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Abstract: Green fluorescent protein (GFP) chromophore and its congeners draw significant attention
mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We
have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat
(LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary
screening and designing antiviral drug candidates. The stabilization of this G4 was previously
shown to suppress viral gene expression and replication. FRET-based high-throughput screening
(HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general
structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us
to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the
basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular
modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective
derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for
drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78–7.7 µM)
in vitro, but the activity was accompanied by pronounced cytotoxicity.

Keywords: G-quadruplex; FRET-melting; green fluorescent protein (GFP) chromophore; antiviral
activity; cytotoxicity

1. Introduction

G-quadruplexes (G4s) are alternative secondary structures formed by guanine-rich
nucleic acids. In quadruplex-folded polynucleotides, four guanine bases of the same or
different strands form a planar structure stabilized by Hoogsteen hydrogen bonds [1]. G4s
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are currently considered as promising and attractive targets for anti-cancer [2], anti-viral [3],
and antibacterial therapy [4]. The sites capable of forming RNA G-quadruplexes have been
identified in the genomes of human immunodeficiency virus 1 (HIV-1), Zika virus, Ebola
Virus, papillomaviruses, etc., [3,5,6]. Recently a number of G4s in the HIV-1 DNA have
been extensively studied [7–10]. Among the most attractive targets for repressing virus pro-
duction are G4s formed in the 5′-long terminal repeat (LTR) promoter, which is crucial for
effective progression of the viral cycle [11]. Among these G4s, the LTR-III G4 is considered
to be major G4 structure with the highest thermal stability and has an unusual duplex-
quadruplex junction that can be potentially specifically targeted (Figure 1A) [12]. Therefore,
in this work we screened ligands for HIV-1 LTR-III G4 as potential anti-HIV agents.
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G4 ligands are low molecular weight compounds that can bind to G4s and modulate
their thermal stability. This interaction can lead to the disregulation of replication, transla-
tion, or transcription, and therefore may be used for drug design [13–16]. There are three
major structural types of G4-interacting compounds: (1) fused aromatic polycyclic systems;
(2) non-fused aromatic systems, in which the aromatic fragments are connected by short
linkers; and (3) macrocyclic compounds (Figure 1B) [1]. Recently, benzylamine-like motifs
have been successively used to selectively bind with high affinity to quadruplex–duplex
junctions of LTR-III G4, and they could be attributed to the class of the fused aromatic
polycyclic systems [17].

GFP chromophore and its synthetic analogues find diverse applications in bioimag-
ing and fluorescent probes design [18–21]. Interestingly, the structural features of these
compounds (Figure 1C) resemble, to a significant extent, the second type of G4-binding
compounds, the non-fused aromatic systems (Figure 1B). Therefore, we decided to probe a
number of GFP chromophore derivatives as G4 ligands and antiviral agents.

2. Materials and Methods
2.1. Fret Melting Assay

To evaluate stabilizing properties of the ligands in a complex with oligodeoxyribonu-
cleotides (ODNs) melting with fluorescence registration was used. ODN (0.5 µM) (Table 1),
labeled with 6-carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA)
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at the 5′- and 3′-end, respectively, were folded in lithium cacodylate buffer (10 mM, pH 7.4)
with 100 mM KCl by heating at 95 ◦C for 5 min and gradually cooling to r.t. GFP chro-
mophore analogs (5 mM solution in DMSO) were diluted with the same buffer to the
final concentration of 25 µM and mixed with an equal volume of 0.5 µM ODN solution
resulting in a molar ratio of 50:1 (total volume was 50 µL). For the titration experiments
molar ratios of 20:1 and 2:1 were used. Samples were analyzed using DTprime qPCR
system (DNA-Technology LLC, Moscow, Russia). Fluorescence was registered by detection
of FAM emission at 520 nm upon excitation at 495 nm in the temperature range of 30–95 ◦C
with 1 ◦C/min gradient. Tm was determined using the instrument software and ∆Tm
was calculated relative to ODN Tm in a buffer solution containing 0.25% (v/v) DMSO. The
primary and secondary screening were carried out in singlicate and triplicate, respectively.

Table 1. ODNs, used in this work.

Code Sequence (5′→3′)

LTR-III FAM-GGGAGGCGTGGCCTGGGCGGGACTGGGG-TAMRA
Telo FAM-AGGGTTAGGGTTAGGGTTAGGG-TAMRA

dsDNA FAM-CTATAGCGCGCTATAG-TAMRA
Pu39 FAM-AGGGGCGGGCGCGGGAGGAAGGGGGCGGGAGCGGGGCTG-TAMRA

2.2. NMR Experiments

All NMR spectra were acquired on a Bruker Avance III 800 MHz spectrometer
equipped with a cryoprobe. Titration of 50 µM LTR-III samples (70 mM KCl, 20 mM
potassium phosphate buffer, pH 7.0) with 2 mM ZS260.1 and N979 ligands dissolved
in DMSO was performed. 1D 1H NMR spectra were used to track the changes during
titration. 1H-13C HSQC and HMBC at 35 ◦C were used to transfer the assignment of
H6/C6 and H8/C8 signals from previously obtained assignment [12]. To identify the
LTR-III residues that are most influenced by addition of ZS260.1 ligand, the intensities of
cross-peaks in the 1H-13C HSQC spectra measured with and without added ligand were
compared. The H6/C6 and H8/C8 cross-peak intensities were measured at molar ratio of
LTR-III to ZS260.1 of 5:1 (35 ◦C, 0.5 mM LTR-III G4).

2.3. Molecular Modeling

Preparation of target and ligand models, docking and molecular dynamics were
implemented according to the protocols described in the article [22]. The 3D models
of the studied structures were built using molecular graphics software package Sybyl-X
software (Certara, Inc., St. Louis, MO, USA). Partial charges on ZS260.1 atoms were calcu-
lated using MP2, conductor-like polarizable continuum model (CPCM) [23], 6–31 g* basis
sets and Merz-Singh-Kollman scheme [24] with RESP (Restrained ElectroStatic Potential)
method [25]. All quantum mechanics simulations were carried out using Gaussian 09
program [26]. To define the most probable binding site of ZS260.1 on LTR-III surface, the
procedure of flexible ligand docking was performed using ICM-Pro 3.8.6 [27]. MD simula-
tions were performed using Amber 20 software [28]. An influence of the solvent simulated
with application model of water molecules OPC3 [29]. The simulation performed using
periodical boundary conditions and rectangular box. The buffer between DNA-ligand
complex and the periodic box wall was at least 15 Å. For neutralizing of the negative charge
of DNA backbone K+ ions were used. The parameters needed for interatomic energy
calculation, were taken from the force fields OL15 [30,31] for DNA and from general amber
force field (gaff2) for ZS260.1. The MD simulations in production phase were carried out
using constant temperature (T = 300 K) and constant pressure (p = 1 atm) over 80 ns. To
control the temperature Langevin thermostat was used with the collision frequency of
1 ps-1. Energies were estimated by using the MM-GBSA approach. The polar contribution
EGB was computed using the Generalized Born (GB) method and the algorithm for cal-
culating the effective Born radii [32]. The non-polar contribution to the solvation energy
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(Esurf), which includes solute-solvent van der Waals interactions and the free energy of
cavity formation in solvent, was estimated from a solvent-accessible surface area (SASA).

2.4. Biological Experiments
2.4.1. Cells and Viruses

Human T cell leukemia (MT4) cell line was maintained in RPMI-1640 (“Chumakov
FSC R&D IBP RAS”, Moscow, Russia) with 10% of fetal bovine serum (FBS, Invitrogen,
Waltham, MA, USA), L-glutamine and gentamicin. Green monkey kidney (Vero, Beach,
FL, USA) cell line was maintained in 2 × Eagle MEM (“Chumakov FSC R&D IBP RAS”,
Russia) with 5% FBS with L-glutamine, penicillin and streptomycin. Cell cultures were
incubated in the present of 5% CO2 at 37 ◦C. HIV-1 strain NL4-3 was obtained via cell
transfection with pNL4-3 3 (ARP2006, NIBSC, Potters Bar, UK).

2.4.2. Cytotoxicity Test

Two-fold dilutions of studied compounds and DMSO as a negative control were
prepared in RPMI-1640 (“Chumakov FSC R&D IBP RAS”, Russia). MT4 cell suspensions
were added to the wells with compound dilutions and DMSO control (approx. 2 × 104 cells
per well). The final concentration series of eight dilutions started from 25 µM. After
incubation at 37 ◦C in a CO2-incubator for nine days, cells were analyzed by microscopy.
Cytotoxic concentration (CC50) values (compound concentration required to induce death
of 50% of the cells in monolayer) were calculated according to the Karber method [33]. All
experimental procedures were performed in two replicates and were repeated two to four
times. Mean and SD were calculated with OriginPro 8 (OriginLab, St. Louis, MO, USA).

2.4.3. Cytopathic Effect Inhibition Test

Eight two-fold dilutions of stock solutions of the compounds in two replicates were
prepared in RPMI-1640 (“Chumakov FSC R&D IBP RAS”, Russia). Compound dilutions
were mixed with equal volumes of the virus suspension containing 100 CCID50 (50% tissue
culture infectious dose). Control cells were treated with the same sequential concentrations
of DMSO as in compound dilutions. Then, the MT4 cell suspension (approx. 2 × 104 cells
per well) in RPMI-1640 containing 10% FBS (Invitrogen, South America) was added to
experimental mixtures. A final concentration series started from 25 µM. Each experiment
contained virus dose titration in the inoculate to assure the acceptable dose-range. After
a nine-day incubation (5% CO2, at 37 ◦C), cytopathic effect (CPE) was visually accessed
via microscope. EC50 values were calculated according to the Karber method [33]. All
experimental procedures were performed in two replicates and were repeated two to four
times. Mean and SD were calculated with OriginPro 8 (OriginLab, St. Louis, MO, USA).

2.4.4. Cell Staining for Confocal Microscopy

Vero cells were seeded on glass coverslips in 12-well plates (a full monolayer on the
third day). After 72 h, the culture medium was removed from the cells. Test compound
solutions with final concentration of 10 µM in DMEM were added to the cells and incubated
at 37 ◦C with CO2 for 24 h. Then the medium was removed and 5 µM Hoechst 33,342
(Sigma, St. Louis, MO, USA) in DMEM was added to each well and incubated at 5% CO2
and 37 ◦C for 30 min. Cells were washed with PBS, incubated with 3.7% paraformaldehyde
in PBS for 15 min at room temperature, and washed with PBS again. The coverslips were
placed onto the slides with a drop of 10% Mowiol in 0.1M Tris-HCl pH 8.5. Slides were
analyzed using Eclipse TE2000 confocal microscope (Nikon, Tokyo, Japan) with 515/30
(blue) and 590/50 (green) filters sets.

3. Results and Discussion
3.1. Primary Screeening of GFP Chromophore Analogs

Initially we screened an in-house library of 440 synthetic GFP chromophore ana-
logues for interaction with HIV-1 LTR-III sequence, which modulates HIV-1 promoter
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activity [7,12], using high-throughput screening (HTS) FRET melting assay (Table S1) [34].
The primary probing revealed a number of compounds, capable of HIV-1 LTR-III G4 stabi-
lization. We selected 11 compounds (Figure 2A), displaying stabilization in the range of
2.4–7.8 ◦C, and evaluated their ability to stabilize other G4-forming sequences, including
human telomeric sequence Telo (one of the most common G4 structures in the human
genome [35], having two conformations, Hybrid-1 and Hybrid-2 [36]) and model G4 Pu36
(the G-rich Pu39 region of the P1 promoter of the oncogene BCL-2, an apoptosis regu-
lator [37] with polymorphic conformational structure [38]), as well as double stranded
oligonucleotide (duplex) control sequence (Figure 2B, Table S2). Some of the selected
derivatives showed significant LTR-III selectivity except for N1052, N683.1, ZS331 N848.2
and N848.3.
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3.2. Synthesis of the Lead Compounds Congeners

The first synthetic efforts for structure optimization included the synthesis of con-
geners, containing aminoalkyl moiety at three-position of imidazolone ring. This approach
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was previously successfully utilized for the design of scaffolds for thermal stability enhance-
ment of non-canonical nucleic acids secondary structures [39,40]. Variations, containing
protected or protonated aminoalkyl tether (AR556, AR558, AR559, Table S3) were obtained
on the basis of the most effective compound ZS260.1. Unfortunately, this modification led to
complete loss of stabilization properties (Table S3), suggesting that ionic interactions do not
make a significant contribution to or impair the stabilizing properties for this ligand class.

The analysis of structure-activity relationships among the selected compounds, as well
as the comparison with the tested structures, containing the same fragments, but exhibiting
low or none stabilization capability (Supplement S4), revealed the fragments, beneficial for
LTR-III G4 stabilization. For the substituents at five-position of the GFP chromophore core
(Figure 1) 2,3- or 3,5-dimethoxy-4-hydroxyaryl moieties (e.g., in compounds ZS260.1, N960a,
N908, N1068) were found to be the most suitable for G4-stabilization (Supplement S4-1). In
turn, pyridine or dibromophenyl moieties at two-position led to the enhanced stabilizing
ability (Supplement S4-2, compounds N1068, N848.3, N848.2, N908, ZS260.1). We designed
six additional structures on the basis of these findings (Figure 3A), synthesized them and
evaluated their interaction with the same set of G4-forming sequences and double stranded
control (Figure 3B, Tables S3 and S5).
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Interestingly, all of the compounds exhibited high stabilization of LTR-III G4, the
most effective compounds having stabilization range 11–14 ◦C (N1193, N1196, N1197),
significantly exceeding maximal values for the best primary selected compounds (7.8 ◦C
for ZS260.1). These results corroborate our assumption of crucial role of the used fragments
for binding and stabilization of the target. Nonetheless, the most effective compounds were
also not selective; stabilization range of alternative G4-forming sequences was significant
(4–10 ◦C). Meanwhile, less stabilizing compounds N1198, N1199 and N1195 increased the
melting temperature of LTR-III G4 by 4–7 ◦C, comparable with the best initially tested
compounds. Titration experiments (Table S6) revealed that the most potent stabilizers
N1193, N1196 and N1197 retained significant stabilizing ability (7–9 ◦C) at a LTR-III
G4/ligand molar ratio of 1:20 and for N1196, N1197 a detectable increase in melting
temperature was also observed at a molar ratio of 1:2. These compounds were found to be
quite selective and therefore were picked for further biological studies whereas ZS260.1,
the most selective hit, was used for in-depth analysis of its selectivity.
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3.3. Mechanistic Studies
3.3.1. NMR Studies of the HIV-1 LTR-III-G4 Complex with ZS260.1

To investigate the mechanism of selective ZS260.1 interaction with LTR-III G4 we
performed NMR and MD studies.

The HIV-1 LTR-III G4 has unusual two-module structure (Figure 1A) and its unique
G4 structural features can provide an opportunity for selective binding and stabilization
by the compounds with a specific geometry of the aromatic system and the substituent
arrangement. Here, we studied the interaction of the most promising LTR-III G4-selective
compound ZS260.1 in comparison with its non-stabilizing structural congener N979 (the
structure of N979 can be found on Figure S4-1) using NMR.

Titration of LTR-III by ZS260.1 and N979 resulted in a drop of intensity of some LTR-III
signals in HN (13.0–10.5 ppm) and H6/H8 (8.5–6.5 ppm) regions of the 1H NMR spectrum
(Figure 4A). The observed selective signal attenuation indicates that both ligands interact
with the LTR-III molecule. The ligand binding processes are probably in intermediate to
fast regime on the NMR timescale. Therefore, the resonances of residues that are close
to the ligand binding site (s) become broadened and attenuated (intermediate exchange
regime). At the same time the nucleotides that are far from the ligand binding site (s)
demonstrated only weak changes in chemical shifts and was not broadened (see Figure S8-1,
fast exchange regime). Note that the formation of complex with ligand does not necessary
imply stabilization of the G4 structure.

We assessed the nucleotides that most likely take part in the binding of ZS260.1
by measuring attenuation of H6/C6 and H8/C8 cross-peaks in 1H-13C HSQC spectrum
(Figure 4B). There are three clusters of residues most sensitive to ZS260.1 addition: on the
bottom part of LTR-III G-quadruplex (G21, T24, G25, G28), on the top part of G-quadruplex
(G1, G2, G19, G26), and in the loop region in the cavity between two modules (A4, G5, C13)
(Figure 4C). The position of these nucleotides implies that there may be two ligand binding
pockets on the surface of LTR-III: formed by G17, T24, G25, G28, and thus stabilizing
3′-terminus of LTR-III G4 (binding pocket 1); and formed by G1, G2, A4, G5, C13, G19,
G26 in the cavity between the two modules stabilizing 5′-terminus of LTR-III G4 (binding
pocket 2, Figure 4C).

To determine affinity of the compound ZS260.1 to LTR-III G4 we analyzed changes in
H8 chemical shift of G8 residue in 1D 1H NMR spectra. This nucleotide is several residues
apart from the second binding pocket and therefore demonstrates fast (on the NMR scale)
chemical exchange. The titration data were successfully approximated by simple chemical
reaction A + B = AB, that implies one to one stoichiometry of binding that is consistent with
literature data (Suppl. S8) [17]. The dissociation constant for the LTR-III/ZS260.1 complex
(Kd) was on the order of 3 µM.

3.3.2. MD Simulations of the LTR-III Complex with ZS260.1

NMR spectroscopy did not allow establishing the structure of the complex, but only
indicated the most probable sites of interaction. Therefore, to clarify the interaction mech-
anism and estimate the energies of possible LTR-III/ZS260.1 complexes we studied the
target-ligand interaction in silico. To obtain the initial model of the LTR-III G4-duplex
hybrid, we used the reported structure [PDB 6H1K] resolved by NMR spectroscopy [12].
Analysis of the NMR data revealed two possible states of the LTR-III hybrid: with or
without cavity between the hairpin and the G4 modules. We questioned which of the two
states is the most likely. Therefore, prior to investigating the hybrid-ligand interactions, we
simulated molecular dynamics (MD) of the LTR-III hybrid structure. The conformation
with the maximum volume of the cavity was used as the starting point. Figure 5 shows the
initial and final conformations.
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purine H8 protons) of 50 µM LTR upon titration with ligands ZS260.1 and N979. (B) Overlay of 1H-13C HSQC spectra of
0.5 mM LTR before (black) and after (red) addition of ZS260.1 (LTR-III/ZS260.1 = 5:1) at 25 ◦C (top). The assignment of
H6/C6 (T, C) and H8/C8 (A, G) cross-peaks is shown. Diagram corresponds to the relative decrease in intensities upon the
addition of ZS260.1 (bottom). (C) Nucleotides of the LTR-III G4 structure (PDB: 6H1K), most sensitive to the addition of
ZS260.1 (left) and two possible binding pockets (right). The structure is colored according to attenuation of H6/C6 and
H8/C8 cross-peaks in 1H-13C HSQC spectrum (panel B, bottom).

To illustrate the changes in the cavity geometry during the MD simulation, we used
the following parameters characterizing the arrangement of nucleotides that form the
boundary of the cavity: center of mass (COM) distances between the nucleobases and the
angle between the normals to the planes in which the nucleobases are located. Time plots
of the COM distances and the angles between the normals (Φ) are shown in Figure S9-1.
The T14 residue, initially exposed to the external environment, began to enter the cavity
after ~0.06 ns, and its entrance halved the cavity volume. Then, G3 began to enter the
cavity after ~2.19 ns, embedding between/stacking with G2 and G5 and locating in the
same plane as T14. As a result, the cavity got closed almost at the beginning of the MS
simulation. Changes in various contributions to LTR-III free energy upon the closure of the
cavity are shown in Figure S9-2.



Biomolecules 2021, 11, 1409 9 of 16

Biomolecules 2021, 11, x FOR PEER REVIEW 10 of 18 
 

mechanism and estimate the energies of possible LTR-III/ZS260.1 complexes we studied 
the target-ligand interaction in silico. To obtain the initial model of the LTR-III G4-duplex 
hybrid, we used the reported structure [PDB 6H1K] resolved by NMR spectroscopy [12]. 
Analysis of the NMR data revealed two possible states of the LTR-III hybrid: with or with-
out cavity between the hairpin and the G4 modules. We questioned which of the two 
states is the most likely. Therefore, prior to investigating the hybrid-ligand interactions, 
we simulated molecular dynamics (MD) of the LTR-III hybrid structure. The conformation 
with the maximum volume of the cavity was used as the starting point. Figure 5 shows 
the initial and final conformations. 

 
Figure 5. LTR-III G4 structure at the initial, 0 ns (A) and final, 80 ns (B) stages of MD simulations. The DNA shown by 
rendering with the nucleotides are colored as follows: G, blue; A, red; T, light brown; C, cyan. Cavity-forming nucleotides 
are in ball-and-stick representation. Atoms are represented by the following colors: carbon, ice blue; oxygen, red; nitrogen, 
blue; and hydrogen, white. 

To illustrate the changes in the cavity geometry during the MD simulation, we used 
the following parameters characterizing the arrangement of nucleotides that form the 
boundary of the cavity: center of mass (COM) distances between the nucleobases and the 
angle between the normals to the planes in which the nucleobases are located. Time plots 
of the COM distances and the angles between the normals (Φ) are shown in Figure S9-1. 
The T14 residue, initially exposed to the external environment, began to enter the cavity 
after ~0.06 ns, and its entrance halved the cavity volume. Then, G3 began to enter the 
cavity after ~2.19 ns, embedding between/stacking with G2 and G5 and locating in the 
same plane as T14. As a result, the cavity got closed almost at the beginning of the MS 
simulation. Changes in various contributions to LTR-III free energy upon the closure of 
the cavity are shown in Figure S9-2. 

The van der Waals contribution significantly increased upon the closure of the cavity 
as a result of stacking interactions of T14 and G3 with the adjacent nucleobases (Figure 
S9-2C). At the same time, the decrease in surface accessible to the solvent led to an increase 
in the hydrophobic contribution to the free energy (Figure S9-2E). Notably, the LTR-III 
hairpin is a diagonal loop, which makes the contact between T14 and G3 particularly ad-
vantageous. We concluded that the cavity formation was a possible but unlikely event. 

Figure 5. LTR-III G4 structure at the initial, 0 ns (A) and final, 80 ns (B) stages of MD simulations. The DNA shown by
rendering with the nucleotides are colored as follows: G, blue; A, red; T, light brown; C, cyan. Cavity-forming nucleotides
are in ball-and-stick representation. Atoms are represented by the following colors: carbon, ice blue; oxygen, red; nitrogen,
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The van der Waals contribution significantly increased upon the closure of the cavity as
a result of stacking interactions of T14 and G3 with the adjacent nucleobases (Figure S9-2C).
At the same time, the decrease in surface accessible to the solvent led to an increase in the
hydrophobic contribution to the free energy (Figure S9-2E). Notably, the LTR-III hairpin is
a diagonal loop, which makes the contact between T14 and G3 particularly advantageous.
We concluded that the cavity formation was a possible but unlikely event.

The docking procedure was applied to search for the most probable location of ZS260.1
on the LTR-III surface. Taking into account the nonzero probability of the cavity formation,
both the initial conformation with the cavity and the final one obtained at the last step of the
MS simulation were used as targets. During the docking procedure, the sugar-phosphate
backbone of the targets in the loops was flexible. The stability of the complexes obtained
from docking was verified by MD simulations. The two most probable conformations,
namely the one with ZS260.1 located on the outer G tetrad near 3′-terminus of LTR-III
G4 (Figure 6A, complex 1) and the other with ZS260.1 within the cavity near 5′-terminus
(Figures 6B and S10, complex 2) at the initial (left) and final (right) stages of MD simulations
are shown in Figure 6. Both structures of the LTR-III/ZS260.1 complexes obtained from
docking were stable throughout the simulation. An analysis of the contributions to the
interaction energy of the complexes are shown in Figure S11-1.

In complex 2 (the ligand is located in the cavity near 5′-terminus), the interactions were
more efficient due to the van der Waals contribution resulting from the large number of
nucleotides involved in stacking interactions with the ligand (Figure S11-1). The following
parameters were used to analyze the ligand positioning on the LTR-III surface during the
MD simulation. The distances between the COM of the involved nucleobases and the COM
of the ligand aromatic rings, and the angles between the normals to the planes in which the
nucleobases and the ligand aromatic rings are located. Time plots of the COM distances
and angles (Φ) between the normals are shown in Figure S11-2.
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For complex 1, in which the ligand was located on the outer G tetrad containing
G17, G21, G25 and G28 near 3′-terminus, the dibromophenyl moiety stacked with G21,
and also with A22 at the initial stage of the MD simulation. The interaction with A22
turned out to be unstable, and the stacking interaction with A22 was replaced by that
with T24. The imidazolone ring was located above G25 and the dimethoxyphenyl moiety
stacked with G28. These results are in good agreement with the NMR data, which revealed
possible ligand interactions with G21, T24, G25 and G28 (binding pocket 1, Figure 4C). For
complex 2, in which the ligand was located within the cavity, the dibromophenyl moiety
stacked with G19, the imidazolone ring was located between and stacks with G2 and G5,
and the dimethoxyphenyl moiety was sandwiched between and stacked with G26 and C13.
These results also comply with the NMR data (binding pocket 2, Figure 4C). To conclude,
if a cavity is formed between the hairpin and the G-quadruplex modules (e.g., due to
thermal fluctuations), the ligand is localized in it, and the ligand-target interaction energy
is maximum. However, the lifetime of the cavity is limited (the cavity-free conformation
dominates), and in this case, ZS260.1 could interacts with the outer G-tetrad. Nevertheless,
the ligand positioning within the LTR-III cavity (binding pocket 2) near 5′-terminus of G4
is presumably responsible for the selectivity over the other G4 targets containing outer
G tetrads without additional ligand-interacting modules and for the observed thermal
stabilization of LTR-III G4.

3.4. In Vitro Antiviral Properties

In vitro antiviral properties for the selected compounds were assessed in comparison
with cytotoxicity (Table S12, Figure 7). Most of the compounds were toxic for MT4 cells (cy-
totoxic concentration (CC50) < 10 µM). None of the 10 non-toxic compounds (CC50 > 25 µM)
inhibited HIV reproduction in MT4 cells. LTR-stabilizing compounds ZS260.1, N1068 and
N1198 showed inhibitory activity with EC50 in micromolar range, although accompa-
nied by significant cytotoxicity. The cytotoxicity mainly increased with LTR stabilization
properties and correlated with inhibitory activity indicating that the compounds might
have analogous targets in viral and human genomes, taking into account the presumable
existence of quadruplex–duplex hybrids in the human genome [41]. The use of a limited
G4 target panel seemed reasonable for rough selectivity evaluation in our screening as-
says. However, as evident from the inhibitory assays, more detailed selectivity analyses
will be needed in future rounds of optimization. In addition, side effects of the selected
compounds could also arise from the binding to intracellular proteins [42].

To summarize, comparison of LTR-III G4 stabilization data and antiviral properties
in some cases reveal no strong correlation. However, the absence of detectable antiviral
activity for some of the potent LTR-III G4 stabilizers could be the result of their high
cytotoxic activity (low CC50 values, e.g., N1197).

The DNA G4-mediated mechanism of action suggests the potential candidate should
penetrate into the cell nucleus. Some of the previously studied GFP chromophore analogs
were shown to penetrate the cell and the nucleus [43]. However, high hydrophobicity of
the selected compounds may interfere with intracellular accumulation. In this regard, we
tested the localization of the most promising LTR-III G4 stabilizer, ZS260.1 in the cells, using
fluorescent imaging technique to visualize compound accumulation in the cells (Figure 8).

The obtained results show that the compound (visible in the green channel) is able to
accumulate in the cells and can be detected both in the cytoplasm and in the nuclei of the
cells (stained with Hoechst 33342).
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4. Conclusions

GFP chromophore analogues find diverse applications for bioimaging properties.
However, their potential as drug leads is rather under-investigated. In this work we
screened a large in-house library of synthetic GFP chromophore analogues as ligands for
promising target – HIV-1 LTR-III sequence. The screening revealed a number of potent
stabilizers and allowed us to design improved structures by a fragment-based approach.
Selectivity testing and in vitro antiviral activity studies revealed the most perspective
lead compound—ZS260.1. The structure of the LTR-III/ZS260.1 complex was assessed
using NMR studies and MD simulations, showing plausible location of the compound
within the cavity between the hairpin and the G4 modules of LTR-III sequence. Thus, GFP
chromophore analogues were revealed to be promising scaffolds for further antiviral drug
design on the basis of G4-binding properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11101409/s1, Table S1. Primary screening of GFP chromophore analogs and their
intermediates for the stabilizing properties of FAM/TAMRA-labeled LTR-III G-quadruplex; Table S2:
Comparison of stabilization of model G4s and double stranded control sequence by primary screen-
ing lead compounds; Table S3: Primary screening of newly synthesized GFP chromophore analogs for
the stabilizing properties of FAM/TAMRA-labeled LTR-III G-quadruplex; Supplement S4: Structural
motifs of the lead compounds in comparison with the other structurally related compounds; Table S5:
Comparison of stabilization of model G4s and double stranded control sequences by newly synthe-
sized compounds; Table S6: Titration experiments for N1193, N1196, N1197 at various DNA:ligand
molar ratios; Supplement S7: Synthetic procedures for the synthesized GFP chromophore analogues;
Supplement S8: NMR titration data for the LTR-III/ZS260.1 complex; Supplement S9: HIV LTR-III
G4 MD simulation parameters; Supplement S10: The conformation of the LTR-III/ZS260.1 complex
(additional simulation angles); Supplement S11: HIV LTR-III G4/ZS260.1 complex MD simulation
parameters; Table S12: Antiviral activity of the tested compounds in MT4 cells against HIV-1 (st. NL4-3).
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