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Abstract: Synthesis of nanomaterials with specific morphology is an essential aspect for the optimi-
sation of its properties and applications. The application of nanomaterials is being discussed in a
wide range of areas, one of which is directly relevant to the environment through photocatalysis. To
produce an effective photocatalyst for environmental applications, morphology plays an important
role as it affects the surface area, interfaces, crystal facets and active sites, which ultimately affects
efficiency. The method of synthesis and synthesis temperature can be the basic considerations for the
evaluation of a particular nanomaterial. In this study, we have considered the aspects of morphology
with a basic understanding and analyzed them in terms of nanomaterial efficacy in photocatalysis.
Different morphologies of specific nanomaterials such as titanium dioxide, zinc oxide, silver phos-
phate, cadmium sulphide and zinc titanate have been discussed to come to reasonable conclusions.
Morphologies such as nanorods, nanoflower, nanospindles, nanosheets, nanospheres and nanoparti-
cles were compared within and outside the domain of given nanomaterials. The different synthesis
strategies adopted for a specific morphology have been compared with the photocatalytic perfor-
mance. It has been observed that nanomaterials with similar band gaps show different performances,
which can be linked with the reaction conditions and their nanomorphology as well. Materials with
similar morphological structures show different photocatalytic performances. TiO2 nanorods appear
to have the best features of efficient photocatalyst, while the nanoflowers show very low efficiency.
For CdS, the nanoflower is the best morphology for photocatalysis. It appears that high surface area
is the key apart from the morphology, which controls the efficiency. The overall understanding by
analyzing all the available information has enumerated a path to select an effective photocatalyst
amongst the several nanomaterials available. Such an analysis and comparison is unique and has
provided a handle to select the effective morphology of nanomaterials for photocatalytic applications.

Keywords: photocatalyst; morphology; nanomaterials; crystal facets; environment

1. Introduction

The nanotechnology industry has been envisioned to grow to the tune of 50 billion USD
in the year 2022 [1]. The market survey done by Allied Market Research Group projected
a compound annual growth rate (CAGR) of 20.7% from 2016 to 2022 for nanomaterials
(NMs) that are widely used in industries [2]. It has become crucial for every country to
invest in the development of NMs and their applications to keep pace with the growing
technological advancement. This has happened because of the unique properties possessed
by the devices based on patterns that one could engineer at atomic and molecular levels.
Applications in nanotechnology are in wide-ranging fields like water purification, medicine,
cosmetics, energy storage, healthcare, aerospace, consumer goods, agriculture, electronics,
plastics, coatings, and electronic and electrical industries [3,4]. Due to the enormous need
in the future for nanomaterials, it is crucial to understand the synthesis and growth of
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these nanostructures [5]. Besides considering the role of surface area, crystal structure,
grain boundaries, chemical nature, density, and interfacial interaction of NMs with other
materials, the properties of NMs are regulated to a large extent through the morphology of
the NMs.

According to Pokropivny and Skorokhod, NMs can be classified as 0D, 1D, 2D and
3D, respectively [6]. It was considered that the characteristics of the NMs depend on the
shape of the particle and its dimensionality. Thus, the application of the NMs can be
devised based on their morphology and dimensions, which control, to a large extent, the
movement of electrons within the NMs. The term 0D is often used for the NMs in which the
electrons are entrapped in the dimensionless space. In 1D type NMs, electrons can move
along a particular direction, whereas in 2D and 3D type NMs, the electrons conduct in the
plane and all directions, respectively. Various morphologies of NMs such as rods, spheres,
flowers, wires, tubes, and belts have already been reported in the literature and also had
a scope of different structures to be synthesized in future. Synthesis processes and the
parameters such as time and temperature regulate the synthesis of different morphologies
of NMs. On the other hand, different morphologies of the same nanomaterial display
varying performance depending upon the type of application intended. Presently there
are no reports/reviews which have focused entirely on this specific aspect of the role of
varying morphologies of a nanomaterial concerning its synthesis and efficiency towards a
specific application.

Environmental contamination is growing at an alarming rate due to rapid growth in
population and industrialization. Organic pollutants are contaminating air, water and soil
at catastrophic rates. Conventional technologies such as adsorption, ultrafiltration, coag-
ulation and photocatalysis are routinely used for the decontamination of anthropogenic
organic contaminants. The efficiency and economic cost of these technologies govern their
wide-scale application in the detoxification of the environment. Consideration of efficiency
in terms of the performance of the catalyst and time/energy required in its synthesis plays a
vital role in its commercialization and application in the large-scale treatment of pollutants.
The photocatalytic performance of NMs is the most researched topic in the present context.
The past two decades have witnessed extensive research on semiconductor nanoparticles
with unique photoinduced polarization properties and size-dependent band gap expansion.
Due to their ability to oxidize the organic and inorganic substrates, these NMs find their
use as photocatalysts for the removal of organic and inorganic pollutants either from the
aqueous or gas phase. Compared to conventional chemical oxidation methods, semicon-
ductor catalysts are low-cost, nontoxic oxides that do not lose photocatalytic activity on
extended use. The photocatalytic activity of the semiconductor material is due to the
generation of electrons/holes on the absorption of photons, which are influenced by a
band gap. Photoexcitation of the electrons occurs when the incident energy of the photon
equals or is larger than the band gap of the particular semiconductor catalyst. It triggers
the photochemical reaction on the surface of the NMs. In this process, the performance
of the semiconductor material is governed by optical absorption, charge separation and,
finally, surface reactions. The morphology of the photocatalyst dramatically affects the
efficiency of photocatalytic reactions. The unusual structural and optical properties of
these NMs are controlled by the change in morphology, which in turn is governed by the
synthesis process adopted, the time required for synthesis and reaction temperature. Hence,
to employ the best morphology of a particular photocatalyst, these factors are required
to be viewed together for process optimization. Interest in strategies to control particle
morphology has increased in the past decade because of its potential in various applications.
For the production of NMs with controlled morphology, many alternative methods like
lyophilization, precipitation, hydrothermal, freeze-drying, spray-drying, emulsion-based,
mechanical milling, and sol-gel methods have been proposed [7–9]. Of all these synthesis
methods, Ghoderao et al. [10] found the hydrothermal method to be the most efficient
synthetic method not only due to its simplicity and low-cost feasibility but due to the
crystalline nature of the product obtained with a large surface of the photocatalyst resulting
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in a higher % of photodegradation. Nandiyanto et al. [11] reported that the aerosol-assisted
self-assembly, besides being rapid and economically produced spherical particles that
were free from agglomeration with a relatively monodispersed size. It was observed that a
change in the process conditions could produce various particle morphologies. For instance,
the spray method was used to generate spherical-shaped particles with the advantage of
maximum structural stability [12].

Even though an impressive variation of morphologies ranging from spheres to rods,
needles, cubes, hollow rods, flowers, square plates, ribbons and belts are available in
the literature [13–16], in most of the studies, a clear correlation between the morphology
and the photocatalytic efficiency is not adequately explained. Different NMs have been
evaluated in terms of photocatalytic efficiency using different morphologies under different
experimental degradation conditions; however, due to the absence of an elaborate descrip-
tion, clear reasoning for their activity may not be completely evident. This may be related
to the difficulties in obtaining a well-defined surface and, consequently, a lack of clarity
of the exposed crystallographic faces. Moreover, it is a tough task to compare various
morphologies whose efficiencies are different due to different photocatalysis procedures
adopted. Being a multi-step process, the photocatalytic degradation of a pollutant may im-
pact differently depending on the relative reactivity of the exposed surfaces of NMs. For an
efficient photocatalyst, electrons and holes must first be efficiently photogenerated within
the bulk material, followed by their migration to the surface, where their surface trapping
may depend on the crystalline quality and the shape of the particle morphology. However,
it is also possible while migrating to the surface of the photocatalyst, the photoinduced
electrons and holes might become inactive through recombination. A short distance from
the core of the photocatalyst to its surface and a suitable concentration gradient reduces
this recombination. The concentration gradient has a close correlation to the morphology
and surface properties of the NMs [17].

The morphology of the semiconducting photocatalytic materials plays a vital role as
the irradiated surface initiate reactions such as oxidation or reduction of the contaminants
in the desired process. It is the relative reactivity of the exposed surfaces of NMs that
directs further surface reactions directly with the pollutant to yield active radicals that are
prone to degrade pollutants. It is, therefore, imperative to consider these parameters for
selecting the catalyst amongst the different morphologies of the available photocatalytic
materials. Semiconductor materials such as TiO2, ZnO, Ag3PO4, CdS and ZnTiO3 are
emerging as some of the most popular materials for the treatment of contaminants by the
photocatalytic process. It can be regarded as a potential material of the future required
in large quantities. This is due to their environmental adaptability and ability to harness
solar energy, which is abundantly available on earth for pollution control. Since the scope
of metal oxide-based photocatalysts is broad, selective examples of the widely accepted
photocatalysts such as TiO2, ZnO, Ag3PO4, CdS, and ZnTiO3 have been compared based on
their photocatalytic performance, the time required for synthesis and reaction temperature.
This review is significant for the energy and environment sectors, providing a perspective
on the assessment of key photocatalysts, and will provide a direction to the material
scientist, chemist and technologist working in the area of environmental mitigation.
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2. Discussion on Various Nanomaterials
2.1. Titanium Dioxide (TiO2) Nanostructures
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Figure 1. SEM micrographs of different nano morphologies of TiO2 (a) Nanorod (Reprinted with
permission from [18]. Copyright 2014 Elsevier), (b) Nanoflower (Reprinted with permission from [19].
Copyright 2012 Elsevier), (c) Nanotubes (Reprinted with permission from [20]. Copyright 2014
Springer Nature), (d) Nanospheres (Reprinted with permission from [21]. Copyright 2011 Royal Soci-
ety of Chemistry), (e) Nanospindles (Reprinted with permission from [22]. Copyright 2018 Elsevier).

Due to the nontoxic nature, natural and abundant availability, wide spectrum appli-
cation range, and attractive physical properties, titanium dioxide-based nanomaterials of
different morphologies (Figure 1) are of tremendous interest in the field of photocataly-
sis [23], photovoltaics [24], hydrogen production [25], self-cleaning coatings [26], energy
storage [27], and antifogging coatings [28]. Different morphologies of titania NMs includ-
ing nanorods, nano spindles, nanotubes, nanospheres, and nanoflowers, can be prepared
using different approaches such as sol-gel method, electrochemical route, hydrothermal
method, atomic layer deposition approach (ALD) etc. It becomes imperative to understand
the effect of various morphologies of TiO2 nanomaterial on the surface physiochemical
properties during its growth and end application. The performance of TiO2 as a photo-
catalyst primarily depends upon ion transport across the catalyst material, mass transfer
to catalytic sites and charge transfer at the available surface of the material, and all of the
above depends on the morphology of TiO2. The photocatalytic process is controlled to a
large extent by the morphology of the titania nanomaterials and can be improved by the
large surface area and nano-size of the nanoparticles [29]. It can ultimately control nature,
density, crystallinity and defect concentration in the nanomaterials. It has a profound effect
on charge transfer and ion transport properties. In contrast to the bulk titania phase, the
morphology of nanostructures such as nanorods, nanoflowers, nano spindles, nanotubes,
and nanospheres show high surface area and ease of mass transfer.
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Table 1. Photocatalytic activity study of different nano morphologies of TiO2.

S. NO. Material &
Morphology Method Application Photocatalytic Activity Reference

Nanorod

1 TiO2/Nanorod Sol-gel P-nitrophenol, under 15 W
UV Philips lamp 69% in 20 min [30]

2 TiO2/Nanorod Chemical vapour
deposition

Methyl Orange (MO) &
Methylene Blue (MB) under

100 W UV mercury lamp

97% of MO in 100 min 99%
of MB in 50 min [18]

3 TiO2/Nanorod Sol-gel Phenol under18 W UV
lamp, 48% in 360 min [23]

4 TiO2/Nanorod Hydrothermal Method
at 120 ◦C for 15 h Phenol under UV light 87% in 360 min [31]

5 TiO2/Nanorod Hydrothermal Method
at 200 ◦C for 12 h

MO under 300 W UV Xenon
lamp 100% in 95 min [32]

6 TiO2/Nanorod Hydrothermal Method
at 225 ◦C for 24 h

MO & MB under 6 W UV
lamp

100% of MO & 88% of MB in
120 min [33]

7 TiO2/Nanorod Hydrothermal Method
at 180 ◦C for 12 h Phenol, 20 W UV lamp, 365 55% in 360 min [21]

8 TiO2/rod Hydrothermal, 200 ◦C
for 18 h MB, under 6 W UV lamp 80% in 100 min [34]

9 TiO2/Nanorod Hydrothermal Method
at 180 ◦C for 24 h

MO, under UV mercury
lamp 51% in 150 min [35]

Flower

10 TiO2/Flower Sol-gel Phenol, under 18 W UV
lamp 70% within 360 min [23]

11 TiO2/Flower Hydrothermal, 180 ◦C
for 12 h Phenol, 20 W UV lamp 97% in120 min [21]

12 TiO2/Flower Hydrothermal, 180 ◦C
for 6 h

Rhodamine B (RhB), under
450 W UV Xenon lamp 69% in 160 min [36]

13 TiO2/Flower Sol-gel RhB under 300 W UV lamp 91.4% in 50 min [37]

14 TiO2/Flower Hydrothermal, 150 ◦C
for 24 h

RhB, under 350 W Xenon
Visible lamp 63% in 60 min [38]

15 TiO2/Flower Hydrothermal, 150 ◦C
for 3 h MB under UV lamp 78% in 60 min [39]

16 TiO2/Flower Hydrothermal, 120 ◦C
for 48 h MO under sunlight 60% in 60 min [19]

17 TiO2/Flower Hydrothermal, 150 ◦C
for 24 h

MB under UV 300 W
high-pressure mercury (Hg)

lamp
75% in 60 min [40]

Tube

18 TiO2/Tube Furnace 500 ◦C for 4 h
Papermaking wastewater,

under 375 W high-pressure
Hg lamp

99.5% in 720 min [41]

19 TiO2/Tube Electrochemical
Method MB, under UV lamp 98% in 60 min [20]

20 TiO2/Tube Hydrothermal, 160 ◦C
for 24 h MO, under 300 W UV lamp 50.2% in 60 min [42]
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Table 1. Cont.

S. NO. Material &
Morphology Method Application Photocatalytic Activity Reference

21 TiO2/Tube Sol-gel stirring at 40
◦C for 24 h

RhB & Dibutyl phthalate
(DBP) 125 W high-pressure

Hg UV lamp

20% of RhB in 60 min & 15%
of DBP in 60 min [43]

22 TiO2/Tube Solvothermal, 180 ◦C
for 24 h

Orange II, under 18
high-pressure Hg lamps 97.98% in 3000 min [44]

23 TiO2/Tube Electrochemical
method MB, under UV light lamp 72% in 200 min [45]

24 TiO2/Tube Electrochemical
Method

Phenol, under 1000 W
Xenon lamp visible light

lamp
99.5% in 40 min [46]

Sphere

25 TiO2/Sphere Hydrothermal, 180 ◦C
for 24 h

Phenol, under 20 W UV
lamp, 60% in 120 min [21]

26 TiO2/Sphere Hydrothermal, 130 ◦C
for 48 h MB, under UV lamp 96% in 80 min [47]

27 TiO2/Sphere Hydrothermal, 200 ◦C
for 18 h MB, under 6 W UV lamp 90% in 100 min [34]

28 TiO2/Sphere Hydrothermal, 80 ◦C
for 24 h MB, under UV light 96% in 100 min [48]

29 TiO2/Sphere Hydrothermal, 160 ◦C
for 24 h MO, under 4 W UV lamp 50% in 60 min [49]

30 TiO2/Sphere Hydrothermal, 150 ◦C
for 72 h MO, under 8 W UV lamp 91.6% in 60 min [50]

Spindle

31 TiO2/spindle Hydrothermal, 180 ◦C
for 12 h

MO, under 300 W visible
light 38% in 120 min, [51]

32 TiO2/spindle Hydrothermal, 200 ◦C
for 24 h

RhB, under 350 W Xenon
visible lamp 23% in 60 min [52]

33 TiO2/spindle Reverse
micellar method RhB, under UV lamp 90% in 130 min [53]

34 TiO2/spindle Hydrothermal, 180 ◦C
for 12 h

MO, under 250 W UV
high-voltage Hg lamp 91% in 300 min [54]

35 TiO2/spindle Hydrothermal, 200 ◦C
for 24 h RhB, visible light 25% in 60 min [55]

Various morphologies of TiO2 were synthesized using different approaches (Table 1),
such as sol-gel [56,57], hydrothermal, electrochemical, solvothermal and solid-state meth-
ods. The nanorods were synthesized using sol-gel [30], solid-state [58], and hydrothermal
methods [34]. Generally, it takes two hours for the complete mineralization of organic pol-
lutants using TiO2 nanorods. TiO2 nanoflowers were prepared by using the sol-gel [34] and
hydrothermal methods [21,36]. It takes more than an hour to remove organic contaminants
by a photocatalytic process using TiO2 nanoflowers. The nanotubes were prepared by
using electrochemical, hydrothermal [59], sol-gel [60], and solvothermal methods [61]. The
99.5% removal of organic pollutants was achieved within 40 min using TiO2 nanotubes [46].
TiO2 nanospheres were synthesized mostly by hydrothermal technique. It takes more than
2 h for the total mineralization of organic contaminants photocatalytically by using TiO2
nanospheres. TiO2 nano spindles were obtained by using hydrothermal [52] and reverse
micellar [20] approaches. Nanospindle morphology was seen to be the slowest among all
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morphologies for photocatalytic mineralization of organic pollutants. It takes more than
two hours to complete the mineralization of organic contaminants by using TiO2 nano
spindles.

Therefore, it is important to study the parameters involved, such as surface area, the
temperature of crystal growth, the time required for synthesis as well as photocatalytic
activity in unison and collectively along with the range of different morphologies for a
holistic understanding. The data collected from existing literature indicates that on all
counts, TiO2 nanotube morphology proved to be excellent amongst different morphologies
compared, as stated above. We have considered the best results from the available literature
for comparison and analysis (Figure 2).
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It can be observed from Figure 2 that different morphologies can be compared based
on various parameters. The temperature of synthesis varies for obtaining different mor-
phologies of TiO2. Nanorods, nanospindle, and nanospheres show the highest temperature
requirement (200 ◦C), whereas nanoflower and nanotubes can be synthesized at a twenty-
degree lower temperature. In the case of photocatalytic performance, nanorods, nanotubes,
and nanospheres show the highest performance, whereas nanoflowers and nanospindle
show a 10% lesser performance. The catalytic activity time taken by nanospindle is the
highest, and nanotubes show the lowest among the reported. The nanorod and nanoflower
show moderate time, but nanosphere time is a little higher comparatively. The surface area
of nanotubes and nanospheres is the highest among the reported, whereas nanorods and
nanospindle show a 50% lesser surface area as compared to nanotubes and nanospheres.
The surface area of nanoflower shows a moderate value comparatively.

The remarkable catalytic activity (99%) with minimum activity time (40 min) was
observed in the case of TiO2 with nanotube morphology [46]. This can be related to
the high surface area (261 m2/g) and ease of access to the reactants during the catalytic
process. Thus, it can be inferred that surface area and easy access to reactants are essential
factors which govern the performance of the different morphologies in TiO2. The increased
surface area makes available microchannels for the free flow of reactants and degradation
products during the photocatalytic process. These microchannel increases the possibility
of interaction with a more catalytic active center, thereby increasing the performance of
the catalyst. The highlight of this tube-like morphology is its low-temperature synthesis
(180 ◦C) by solvothermal route [61]. The different morphologies of TiO2, such as nanorods
and nanospheres, also show excellent performance in terms of photocatalytic activity but
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have less surface area and more activity time as compared to the nanotube morphology.
However, the efficiency of nanospheres is close to nanotubes and can be considered as
the next best material matched with nanotubes [62]. Further, nanoflower morphology
with a high surface area lacks the desired catalytic performance, probably due to poor
accessibility of reactive species to active centers during the photochemical process [23]. The
different morphologies studied in decreasing order of their efficiency are nanotubes [47],
nanospheres [48], nanorods [18], nanospindle [53] and nanoflowers [37].

2.2. Zinc Oxide (ZnO) Nanostructures
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from [63]. Copyright 2014 Royal Society of Chemistry), (b) Nanoflower (Reprinted with permission
from [64]. Copyright 2016 Elsevier), (c) Hexagonal (Reprinted with permission from [65]. Copyright
2017 Royal Society of Chemistry), (d) Nanospheres (Reprinted with permission from [66]. Copyright
2019 Elsevier), (e) Nanospindles (Reprinted with permission from [67] Copyright 2017 Elsevier).

Different morphologies of zinc oxide (ZnO) are (Figure 3) considered a vital semicon-
ductor catalyst with a wide band gap of 3.37 eV with high excitation binding energy of
60 eV and have been studied extensively for photocatalytic reactions. The performance
of ZnO as a semiconductor photocatalyst can be related to the absorption of light, which
excites electrons from the valence band (VB) to the conduction band, which creates a hole
(h+) in VB and initiates the photo redox reaction. Zinc oxide occurs in nature as a zincite
mineral which has a hexagonal structure with lattice parameters a and c of 3.25 Å and 5.20
Å, respectively. It is used for making pigments, transducers, lasers, diodes, sensors and
catalysts. The most common use of ZnO in the nanoscale range is for making sunscreen
additives for protection from UV radiation, and ZnO thin films are used in making devices.
Thus, ZnO can be used in a broad range of applications starting with catalytic activity to
optoelectronics and to antimicrobial activity as well, which leads to a variety of products
manufactured. ZnO is preferred as a semiconductor catalyst due to its low cost, efficiency,
nontoxic nature, high redox potential and ease of availability. When compared to TiO2,
the photocatalytic performance of ZnO is much superior. It is due to the absorption of
a more significant portion of the UV spectrum by ZnO with greater electron mobility
(200–300 cm2V−1s−1) and higher oxidation potential of the •OH radical generated [68].
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This results in a rapid electron transfer leading to a higher quantum yield. ZnO has a higher
recombination rate of electrons and holes generated during photocatalysis which reduces
its performance as a photocatalyst.

Table 2. Comparative study of different nano morphologies of nanostructured ZnO.

S.
NO.

Material &
Morphology Method Application Performance Reference

Rod

1 ZnO/Rod Microwave reactor (heated to 80
◦C for 10 min) MO, under 300 W Hg lamp 86.3% in 180 min [69]

2 ZnO/Rod Hydrothermal, 180 ◦C for 24 h Resorcinol, under 15 W UV
lamp 100% in 120 min [70]

3 ZnO/Rod Atmospheric self-induction
method

RhB, under 400 W Xenon
visible lamp 36.8% in 300 min [71]

4 ZnO/Rod Solvothermal, 80 ◦C for 5 h MB under 300 W UV lamp 100% in 20 min [72]

5 ZnO/Rod Hydrothermal, 140 ◦C for 12 h MB under 6 W UV lamp 98.5% in 100 min [73]

6 ZnO/Rod Hydrothermal, 120 ◦C for 20 h Phenol under l 15 W UV
lamp 100% in 40 min [74]

7 ZnO/Rod Hydrothermal, 95 ◦C for 30 h RhB under 500 W visible
Xenon lamp 50% in 300 min [75]

Flower

8 ZnO/Flower Hydrothermal, 100 ◦C for 12 h RhB, under 300 W Hg lamp 99.84% in 25 min [64]

9 ZnO/Flower Thermal decomposition at 300 ◦C
for 20 min RhB, under 36 W UV lamp 100% in 90 min [76]

10 ZnO/Flower Sol-gel at 80 ◦C RhB, under 200 W
high-pressure Hg UV lamp 99.8% in 100 min [77]

11 ZnO/Flower Hydrothermal, 140 ◦C for 12 h MB, under 6 W UV lamp 94% in 100 min [73]

12 ZnO/Flower Precipitation method RhB, under Hg UV lamp 30% in 180 min [78]

13 ZnO/Flower Hydrothermal, at 190 ◦C for 1 h MB, 125 W Hg UV lamp 98% in 60 min [77]

14 ZnO/Flower Solution based at 97 ◦C for 4 h. MB, under 30 W Hg UV
lamp 99.9% in 180 min [79]

15 ZnO/Flower Microwave, at 300 W for 12 s MB, under high-pressure
Hg UV lamp 80% in 60 min [63]

16 ZnO/Flower Hydrothermal, at 90 ◦ C for 24 h MB, under BLB UV lamp 100% in 105 min [80]

17 ZnO/Flower Sol-gel at room temperature for
16 h.

RhB, under 300 W Xenon
UV lamp 100% in 100 min [81]

Sphere

18 ZnO/Sphere Hydrothermal, at 140 ◦C for 12 h MB, under 6 W UV lamp 74% in 100 min [73]

19 ZnO/Sphere Hydrothermal, at 180 ◦C for 24 h RhB, under 15 W UV lamp 100% in 240 min [82]

20 ZnO/Sphere Heated in a silicone bath at
120−140 ◦C for 4 h MO, under 24 W UV lamp 90% in 300 min [83]

21 ZnO/Sphere Hydrothermal, at 180 ◦C for 4 h Congo Red, under 30 W UV
lamp 99.2%, in 90 min [84]

22 ZnO/Sphere Hydrothermal, at 120 ◦C for 6 h MB, under 80 W UV lamp 95% in 60 min [85]

Hexagonal

23 ZnO/Hexagonal Heated at 150 ◦C on a hotplate MB, under 450 W medium
pressure Hg UV lamp 100% in 16 min [68]

24 ZnO/Hexagonal Calcined at 400 ◦C MB, under 16 W UV lamp 100% in 75 min [86]



Molecules 2022, 27, 7778 10 of 37

Table 2. Cont.

S.
NO.

Material &
Morphology Method Application Performance Reference

25 ZnO/Hexagonal Solvothermal, at 110 ◦C for 10 h RhB, under Hg UV lamp 80% in 60 min [87]

26 ZnO/Hexagonal Sol-gel at 80 ◦C for 3 h MB, under 100 W UV lamp 100% in 20 min [88]

27 ZnO/Hexagonal Hydrothermal, 120 ◦C for 20 h MB, under UV lamp 100% in 60 min [74]

28 ZnO/Hexagonal solid-phase method MO, under 300 W UV lamp 96.4% in 60 min [89]

29 ZnO/Hexagonal Hydrothermal, at 200 ◦C for 24 h MB, under 300 W Hg UV
lamp 60% in 180 min [90]

30 ZnO/Hexagonal Sol-gel at 80 ◦C for 12 h MB, under UV lamp 95% in 60 min [65]

31 ZnO/Hexagonal Sonochemical method MB, under 400 W Xenon UV
lamp 97% in 30 min [91]

Spindle

32 ZnO/Spindle Hydrothermal, 140 ◦C for 12 h MB, under 365 UV lamp 62% in 100 min [73]

33 ZnO/Spindle Hydrothermal, 120 ◦C for 8 h MO, under UV lamp 55% in 180 min [67]

34 ZnO/Spindle Hydrothermal, 150 ◦C for 3 h RhB, under 8W HG UV
lamp 73% in 120 min [92]

35 ZnO/Spindle Microwave, at 110 ◦C for 17 min MB, under 300 W
high-pressure Hg UV lamp 98% in 120 min [93]

36 ZnO/Spindle Hydrothermal, at 140 ◦C for 12 h MB, under 6 W
high-pressure Hg UV lamp 72% in 100 min [73]

37 ZnO/Spindle Hydrothermal, 95 ◦C for 24 h MB, under 60 W Hg UV
lamp 83% in 55 min [94]

There are different methods, such as hydrothermal, sol-gel, coprecipitation, microwave,
sonochemical and solid-state approaches which have been used in the preparation of zinc
oxide with varying morphologies (Table 2). Zinc oxide nanorods were synthesized using
microwave irradiation [69], hydrothermal [73,75] and solvothermal methods [72]. The
average time taken for complete mineralization is around two hours. Zinc oxide nanoflow-
ers were prepared using hydrothermal [64,73,77,80], sol-gel [79,81,95], coprecipitation [78],
and microwave irradiation method [63]. It is reported to take about two hours for the
nanoflower morphology to completely remove organic contaminants photocatalytically
from an aqueous medium. Zinc oxide nanospheres were synthesized mostly using the
hydrothermal route, and when applied for environmental photocatalysis, it takes less than
2 h for the complete mineralization of organic contaminants from water. The hexagonal
morphology of zinc oxide was made using solvothermal [87], sol-gel [65,88,96], hydrother-
mal [90], solid-state [89] and sonochemical [91] approaches. It takes less than 1 h for the
removal of organic pollutants by using hexagonal morphology. Nanospindle morphol-
ogy was prepared mostly using hydrothermal routes [72,94]; however, the microwave
technique [93] was also applied in its synthesis. The complete mineralization of organic
contaminants achieved by using nano spindles was less than two hours.

Thus, it will be quite interesting to know as to which factors are responsible for the best
performance of ZnO morphologies as a photocatalyst. ZnO nanomaterials show different
morphologies such as nanorods [72], nanoflowers [97], nanospheres [85], nanospindle [94]
and hexagonal morphology [91]. To analyze these different morphologies, the best results
available in the literature were compared (Figure 4).
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Figure 4. Assessment of different morphologies of ZnO based on various parameters.

Figure 4 indicates that the nanorods, nanospheres and hexagonal morphology of ZnO
required more time for synthesis (24 h), whereas nanoflower and nanospindle morphologies
need 50% lesser time, comparatively. The temperature needed for the synthesis of hexago-
nal, nanorod and nanospheres is maximum (200 ◦C); however, nanoflower and nanospindle
morphology require thirty per cent lesser temperature relatively. In the case of photocat-
alytic performance, nanorod, nanoflower, and hexagonal morphologies show the highest
value, while the performance of nanospindle and nanospheres shows a little lesser value
comparatively. The photocatalytic activity time taken by nanospheres and nanospindle
morphology is the highest amongst reported morphologies, while nanorods, nanoflowers
and hexagonal morphology show moderate values. The surface area of nanoflowers shows
the highest values, whereas nanorods, nanospheres, and hexagons have modest values, but
nanospindle reveal the lowest among the reported morphologies.

It is observed that ZnO nanoflower morphology shows the best results [98] in terms of
surface area, time of synthesis, time of catalytic activity, and performance, amongst all other
reported morphologies. Figure 3b shows the highest surface area (96 m2/g) for nanoflower
morphology which has a direct impact on the performance of the catalyst. The surface area
plays a vital role in mass transfer and charge transfer on the active catalytic surface. The
time required (12 h) for the synthesis of nanoflower is also the lowest among other reported
morphologies. The nanoflower morphology shows the removal of pollutants within 25
min, and the temperature of synthesis is the lowest compared to other morphologies.
Thus, the nanoflower morphology of the ZnO stands out to be the best photocatalyst on
all counts as equated with other reported morphologies of ZnO. The other morphology
next to nanoflower is hexagonal in terms of surface area (56 m2/g), which enables the
complete removal of pollutants within 16 min by the photocatalytic route. However,
considering the time for synthesis of (24 h at 200 ◦C) of the hexagonal structure needs
further optimization [68]. The nanorod morphology of ZnO shows complete removal of
the pollutants within 20 min, whereas, in the case of nanosphere morphology, it takes an
hour to achieve the same. The nano spindle morphology shows poor results in terms of
catalytic performance (83%) and time taken to remove pollutants. However, the good thing
is that the time and temperature of synthesis, i.e., 12 h and 140 ◦C, respectively, are more
economical. Thus, the order of the morphologies for ZnO in terms of significance may be
considered (from most significant to the lowest) as nanoflowers, nanospheres, nanorods,
nano hexagons and lastly, nanospindle.
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2.3. Cadmium Sulphide (CdS) Nanostructures
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Figure 5. SEM micrographs of different morphologies of CdS (a) Nanorod (Reprinted with permis-
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(Reprinted with permission from [103]. Copyright 2018 Elsevier).

Synthesis of various morphologies of CdS nanostructures has been achieved by em-
ploying different approaches such as the solvothermal method, hydrothermal method,
irradiation technique, electrodeposition process, liquid crystal template route [104] etc.
Systematic research on the influence of phase behaviour has opened up new avenues for
the generation of different morphologies, such as nanorods, nanospheres, and nanoflowers.
According to Onsager [105], at low volume fractions, nanorods can form a distinct phase of
anisotropic crystals having the positional disorder and leading to a nematic phase. Entropy
drives the phase transition in the synthesis of such morphology. The contact of the pho-
tocatalyst surface with reactants has a remarkable influence on photocatalytic reactions,
and the interfacial contact depends upon the morphology of the catalyst and the surface
area available. In the case of CdS, nanomaterials morphology and particle size have an
enormous impact on the photocatalytic property, and hence researchers are working on
controlling the morphology of CdS nanomaterials to enhance the photocatalytic activity.
Different morphologies such as nanosheets [103], nanorods [106], nanospheres [107], nano
particles [108], and nanoflower [109] have been explored in this context (Figure 5). Several
synthetic routes, such as chemical vapor deposition, thermal deposition, electrodeposi-
tion, template approach, microwave-assisted process, and solvothermal and hydrothermal
methods, were applied to achieve the desired morphology of CdS nanomaterials. Out of
these synthesis approaches hydrothermal route was found to be the most preferred and
yielded the best results for optimal morphology. CdS has a narrow and direct band gap
of 2.42 eV and can be considered an ideal II-VI semiconductor photocatalyst in the visible
region. Thus, it is the most widely studied photocatalyst for several photocatalytic trans-
formations, such as water splitting, reduction of nitro compounds, dye degradation, and
photoelectric conversions. Tri-n-octyl phosphine oxide (TOPO) was used by Alivisatos [110]
as a size and shape-controlling ligand for obtaining CdS nanomaterials. CdS nanowires
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were synthesized by Lieber et al. [111]., by using a laser ablation technique. Nanorods,
nanowires and nanotubes were synthesized by using a thermal approach or a CVD method.
The Ethylenediamine template approach was used [112] in the synthesis of nanorods and
nanowires via a solvothermal route.

The Nanoflower morphology of semiconductor materials (CdS) is being applied as
a chemo-sensor, photocatalyst, and catalyst for microbiological processes. As compared
to other materials like ZnS, ZnO, TiO2, CdSe and similar other semiconductor materials,
CdS has shown an increase in photocatalytic activity under visible light irradiation due
to its narrow bandgap of 2.4 eV [113]. The nanomorphology and surface area are mainly
responsible for its light absorption ability and charge carrier’s characteristics. Further, the
ordered flower-like microstructure also boosts the photocatalytic properties of CdS. The
nucleation and growth of different shapes of nanoflowers decide the order of construction
of CdS nanoflowers. The actual morphology of the CdS microstructure can be tuned by
adding surfactants or capping agents. The active surface of nanocrystals, due to the addition
of surfactants, reduces interfacial activation energy and induces secondary nucleation
during synthesis. There are many methods available in the literature for the synthesis of
nanoflowers, such as rose-like flowers, nanocomposite flowers, petal-like structures and
spindles. The CdS nanoflower morphology is applicable over a wide range of wavelengths
and can be useful for the degradation of dyes like Rhodamine B and methylene blue under
visible light. The structure of CdS nanoflowers contains more oxygen vacancies than that
of other morphologies. The hydrothermal method is the most preferred in the synthesis
of hierarchical CdS nanostructures due to its cost-effectiveness, scale-up, easy control
and better crystalline quality of the product obtained. Hierarchical morphologies of CdS
play an essential role during photocatalytic activity. It enhances the performance of the
photocatalyst by increasing the absorption efficiency of the incident radiation and further
transferring the energy to reactant molecules [114]. The charge separation in the hierarchical
structure is much more efficient. To attain the maximum efficiency of CdS nanostructures,
the synthesis of controllable hierarchical nano morphologies become important.

Table 3. Details of the synthesis and photocatalytic performance of various morphologies of CdS.

S. NO. Material &
Morphology Method Application Performance Reference

Rod

1 CdS/Rod Hydrothermal, 180 ◦C
for 6 h

MB, under 300 W Xenon
visible lamp 70% in 80 min [115]

2 CdS/Rod Reflux method for 13 h MB, under 300 W Xenon
visible lamp 95% in 50 min [106]

3 CdS/Rod Hydrothermal, 160 ◦C
for 48 h

Malachite green (MG) &
MO, under 300 W Xenon

visible lamp

67% of MG in 30 min & 58%
of MO in 45 min [116]

4 CdS/Rod Hydrothermal, 120 ◦C
for 10 h

Salicylic acid and
p-nitrophenol under 125 W

Hg UV lamp

70% Salicylic acid & 43.7%
p-nitrophenol in 240 min [117]

5 CdS/Rod Hydrothermal, 180 ◦C
for 12 h

Congo red (CR), under a
visible tungsten lamp 40% in 25 min [118]

6 CdS/Rod Hydrothermal, 180 ◦C
for 24 h

MB, under a 100 W visible
lamp 62% in 180 min [119]

7 CdS/Rod Hydrothermal, 160 ◦C
for 12 h MB, under Hg UV lamp 35% in 120 min [114]

8 CdS/Rod Hydrothermal, 160 ◦C
for 24 h

Cr (VI), under a 1 kW Xenon
visible light lamp 19% in 120 min [120]
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Table 3. Cont.

S. NO. Material &
Morphology Method Application Performance Reference

9 CdS/Rod 400 ◦C for 1 h in an N2
atmosphere

RhB, under a 200 W
tungsten halogen visible

lamp
100% in 55 min [121]

10 CdS/Rod Hydrothermal, 200 ◦C
for 10 h

MB, under a Xenon visible
lamp 50% in 120 min [122]

11 CdS/Rod Hydrothermal, 180 ◦C
for 1 h

Ciprofloxacin (CIP), under a
300 W Xenon visible lamp 57% in 60 min [123]

12 CdS/Rod
Wet chemical method
under reflux condition

(100 ◦C for 7 h)

MO under a 300 W UV
mercury lamp 93% within 40 min [124]

Flower

13 CdS/Flower Hydrothermal 200 ◦C
for 12 h

MB, under a 125 W Hg
visible lamp 100% in 220 min [125]

14 CdS/Flower Sol-gel method MB, under a 300 W Xenon
visible lamp 80% in 60 min [126]

15 CdS/Flower Hydrothermal 260 ◦C
for 12 h

RhB, under a 300 W Xenon
visible lamp 70%, in 180 min [127]

16 CdS/Flower Hydrothermal, 180 ◦C
for 12 h,

Acid fuchsine, under a 125
W Hg UV lamp 100% in 40 min [109]

17 CdS/Flower Hydrothermal, 160 ◦C
for 12 h

MB, under a 300 W Xenon
visible lamp 100% in 180 min [128]

18 CdS/Flower Hydrothermal, 160 ◦C
for 4 h

MB, MO & RhB, under a 500
W Xenon visible lamp

100% of MB, 91% of MO,
and 85% of RhB in 150 min [113]

19 CdS/Flower Hydrothermal, 200 ◦C
for 5 h

RhB, under visible light
irradiation 93% in 120 min [100]

Sheet

20 CdS/Sheet Hydrothermal, 80 ◦C
for 72 h

H2 production under a
visible-light, AM 1.5 G solar

simulator
20 µmol within 480 min [129]

21 CdS/Sheet Electrochemical
deposition for 15 min

CO2 reduction under
sunlight

2.1 µmol/g of C2H5OH and
62.8 µmol/g of HCOOH,

0.25% in 300 min
[130]

22 CdS/Sheet Microwave method, at
80 ◦C for 30 min

H2 production, under
visible light irradiation 27.4 µmol/g in 240 min [131]

23 CdS/Sheet Heated in an oil bath
at 60 ◦C for 3 h

H2 production under a 350
W Xenon visible lamp 582 µmol/g in 240 min [103]

24 CdS/Sheet Ultrasonication at
90 ◦C for 2.5 h

RhB, under a 500 W Xenon
visible lamp 50% in 180 min [112]

Sphere

25 CdS/Sphere Hydrothermal, at
120 ◦C for 10 h

Salicylic acid &
p-nitrophenol, under a 125

W Hg UV lamp

20% Salicylic acid & 6.25%
p-nitrophenol in 240 min [117]

26 CdS/Sphere Hydrothermal, at
160 ◦C for 12 h MB, under a Hg UV lamp 38% in 120 min [114]

27 CdS/Sphere Hydrothermal, 180 ◦C
for 4 h

Eosin Y, under a 500 W
iodine tungsten lamp 100% in 120 min [107]

28 CdS/Sphere Ultrasonic method MB, under a 125 W UV lamp 87% in 90 min [132]
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Table 3. Cont.

S. NO. Material &
Morphology Method Application Performance Reference

29 CdS/Sphere Hydrothermal, at
100 ◦C for 2 h

4-Chlorophenol, under 65 W
fluorescent visible lamps 52% in 150 min [133]

30 CdS/Sphere Microwave for 30 min MB & RhB, under a 300 W
Xenon visible lamp

95% of MB in 150 min, 90%
of RhB in 180 min [102]

31 CdS/Sphere Hydrothermal,
at 200 ◦C for 3.5 h

RhB, under a 300 W
tungsten halide visible lamp 90% in 180 min [134]

Particles

32 CdS/Particle Hydrothermal, at
160 ◦C for 12 h

MO, under a 350 W Xenon
visible lamp 12% in 60 min [101]

33 CdS/Particle Microwave for 20 s

Selective oxidation of
alcohols to corresponding
aldehydes under a 300 W

Xenon visible lamp

94% in 60 min [108]

34 CdS/Particle Hydrothermal, at
160 ◦C for 12 h MB, under a Hg UV lamp 29% in 120 min [114]

35 CdS/Particle Heating at 120 ◦C in
an N2 environment

RhB, MB, & Cr (VI), under a
300 W Xenon visible lamp

21% of RhB, 16% of Cr (VI)
in 20 min & 24% of MB in 40

min
[135]

36 CdS/Particle Hydrothermal, at
160 ◦C for 24 h

RhB, under a 250 W visible
lamp 72% in 240 min [136]

37 CdS/Particle Sol-gel method MB, under a 300 W Xenon
visible lamp 48% in 60 min [126]

Herein, different morphologies such as nanorods, nanoflowers, nanosheets, nanospheres
and nanoparticles of CdS have been reviewed. From Table 3, it can be observed that CdS
nanorods were mainly obtained by the hydrothermal method. The time required in the
synthesis by hydrothermal route varies from 1 h to 48 h. It was later applied in the minerali-
sation of organic pollutants and was reported to take an hour for the complete degradation
of organic dye [121]. Generally, the temperature for the hydrothermal synthesis of the
nanorods varies between 120 and 180 ◦C. CdS nanoflowers can be synthesised by using a
hydrothermal route (most commonly used) where synthesis time and temperature vary
between 4–12 h and 160–260 ◦C, respectively. The removal of organic dye photo catalyti-
cally was done within less than an hour [109]. The CdS nanosheets have been prepared
by different methods, such as hydrothermal [129], electrochemical [130], microwave [131]
and ultrasonication methods. It is reported that CdS nanosheets require three hours for the
complete degradation of organic pollutants [112]. CdS nanosheets can also be applied in hy-
drogen production and CO2 reduction. Synthesis of CdS nanospheres was reported mostly
by using hydrothermal routes [134], whereas other methods such as ultrasonication [132]
and microwave irradiation [102] were also used. The removal of organic pollutants was car-
ried out within three hours photocatalytically by using CdS nanospheres. CdS nanoparticles
were synthesized by hydrothermal method [136], microwave technique [108] and sol-gel
method [126]. The CdS nanoparticles required around 1 h for the complete degradation of
organic dye [108].

CdS nanoparticles have been stabilized in different nano morphologies such as
nanorods, nanoflowers, nanosheets, nanospheres and nanoparticles etc. We need to un-
derstand the morphology and its efficiency in terms of its end application and the time
taken for photocatalytic activity, the time required for synthesis and the temperature
of catalyst synthesis.
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CdS nanosheet morphology requires 72 h for synthesis; however, nanorods, nanoflow-
ers, and nanoparticles can be prepared in 17 h, and nanosphere morphology takes only 6
h for synthesis. For nanoflowers, nanospheres and nanorods need the highest reported
temperature for synthesis, while nanoparticles can be prepared with a twenty per cent
lesser value, and nanosheets can be synthesized at the lowest reported value of temperature.
The photocatalytic performance of nanorods, nanoflowers, nanospheres and nanoparticles
are the highest amongst those reported, while nanosheet shows a 50% lower value, com-
paratively. The time taken for the degradation of organic compounds photo catalytically is
the maximum for nanosheet morphology; however other morphologies show an average
of 1 h. The surface area of nanorods and nanoflowers is the highest among the reported,
whereas nanosheets, nanospheres, and nanoparticles show moderate values.

It can be seen from Figure 6 that the surface area of CdS nanoflower (47 m2/g) is
the highest among all the reported morphologies. The time required for the complete
degradation of organic pollutants is also comparatively less than (40 min). It can be
observed that the temperature of synthesis of various morphologies varies between 160
to 200 ◦C. In the case of CdS nanosheets, nanospheres, and nanoparticles, the reported
surface area are 28, 18, and 19 m2/g, respectively. This seems to be the primary reason for
the poor performance in terms of catalytic activity for these morphologies as compared to
nanoflowers. Thus, based on the assessment parameters such as surface area, activity time,
and photocatalytic performance, it can be seen that nanoflower morphology emerges as
the best CdS nanostructure to be used as a photocatalyst. The order of preference of the
different CdS morphologies for photocatalysis can be assigned as nanoflowers, nanorods,
nanosheets, nanospheres and nanoparticles.
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2.4. Silver Phosphate (Ag3PO4) Nanostructures

The treatment of pollutants in wastewater by heterogeneous photocatalysis in the
presence of semiconductors has been regarded as a promising and efficient approach due
to the high efficiency, eco-friendly nature, and easy recycling carried out under mild con-
ditions. Among various photoactive materials, silver phosphate (Ag3PO4) nanostructure
with different morphologies (Figure 7) has attracted much attention and has been found
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to be a fascinating material. It is an excellent photocatalyst in the visible region and has a
high quantum efficiency [137] of about 90%. It has superior semiconductor properties for
direct water splitting and photodecomposition of organic dyes [138]. It has been reported
that the direct band gap of Ag3PO4 is 2.43 eV which can absorb wavelengths up to 530
nm [139]. The photocatalytic activity of Ag3PO4 depends upon its electronic structure,
and its valence band (VB) is made up of 2p orbitals of oxygen and 4d orbitals of silver.
However, the conduction band (CB) is made up of hybridized 5s and 5p orbitals of silver
favoring electron transfer and energy dispersion in all directions. The presence of d states
in the conduction band in other semiconductors increases electron-hole recombination and
also hinders the mobility of electrons, resulting in a reduction in photocatalytic activity.
However, here in the case of Ag3PO4, the effect of d orbital in CB is inhibited. Therefore,
the high photocatalytic activity is also attributed to the absence of d orbitals in the CB of
Ag3PO4. However, the practical application of Ag3PO4 is still not satisfactory due to the
formation of Ag0 particles on the surface of the photocatalyst during the photocatalysis
process. Recently, some studies revealed that the photocatalytic activity of Ag3PO4 is
directly influenced by size, morphology and presence of highly reactive facets [140]. To
understand the properties of Ag3PO4 semiconductors, the surface and interfaces are crucial
for photocatalytic activity. Hence, significant attention has been paid to the synthesis of
morphology-controlled Ag3PO4, including cubes, dodecahedrons, tetrahedrons, spheres
and polyhedrons.
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2017 American Chemical Society), (e) Cubic (Reprinted with permission from [144]. Copyright ,).
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Table 4. Details of different morphologies of nanostructured Ag3PO4.

S.
NO.

Material &
Morphology Method Application Performance Reference

Spherical

1 Ag3PO4/Spherical Continuous flow
synthesis

Microfluidic photocatalytic
dye-degradation,

microreactor under visible
light illumination

97% within 15 min [145]

2 Ag3PO4/Spherical Precipitation
method

Phenol, BSP, visible light,
400-W metal halide lamp

82% phenol within 12 min,
81% Bisphenol within

10 min
[146]

3 Ag3PO4/Spherical Precipitation Rh.B. Xenon lamp (15 W),
visible light 88% within 35 min, [147]

4 Ag3PO4/Spherical Sol-gel
phenol under visible light
irradiation with a 1000 W

Xenon lamp
42% within 60 min, [142]

5 Ag3PO4/Spherical

Precipitation
method at room

temperature,
500 W Xenon lamp

MO under visible light
irradiation 35%, within 15 min [141]

6 Ag3PO4/Spherical Precipitation
method

MB, 5 W compact
fluorescent lamp, visible

light
78%, within 70 min [13]

7 Ag3PO4/Spherical Sol-gel 6 W/649 fluorescent lamp Sulfamethoxazole, 100%
after 15 min [148]

8 Ag3PO4/Spherical Coprecipitation
method at 20 ◦C

RhB, visible light, 300 W
Xenon lamp 66% within 6 min [149]

9 Ag3PO4/Spherical Precipitation
method

Congo red (CR) under
visible light irradiation,

400 W metal halogen lamp
96%, within 210 min [150]

10 Ag3PO4/Spherical Precipitation
method

CR, visible light irradiation
with a 350 W Xenon lamp 91%, within 14 min [151]

11 Ag3PO4/Spherical Precipitation
method

RhB and MO dyes in
10 mgL−1, WLED with a

luminous flux (Φv) of 85 l m
100% within 30 min [152]

Tetrahedral

12 Ag3PO4/Tetrahedral Sol-gel
phenol under visible light
irradiation with a 1000 W

Xenon lamp
70% within 60 min, [142]

13 Ag3PO4/Tetrahedral Sol-gel method MO, visible light, 500 W
Xenon lamp 100% within 90 min [143]

14 Ag3PO4/Tetrahedral Precipitation
method

MB, MO, RhB Visible light,
500 W Xenon lamp

100% MB, 93% MO, 100%
RhB within 6 min [153]

15 Ag3PO4/Tetrahedral Precipitation
method

MB, under visible light
irradiation, 300 W Xenon

lamp
88% within 12 min [154]

16 Ag3PO4/Tetrahedral

Ion exchange in
the ethanol-water
solvent at room

temperature

RhB, visible-light provided
by a 250 W Xenon lamp 100% within 24 min [155]
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Table 4. Cont.

S.
NO.

Material &
Morphology Method Application Performance Reference

Dodecahedral

17 Ag3PO4/dodecahedral Sol-gel
phenol under visible light
irradiation with a 1000 W

Xenon lamp
100% within 60 min, [142]

18 Ag3PO4/dodecahedral Precipitation
method

CR under visible light
irradiation, 400 W metal

halogen lamp
85%, within 210 min [150]

19 Ag3PO4/dodecahedral Precipitation
method

MB), RhB, and reactive
orange (RO), visible light,
TL-D/35 fluorescent tube

(18 W, Philips)

90% MB, 82% RhB, 22% RO
within 60 min [156]

20 Ag3PO4/dodecahedral Sol-gel method MO, visible light, 500 W
Xenon lamp 78% within 90 min [143]

21 Ag3PO4/dodecahedral
Hydrothermally
processed at 150
◦C for 24 h

RhB, UV illumination, 15 W
UV germicidal irradiation

lamps
99.55% within 120 min [157]

22 Ag3PO4/dodecahedral Precipitation
method

MB, MO, RhB Visible light,
500 W Xenon lamp

93% MB, 62% MO, 100%
RhB within 18 min [153]

Polyhedral

23 Ag3PO4/Polyhedral Hydrothermal at
120 ◦C for 12 h

RhB, visible light, 300 W
Xenon lamp 97.83% in 6 min [149]

24 Ag3PO4/Polyhedral Sol-gel RhB, visible light, 350 W
Xenon lamp 100% in 4 min [137]

25 Ag3PO4/Polyhedral Precipitation
method MO, 300 W halogen lamp 85% of MO within 15 min [158]

26 Ag3PO4/Polyhedral Sol-gel
phenol under visible light
irradiation with a 1000 W

Xenon lamp
100% within 60 min [142]

27 Ag3PO4/Polyhedral

Conventional ion
ex-

change/precipitation
method

phenol under visible light
irradiation with a 35 W

Xenon lamp
100% within 120 min [159]

Cubic

28 Ag3PO4/Cubic Ion exchange
method RhB, Sunlight 100% within 10 min [144]

29 Ag3PO4/Cubic Sol-gel method MO, visible light, 500 W
Xenon lamp 65% within 90 min [143]

30 Ag3PO4/Cubic Precipitation
method

crystal violet (CV) and MB,
MO and orange G (OG)

with visible irradiation, 125
W high-pressure HG lamp

93.0% of CV, within 30 min,
98% MB, MO 79.4%, OG

57.3% within 50 min
[160]

31 Ag3PO4/Cubic Precipitation
method

MB, MO, RhB Visible light,
500 W Xenon lamp

91% MB, 32% MO, 78% RhB
within 18 min [153]

32 Ag3PO4/Cubic
Simple

ion-exchange
deposition method

RhB, Visible light, 300 W
Xenon 92% within 30 min [161]

33 Ag3PO4/Cubic
Hydrothermal

treatment at 160 ◦C
for 3 h

MB and RhB, sunny light
between 10 am to 2 pm in

the summer
81% within 90 min [162]
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Variation in the synthesis methodology acts as an important aspect of the develop-
ment of a particular morphology. Different morphologies of silver phosphate have been
synthesized by various approaches, such as coprecipitation, sol-gel, hydrothermal, and ion
exchange methods (Table 4). Nanospheres of silver phosphate were prepared mostly using
the coprecipitation method [13,133,141,147,149,152,163]; however, the sol-gel route was
also employed [142]. In less than 1 h, the complete mineralization was achieved using silver
phosphate nanospheres catalytically. Tetrahedral morphology of silver phosphate was
obtained using sol-gel method [143], coprecipitation [153] and ion exchange method [155].
The removal of aromatic dye contaminant was accomplished within an hour using tetrahe-
dral nanocrystals. Dodecahedral morphology of silver phosphate was synthesized using
sol-gel [142,143], coprecipitation [153] and hydrothermal route [157]. It takes about two
hours for the complete mineralization of organic pollutants from an aqueous medium
photocatalytically. Polyhedral morphology was obtained using the hydrothermal [149],
sol-gel [142] and coprecipitation methods [158]. It takes less than an hour for the degra-
dation of organic contaminants from an aqueous medium by employing the polyhedral
morphology of silver phosphate. It has been reported [137] that Ag3PO4 with different
morphology shows entirely different exposed facets. Hence it is important to compare
the efficiency of photocatalysis by different morphologies such as spheres, tetrahedral,
dodecahedral, polyhedral and cubic morphologies of Ag3PO4 (Figure 8).

Molecules 2022, 27, x FOR PEER REVIEW 19 of 37 
 

 

29 Ag3PO4/Cubic Sol-gel method MO, visible light, 500 W Xenon lamp 65% within 90 min [143] 

30 Ag3PO4/Cubic Precipitation method 
crystal violet (CV) and MB, MO and 

orange G (OG) with visible irradiation, 
125 W high-pressure HG lamp 

93.0% of CV, within 30 min, 
98% MB, MO 79.4%, OG 57.3% 

within 50 min 
[160] 

31 Ag3PO4/Cubic Precipitation method 
MB, MO, RhB Visible light, 500 W 

Xenon lamp 
91% MB, 32% MO, 78% RhB 

within 18 min 
[153] 

32 Ag3PO4/Cubic 
Simple ion-exchange 
deposition method 

RhB, Visible light, 300 W Xenon 92% within 30 min [161] 

33 Ag3PO4/Cubic 
Hydrothermal treat-

ment at 160 °C for 3 h 
MB and RhB, sunny light between 10 

am to 2 pm in the summer 
81% within 90 min [162] 

Variation in the synthesis methodology acts as an important aspect of the develop-
ment of a particular morphology. Different morphologies of silver phosphate have been 
synthesized by various approaches, such as coprecipitation, sol-gel, hydrothermal, and 
ion exchange methods (Table 4). Nanospheres of silver phosphate were prepared mostly 
using the coprecipitation method [13,133,141,147,149,152,163]; however, the sol-gel route 
was also employed [142]. In less than 1 hour, the complete mineralization was achieved 
using silver phosphate nanospheres catalytically. Tetrahedral morphology of silver phos-
phate was obtained using sol-gel method [143], coprecipitation [153] and ion exchange 
method [155]. The removal of aromatic dye contaminant was accomplished within an 
hour using tetrahedral nanocrystals. Dodecahedral morphology of silver phosphate was 
synthesized using sol-gel [142,143], coprecipitation [153] and hydrothermal route [157]. It 
takes about two hours for the complete mineralization of organic pollutants from an aque-
ous medium photocatalytically. Polyhedral morphology was obtained using the hydro-
thermal [149], sol-gel [142] and coprecipitation methods [158]. It takes less than an hour 
for the degradation of organic contaminants from an aqueous medium by employing the 
polyhedral morphology of silver phosphate. It has been reported [137] that Ag3PO4 with 
different morphology shows entirely different exposed facets. Hence it is important to 
compare the efficiency of photocatalysis by different morphologies such as spheres, tetra-
hedral, dodecahedral, polyhedral and cubic morphologies of Ag3PO4 (Figure 8). 

 
Figure 8. Comparative study of different morphologies of Ag3PO4 based on various assessment pa-
rameters. 

Figure 8 denotes a comparative account of different morphologies of silver phos-
phate. It can be seen that polyhedral morphology takes five hours for synthesis, whereas 

Figure 8. Comparative study of different morphologies of Ag3PO4 based on various assessment
parameters.

Figure 8 denotes a comparative account of different morphologies of silver phos-
phate. It can be seen that polyhedral morphology takes five hours for synthesis, whereas
nanospheres, tetrahedral, and dodecahedral morphologies of silver phosphate can be pre-
pared within an hour. The temperature of synthesis required by cubic morphology was
reported to be the highest (160 ◦C), while other morphologies show moderate values. The
photocatalytic performance of all the reported morphologies of silver phosphate was good.
In the case of time required for photocatalytic degradation of organic compounds, dodec-
ahedral and nanospheres shows the highest value, whereas tetrahedral, polyhedral and
cubic morphologies denote moderate value. Surface area values of polyhedral morphology
are the highest among the reported, while dodecahedral and nanospheres had the lowest
values among reported.

Our analysis indicates that polyhedral morphology exhibits the highest activity com-
pared to any other morphology. The photocatalytic activity follows the order of polyhedral
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> tetrahedral > cubic > dodecahedral and sphere. It can be seen from Figure 8 that polyhe-
dral morphology shows 100% activity within 4 min and probably due to its higher surface
area (18 m2/g). The polyhedral morphology was obtained using a simple eco-friendly sol-
gel method at room temperature [142]. Other morphologies also show good photocatalytic
activity, but the required time is high, and this may be due to low surface area and poor
accessibility of reactants to reach the active sites.

2.5. Zinc Titanate (ZnTiO3) Nanostructures
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permission from [164]. Copyright 2018 Royal Society of Chemistry), (b) Hexagonal (Reprinted with
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permission from [166]. Copyright 2016 Wiley), (d) Particle (Reprinted with permission from [167].
Copyright 2016 Elsevier).

Metal titanates-based dielectric materials with the general formula ATiO3 (A denotes
metal) are known for different values of permittivity ranging from 7 to more than 5000
under temperature variations. ZnTiO3 system (hexagonal ilmenite) has been studied earlier
mainly due to its striking features for practical applications in microwave resonators,
mobile phones, and satellite communication systems. However, the above studies need
well-sintered materials with large particle sizes. Various morphologies of ZnTiO3 NMs have
been developed (Figure 9) due to their special features for their application as photocatalysts
with a lower band gap (3.08 eV) than TiO2 (3.2 eV). Three compounds are known in the ZnO-
TiO2 system such as Zn2TiO4 (cubic spinel), ZnTiO3 (hexagonal ilmenite) and Zn2Ti3O8
(cubic defect spinel). The thermodynamically stable phase for ZnTiO3 at low temperatures
is a cubic phase which changes to a hexagonal phase at high temperatures (800 ◦C) and also
decomposes into Zn2TiO4 and TiO2 at a temperature of 900 ◦C. ZnTiO3 decomposes at high
temperatures since Zn volatilizes and creates non-stoichiometry. Thus, it is challenging to
synthesize pure ZnTiO3.

ZnTiO3 has two types of crystal structures, i.e., cubic and hexagonal, out of which this
hexagonal structure shows the best photocatalytic performance. The pure form of hexagonal
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ZnTiO3 can be obtained by using high-temperature solid-state reactions as well as low-
temperature methods such as sol-gel, hydrothermal, modified alcoholysis, carbothermal
and molten salt methods. Hexagonal ZnTiO3 is a UV-active photocatalyst with a band
gap of 3.08 eV. The hydrothermal method was used in the synthesis of zinc titanate [168].
Alternately pure zinc titanate can also be prepared by the conventional solid-state method
at high temperatures. Other methods, such as mechanochemical activation, molten salt
synthesis, and microbead milling, were also applied in the synthesis of ZnTiO3 [169], but
they resulted in irregular size, morphology, and grain size. Sol-gel technique has been
preferred mostly by researchers in the synthesis of zinc titanate due to its low cost, high
yield, small processing time, homogeneity and high purity of the end product. It can be
useful in making thin films, membranes and multicomponent oxide materials. Generally,
metal alkoxides are used as precursors in the sol-gel process. Further, the metal alkoxide
is subjected to hydrolysis and polycondensation to obtain the desired combinations. The
resultant material obtained by the sol-gel process has a large specific surface area and pore
volume, which is the essential requirement of the material to be used as a catalyst.

Table 5. Details of different morphologies of nanostructured ZnTiO3.

S. NO. Material &
Morphology Method Application Performance Reference

Particles

1 ZnTiO3/Particle Sol-gel Phenol, under a 100 W
incandescent visible lamp 100% in 300 min [170]

2 ZnTiO3/Particle Hydrothermal, at 180 ◦C for
8 h

MB, under a 350 W Xenon
visible lamp 29.7% in 120 min [168]

3 ZnTiO3/Particle Sol-gel 4-chlorophenol, under
natural sunlight 67% in 45 min [171]

4 ZnTiO3/Particle Sonochemical method Rh), under a 70 W LED
visible lamp 36% in 150 min [172]

5 ZnTiO3/Particle Sol-gel MO, under a 400 W UV
lamp 70% in 60 min [167]

6 ZnTiO3/Particle Solvothermal, at 180 ◦C 24 h RhB & MO, under a 400 W
halide visible lamp

17% of Rh B, 3% of
MO in 90 min [157]

Rod

7 ZnTiO3/Rod Microwave RhB, under a 150 W Xenon
visible lamp 93% in 180 min [173]

8 ZnTiO3/Rod Sol-gel RhB, under a 50 W
high-pressure Hg lamp 97% in 70 min [174]

9 ZnTiO3/Rod Precipitation method RhB, under sunlight 71% in 60 min [164]

10 ZnTiO3/Rod Hydrothermal, 120 ◦C for 24 h MO, under a 500 W Xenon
lamp 99.3% in 20 min [175]

11 ZnTiO3/Rod Sol-gel RhB & crystal violet, under
sunlight

98% of CV in
60 min & 77% of

RhB in 90 min
[166]

Spherical

12 ZnTiO3/Spherical Sol-gel Methyl violet, under
sunlight 97% in 120 min [169]

13 ZnTiO3/Spherical Sol-gel
H2 production, under a 125

W high-pressure Hg UV
lamp

110 µmol/h, 60%
in 3600 min [176]

14 ZnTiO3/Spherical Sol-gel MB, under a 150 W UV lamp 33% in 3600 min [177]
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Table 5. Cont.

S. NO. Material &
Morphology Method Application Performance Reference

15 ZnTiO3/Spherical Sol-gel
Norfloxacin (NOR) and MO,
under a 300 W Xenon visible

lamp

95% of NOR & 46%
of MB in 60 min [178]

16 ZnTiO3/Spherical Sol-gel MB, under sunlight 76% in 60 min [179]

Hexagonal

17 ZnTiO3/Hexagonal Sol-gel p-nitrophenol, under
sonocatalytic activity 74.8% in 180 min [180]

18 ZnTiO3/Hexagonal Sol-gel RhB, under sunlight 35% in 180 min [165]

Varying morphologies of zinc titanates were synthesized using several low-temperature
methods. It can be observed from Table 5 that the method of synthesis plays an essential role
in the formation of different morphologies such as nanorods, nanoparticles, nanospheres
and hexagonal nanostructures. Zinc titanate nanoparticles were synthesized by using a
sol-gel approach [167,170,171], hydrothermal/solvothermal process [168,181] sonochemical
method [172]. The temperature of synthesis of nanoparticles was reported as 180 ◦C in
general for the hydrothermal method, whereas sol-gel and sonochemical methods require
a lower temperature. Zinc titanate nanoparticles normally take an hour to degrade 70%
of the organic pollutants. The nanorods were obtained using sol-gel [166,174], microwave
technique [173], coprecipitation method [164], and the hydrothermal process [173]. The
hydrothermal process consumes more energy as compared to sol-gel and coprecipitation
techniques. The photocatalytic performance shows that the nanorod structure of zinc
titanate requires 20 min [182] for the complete mineralization of organic pollutants. Zinc
titanate nanospheres have been synthesized using the sol-gel technique in general. This
morphology, as reported by Kong et al. [169], takes 2 h for the complete mineralization of
aromatic compounds photocatalytically. In the case of hexagonal nanostructures synthesis
by the sol-gel technique, [165,180] is mostly preferred. As per the available report, the time
taken for the degradation of aromatic compounds is more than three hours by zinc titanate
hexagonal nanostructures. Thus, considering the ease of synthesis by the sol-gel method
and the efficiency of the photocatalytic performance of zinc titanate nanorods, it should be
the most preferred morphology.

To analyze the different reported morphologies of zinc titanate and to decide the
optimal one which is the best for the photocatalytic application, we have chosen nanorods,
hexagonal nanostructures, nanospheres and nanoparticles for our assessment (Figure 10).
The standard parameters such as surface area, time of synthesis, photocatalytic and catalytic
activity time and synthesis temperature have been considered for the assessment.

Figure 10 reveals an assessment of various morphologies of zinc titanate. The nanorod
morphology requires maximum time for synthesis (20 h), while other morphologies such
as nanospheres, hexagonal and nanoparticles can be prepared in an average of five hours.
Hexagonal morphology needs the highest temperature for synthesis (350 ◦C), whereas
nanorods need the lowest values, and nanospheres show the highest values, whereas
hexagonal and nanoparticles show a 30% lesser value, comparatively. The time taken
for photocatalytic degradation is highest (3 h) for hexagonal morphology; however other
morphologies need an hour for complete degradation. The value of the surface area is the
highest for nanorod morphology, while nanoparticles and nanospheres show moderate
value, and hexagonal morphology denotes a lower surface area, comparatively.
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It can be seen from Figure 10 that the nanorod [182] morphology possesses the highest
surface area (74 m2/g), whereas hexagonal morphology has the lowest surface area (10
m2/g) amongst the reported structures [180]. Complete mineralization of the organic pol-
lutants was achieved photo-catalytically within 20 min in the case of nanorod morphology,
while various other morphologies require more than an hour to achieve the same target.
The time of synthesis of the nanorod morphology was 24 h which is the highest amongst
the other reported morphologies, whereas nanospheres can be prepared within one hour
by using a similar hydrothermal technique. It is the lowest reported time of synthesis
compared to other morphologies mentioned. Thus, by taking into account the variation
in the assessment parameter reported, it can be seen that nanorod morphology shows
the best result and can be considered the best photocatalytic material in the case of zinc
titanate. The order of preference based on efficiencies is nanorods [182], nanospheres [178],
nanoparticles [167] and lastly, hexagonal nanostructures [180] of zinc titanate.

Figure 11 shows the comparative analysis of photocatalytic performance and miner-
alization time of TiO2, ZnO, CdS, Ag3PO4 and ZnTiO3 nanomaterials at a glance. It can
be seen that silver phosphate shows the best photocatalytic activity amongst the studied
nanomaterials based on the minimum time taken (less than ten minutes) for the complete
mineralization of organic compounds. Though the band gap of silver phosphate (2.28 eV)
and cadmium sulphide (2.3 eV) are similar, their performances are poles apart, and the
reason may be the morphology formed by these nanomaterials. Further, based on an overall
comparison with the other photocatalyst, the order of preference can be assigned as silver
phosphate (Ag3PO4), zinc oxide (ZnO), zinc titanate (ZnTiO3), titanium dioxide (TiO2) and
cadmium sulphide (CdS).
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Figure 11. Comparative photocatalytic activity among different photocatalysts based on
degradation time.

Table 6. Mechanism of photocatalysis for TiO2, ZnO, Ag3PO4, CdS and ZnTiO3 photocatalysts
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S. No. Materials Photocatalysis Mechanism Ref.
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Table 6. Cont.

S. No. Materials Photocatalysis Mechanism Ref.
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Table 7. Important characteristics of photocatalyst TiO2, ZnO, Ag3PO4, CdS and ZnTiO3.

S. No. Photocatalytic
Materials

Band Gap
Energy (Eg)

eV
Photocatalytic Performances Ref.

1. TiO2 Eg ~ 3.1

The synthesised TiO2 nanotubes possess better
photocatalytic activity than the as-prepared
counterparts because of the larger surface area and
good crystallinity. The emission stability of the
catalyst also validates that TiO2 nanotubes could
find potential applications in cold-cathode-based
electronics. Literature shows that the decoration of
TiO2 nanotubes by noble metal nanoparticles (such
as Au, Ag, and Pt) also enhances its photocatalytic
activity.

[45,188,189]

2. ZnO Eg ~ 3.35

Qu et al. Synthesised various shapes and
morphology of ZnO nanomaterials using different
ultrasonic processes. The study revealed that ZnO
nanoflower morphology shows excellent
photocatalytic activity.

[97,190]

3. Ag3PO4 Eg ~ 2.45

Morales et al. synthesised silver phosphate
microcrystals with polyhedral morphologies and
its higher surface area played an important role in
higher photocatalytic activity.Geng et al.
successfully prepared the polyhedral morphology
of the Ag3PO4 microcrystal structure. The
photocatalytic activity study confirmed its excellent
photocatalytic ability.

[191,192]

4. CdS Eg ~ 2.4

Ganesh et al. synthesised CdS nanoflowers. The
nano flowers of the CdS materials showed better
photocatalytic activity in visible light. Wang et al.
recently studied Ti3C2 MXene@CdS based
nanoflowers composites heterostructures. It shows
steady photoluminescence intensity and a longer
fluorescence lifetime.

[100,193]

5. ZnTiO3

Eg ~ 2.9
(indirect)

3.59 (direct)

Dutta et al. reported the Ag-doped ZnTiO3
nanorods. The photocatalytic results show
improved photocatalytic activity. Chuaicham et al.
recently studied ZnTiO3 mixed metal oxide. The
higher photocatalytic activity was observed for
phenol photodegradation.

[173,194]

Table 8. Photocatalytic Stability and biocompatibility of different NP photocatalysts.

Type of NPs Stability and Recyclability Biocompatibility Ref.

TiO2

The photostability of TiO2 for phenol
degradation in four cycles remained

constant.

Biocompatible, supports
osteoblast-like cell formation, and
can be used in biomedical
applications.

[195–197]

ZnO RhB aqueous solution for five cycles,
good recyclability.

high bactericidal efficacy along with
good cytocompatibility [64,76,98,198]

Ag3PO4
Photocatalytic efficiency remained

consistently high after four cycles [11].

Spectacular biocompatibility and
good immunosensor sensitivity, low
toxicity.

[137,199]

CdS The catalytic activity of the
photocatalyst remained constant.

Environment-friendly and
economical photocatalyst [200,201]

ZnTiO3
The efficacy of the photocatalyst

remained constant.
Excellent antitumor ability and
good biocompatibility [202–204]
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2.6. Challenges during the Application of NPs for Photochemical Reactions

Irrespective of the worldwide interest in the use of NPs in photocatalysis for the
conversion of visible light energy for chemical conversions, this technology has not been
successful in its commercialisation and large-scale applications. The long-term exposure
of photocatalytic NPs under constant irradiation may lead to changes in the morphology
of the material, which may affect the performance of the photocatalysts. To enhance the
efficiency of the photocatalysts, in the majority of cases, the photocatalysis process requires
a constant light source, which can be enabled through artificial setups. It has been observed
that the supported NPs perform better than the bare ones during photocatalysis [205].
The challenges in the area of photocatalysis can only be addressed through research and
a sustainable approach. There is a need for an effective implementation strategy to be
worked for MNPs’ visible light photocatalysis. The use of scavengers in photocatalysis
may help in improving the efficiency of the photocatalysts. Effective protocols are required
for the large-scale synthesis of MNPs, and their further disposal after use may encourage
sustainable practices in this area of work. The noteworthy research on greener processes
for the synthesis of MNPs can be a significant step in the large-scale implementation of
photocatalysis processes for environmental mitigation [206,207]. The typical mechanistic
pathway of the photochemical reactions (Table 6) reveals the role of different nanomaterial
photocatalysts during dye degradation. The generation of free radicals by the photochemi-
cal effect initiates dye degradation, and it depends on the band gap of the nanomaterial
photocatalyst. It can be seen from Table 7 that the recyclability and band gap of the differ-
ent nanomaterial photocatalysts should be considered for the selection of the catalyst for
photochemical reactions. Reusability, photochemical stability and biocompatibility (Table 8)
are the essential characteristics of sustainable photochemical catalysts.

In photocatalysis, the efficacy of the catalyst depends on its ability to lower the activa-
tion energy by offering an efficient reaction pathway. The metal oxide-based photocatalysts
work on these characteristics for the degradation of organic contaminants [208]. The
environmentally benign photocatalyst materials with low cost and availability of other
chemicals such as solvents, dopants etc., and their environmental impact is a challenging
task. But the phenomenal growth in this field of work can make available smart and
sustainable materials for environmental photocatalysis [209].

2.7. Future Direction for the Application of Nanomaterial Photocatalyst

Presently, nanotechnology manipulates and creates matter to fabricate materials on
the nanometre scale. Nanomaterials are used in the interdisciplinary field, and they have
societal implications for a wide range of scientific and engineering disciplines. In the past
few decades, nanotechnology has been applied in various sectors like; environment, mate-
rials science, energy, electronics, agriculture, healthcare, biotechnology, and information
technology. Certain nanomaterials have the excellent potential to revolutionize wastewater
treatment through photocatalysis and other techniques. Because of their remarkable charac-
teristics, such as effective adsorption and photocatalytic properties, nanomaterial oxides are
being used commercially for wastewater treatment extensively. For technology related to
clean environment, and health care, like drug delivery and cancer therapy, nanotechnology
has commercially provided scope for existing firms to upgrade their products and services.
Several oxides, sulfides, tantalates, phosphates and niobates are used commercially for
multiple cures [210,211]. Silver phosphate and cadmium sulfide are used commercially as
photocatalysts in novel photoreactors for better catalytic activity [212].

3. Conclusions

Effective morphology of the nanomaterial is an essential requirement in photocatalysis
for application in dye degradation or conversion of solar energy into chemical energy.
The morphology and size of nanomaterial not only reduce the band gap of the photo-
catalyst but also enhances its photocatalytic performance in the degradation of complex
organic contaminants. The activity of photocatalysts solely relies upon band gap reduction
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and effective utilisation of photons into photocatalytic conversions when subjected to
the required wavelength. Morphology played an important role in the band gap reduc-
tion of nanomaterials. Various morphologies of a particular nanomaterial show different
photocatalytic performances.

(i) The analysis of literature data indicates that titanium oxide (TiO2) nanotube morphol-
ogy emerged as the best material. It has excellent photocatalytic performance and
takes minimum time for the degradation of contaminants. Due to its high surface
area, the active centres are easily accessible during photocatalysis;

(ii) Similar criteria, when applied to other nanomaterials, show zinc oxide (ZnO) and
cadmium sulphide (CdS) nanomaterial having nanoflower morphology as the best
among other reported;

(iii) Nanorod morphology appeared as the best morphology for zinc titanate (ZnTiO3) for
photocatalytic applications;

(iv) Silver phosphate (Ag3PO4) shows polyhedral morphology as the best performer on
all given counts and appears to be the best morphology for a photocatalyst.

Thus, based on its impact on photocatalytic performance, the morphology of the
nanomaterials should be considered an essential aspect in the selection of a photocatalyst.
We are positive that the analysis applied in this research article can be useful in the study of
other photocatalytic systems and bridge the gap between academia and industry in terms
of the selection of photocatalysts for industrial applications.
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