways in the group of fibroblasts from controls are related to the epithelium
development, differentiation, and pathways involved with several metabolites (Figure 6C).
Due to the experimental time (48 h) varying from that published in previous studies (6 h
and 12 h), some genes related to metabolism differed. In IPF fibroblasts, enrichment analysis
suggested that angiogenesis-related pathways are involved (Figure 6D).

https://qiagen.secure.force.com/KnowledgeBase/articles/Knowledge/Legend
https://qiagen.secure.force.com/KnowledgeBase/articles/Knowledge/Legend
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Figure 6. Venn diagrams of differential expressed genes in response to hypoxia in control and IPF
fibroblasts (analyzing cell lines separately). In (A) Venn diagram (control fibroblasts), cell lines are
represented with labels C1, C2, or C3. (B) Venn diagram (IPF fibroblasts), cell lines are represented
with labels F1, F2, and F3. (C,D) represent the Gene Biological Process using EnrichR of the shared
genes in their respective Venn diagram.

3.3. The Transcription Signature of Hypoxia in IPF Fibroblasts

A third Venn diagram was constructed to identify the transcriptional signature with
dysregulated genes shared between the controls and IPF (Figure 7A). Of the three groups
of genes analyzed, the first group contained genes that belong to the adaptation hypoxia
response in controls (311); the analysis coincides with those that were made as a whole by
condition and cell line. As these pathways are not found in IPF fibroblasts, they provide us
with information that could help elucidate the mechanisms of IPF pathogenesis since, for
some reason, they have been lost or blocked. In the second group, only 35 genes were found
altered in both; these genes are involved in hypoxia and mesenchymal pathways. Finally,
the genes that are induced by hypoxia and that are shared in different cells lines from IPF,
Tables 2 and 3 show the 19 DEGs, divided into up- and down-regulated; there is some
discrepancy in the four down-regulated genes in our study because previous studies in IPF
report them up-regulated, and this is the case with Coagulation factor III (F3), Hedgehog
interacting protein (HHIP), Interleukin 6 (IL-6), and Stanniocalcin 1 (STC1) (Table 2).
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Figure 7. Shared genes in response to hypoxia. (A) Venn diagram represents the intersection of
the differential expressed genes shared between cell lines in control fibroblasts or IPF fibroblasts;
(B–D) represent the Gene Biological Process using EnrichR.

Five genes were identified to be down-regulated that have not been studied in IPF,
which are Cyclin G2 (CCNG2), Potassium Channel Tetramerization Domain Containing 16
(KCTD16), Basic helix-loop-helix family member e41 (BHLHE41), Syntaxin binding protein
6 (STXBP6), and Serpin family B member 7 (SERPINB7) (Table 2).

Nine genes were found up-regulated, four genes have been previously related to
IPF: Endothelial PAS domain protein 1 (EPAS1), Transferrin receptor (TFRC), Endothelin
receptor type A (EDNRA) and Periostin (POSTN). The other five genes have not been
associated with IPF: the Alcohol dehydrogenase 1B (ADH1B), Protocadherin 18 (PCDH18),
Homeobox A5 (HOXA5), Solute carrier family 14-member 1 (SLC14A1), and Ubiquitin
specific peptidase 18 (USP18) (Table 3).
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Table 2. List of down-regulated genes in lung fibroblasts from IPF patients in normoxia and hypoxia.

Gene Also Known as N H OS Description Models Reference

F3 TF; AGT; CD142 NS Down Up
Coagulation factor III is a surface
receptor, and it participates in the

coagulation cascade
IPF-HLF [27]

HHIP HIP NS Down Up

Hedgehog interacting protein is
involved with Hedgehog signaling

pathway in
embryonic development

IPF-HLF [28,29]

IL6
CDF; HGF; HSF;
BSF2; IL-6; BSF-2;
IFNB2; IFN-β-2

NS Down Up Interleukin 6 encodes for a cytokine
with inflammatory functions

IPF-HLF
and BMM [30,31]

STC1 STC NS Down Up
Stanniocalcin 1 encodes for

homodimeric glycoprotein with
paracrine and autocrine functions

Increased in
plasma of

patients with IPF
[32]

DDIT4 Dig2; REDD1;
REDD-1 NS Down -

DNA Damage Inducible Transcript
4. Gene related to response to virus,

hypoxia, DNA damage, and
tumor regulation

Expression
associated with
lncRNAs in IPF

[33]

CCNG2 - NS Down - Encodes for cyclin-G2 involved in
cell cycle NS-IPF -

KCTD16 - NS Down -
Potassium channel tetramerization

domain containing 16 regulates
GABA receptor signaling

NS-IPF -

BHLHE41

DEC2; FNSS1;
hDEC2;

BHLHB3;
SHARP1

NS Down -
Basic helix-loop-helix family

member e41, involved in circadian
rhythm and cell differentiation

NS-IPF -

STXBP6 amisyn;
HSPC156 Up Down -

Syntaxin binding protein 6 is
involved in regulating SNARE

complex formation
NS-IPF -

SERPINB7 PPKN; TP55;
MEGSIN NS Down -

Serpin family B member 7 encodes
for a protein that functions as a

protease inhibitor
NS-IPF -

N = Normoxia results in this study; H = Hypoxia results in this study; OS = Other Studies; IPF-HLF = IPF
human lung fibroblast; BMM = Bleomycin mouse model; BAL = Bronchoalveolar lavage; NS-IPF = Not studied
in idiopathic pulmonary fibrosis; Non-significant = NS. The search for the function of the genes was carried
out using the gene card (https://www.genecards.org/). As for the studies reported in IPF, a basic search was
performed in PubMed with the name of the gene or protein it encodes (https://pubmed.ncbi.nlm.nih.gov/), and
only those that seemed relevant were considered.

Table 3. List of up-regulated genes in lung fibroblasts from IPF patients in normoxia and hypoxia.

Gene Also Known as N H OS Description Models References

EPAS1

HLF; MOP2;
ECYT4; HIF2A;

PASD2;
bHLHe73

Down Up Up

Endothelial PAS domain protein 1 is a
gene that encodes a transcription factor

involved in signaling pathway
in hypoxia

IPF-HLF [9]

TFRC
CD71, IMD46,
T9, TFR, TFR1,
TR, TRFR, p90

Down Up Up

Transferrin receptor encodes a cell
surface receptor associated with cellular

iron uptake and is required
for erythropoiesis

IPF-HLF, BMM
and BAL of
IPF patients

[34,35]

POSTN PN; OSF2; OSF-2;
PDLPOSTN Down Up Up

Gen encodes for periostin protein with
functions in tissue development and
regeneration. Expression related to

IPF progression

IPF-HLF
and BMM [36,37]

EDNRA

ETA; ET-A;
ETAR; ETRA;

MFDA; ETA-R;
hET-AR

NS Up Up
Endothelin receptor type A encodes an

endothelin-1 receptor with
vasoconstriction properties

Primary rat
alveolar type II

cells
[38,39]

HOXA5 HOX1; HOX1C;
HOX1.3 NS Up Up

Homeobox A5 encodes for transcription
factors called homeobox genes spatially

and temporally regulated during
embryonic development

NS-IPF -

https://www.genecards.org/
https://pubmed.ncbi.nlm.nih.gov/
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Table 3. Cont.

Gene Also Known as N H OS Description Models References

PCDH18 PCDH68L NS Up Down

Protocadherin 18 encodes for a protein
member of the subfamily of cadherin

superfamily related to
cell–cell connections

NS-IPF -

ADH1B ADH2;
HEL-S-117 NS Up -

Alcohol dehydrogenase 1B encodes for a
protein member of the alcohol

dehydrogenase family
NS-IPF -

SLC14A1

JK; UT1; UTE;
HUT11; Jk(a);
Jk(b); RACH1;

RACH2; UT-B1;
HUT11A;
HsT1341

NS Up -

Solute carrier family 14-member
1 encodes for a protein membrane

transporter that mediates urea transport
in erythrocytes

NS-IPF -

USP18 ISG43; UBP43;
PTORCH2 NS Up -

Ubiquitin specific peptidase 18 encodes
for an enzyme that belongs to

ubiquitin-specific proteases family
NS-IPF -

N = Normoxia results in this study; H = Hypoxia results in this study; OS = Other Studies; IPF-HLF = IPF
human lung fibroblast; BMM = Bleomycin mouse model; BAL = Bronchoalveolar lavage; NS-IPF = Not studied
in idiopathic pulmonary fibrosis; Non-significant = NS. The search for the function of the genes was carried
out using the gene card (https://www.genecards.org/). As for the studies reported in IPF, a basic search was
performed in PubMed with the name of the gene or protein it encodes (https://pubmed.ncbi.nlm.nih.gov/), and
only those that appeared relevant were considered.

4. Discussion

Hypoxia is active in the lungs and fibroblasts of IPF patients. Several studies support
the idea that hypoxia through the hypoxia-inducible transcription factors (HIF-1α and 2α)
is a determining factor in the development and progression of fibrosis, participating in
fibroblast activation and differentiation [4–6,8,40,41].

Most in vitro studies with lung fibroblasts from patients with IPF are performed under
conditions other than the fibrotic microenvironment in a CO2 incubator, where oxygen con-
centration differ from concentration in the microenvironment typical of the fibroblast focus.
Therefore, this work also provides information on the possible dysregulated pathways in
the fibroblast foci of patients with IPF.

This exploratory and descriptive study was carried out to generate hypotheses about
the possible signaling pathways involved in the hypoxia adaptation and the altered pheno-
type of IPF derived fibroblasts.

Therefore, we performed a gene expression analysis with a robust platform (Clariom
D), where fibroblasts were analyzed under a hypoxia environment. This study shows
that hypoxia induces essential changes in the expression of genes in controls related to
metabolism, stress response, and epithelial differentiation, a modest response related to
angiogenesis and regeneration in the case of IPF. Exclusive transcriptomic signature in IPF
fibroblasts suggests a particular adaptation where EPAS1 (HIF-2α) plays a leading role.

As expected, the pathways shared between control fibroblasts and IPFs are related to
hypoxia signaling. However, the intensity and complexity of the transcriptomic changes
vary between the condition and the cell lines. On the whole, in the controls, there are more
genes involved in pathways that are essential for cell maintenance in conditions of limited
oxygenation, such as autophagy and metabolism. In fibroblasts derived from patients with
IPF, a limited activation is observed, and similar results were observed with other stressors
such as starvation and apoptosis inducers [42–44].

HIF-1α and 2α are known to have common target genes, yet it has been suggested that
each isoform may exclusively regulate some genes [45–48]. It is also known that HIF-1α
participates in a relevant way in acute hypoxia and that HIF-2α participates in chronic
hypoxia [49,50]. So, we suggest that there probably exists a preadaptation in IPF cells that
have been exposed to specific environments of chronic hypoxia.

As was foreseeable, the extracellular matrix-related genes are upregulated in hypoxia
in both controls and IPF, so they are not exclusive to the specific transcriptional signature
of IPF in hypoxia. However, the possibility remains that its increase is grater in IPF.

https://www.genecards.org/
https://pubmed.ncbi.nlm.nih.gov/
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In the transcriptional signature that was observed in the genes exclusive to IPF, un-
expected findings occurred, since no previous connection to hypoxia or IPF had been
made such as the circadian rhythm and the differentiation of Th17 cells. In the case of
the circadian rhythm pathway, it has been reported that oxygen through the activation of
HIF1α, is a reset signal for circadian clocks [51].

Among the 19 DEGs found in the transcriptional signature, some genes such as
EPAS1, POSTN, HOXA5, and HHIP are related to regeneration and development. We
recently proposed that hypoxia signaling pathways are necessary for the context of lung
regeneration. In addition, recapitulation of these pathways has been reported in pulmonary
fibrosis [52]. However, if regeneration persists, hypoxia can activate feedback loops related
to disease progression [7]. In animal models where the mechanisms involved in the
regeneration process are studied, a prominent role of HIF-1α and HIF-2α was determined.
It was observed that after an injury HIF-1α mRNA reaches a maximum peak on day 3 and
then declines, while HIF-2α shows a high expression until day 13 and tends to decrease once
the regeneration process has been carried out adequately [53,54]. The altered regeneration
signaling observed in the IPF group could be a result of the differential HIF activity.

5. Conclusions

Pathways in IPF fibroblasts that are not shared with healthy cells are pathways that
could help us begin to guide potential therapeutic targets. In the case of fibroblasts from
patients with IPF, high levels of EPAS (HIF-2α) suggest that it plays an essential role in this
chronic adaptation to hypoxia.
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Gene Ontology (GO) of the study groups.
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