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Abstract

Agricultural development was the major contributor to South America’s designation as the

continent with the highest rates of forest loss from 2000–2012. As the apex predator in the

Neotropics, jaguars (Panthera onca) are dependent on forest cover but the species’

response to habitat fragmentation in heterogeneous agricultural landscapes has not been a

subject of extensive research. We used occupancy as a measure of jaguar habitat use in

Colombia’s middle Magdalena River valley which, as part of the intercontinental Tumbes-

Chocó-Magdalena biodiversity hotspot, is exceedingly fragmented by expanding cattle pas-

tures and oil palm plantations. We used single-season occupancy models to analyze 9

months of data (2015–2016) from 70 camera trap sites. Given the middle Magdalena’s sta-

tus as a “jaguar corridor” and our possible violation of the occupancy models’ demographic

closure assumption, we interpreted our results as “probability of habitat use (Ψ)” by jaguars.

We measured the associations between jaguar presence and coverage of forest, oil palm,

and wetlands in radii buffers of 1, 3, and 5 km around each camera trap. Our camera traps

recorded 77 jaguar detections at 25 of the camera trap sites (36%) during 15,305 trap nights.

The probability of detecting jaguars, given their presence at a site, was 0.28 (0.03 SE). In

the top-ranked model, jaguar habitat use was positively influenced by wetland coverage (β =

7.16, 3.20 SE) and negatively influenced by cattle pastures (β = -1.40, 0.63 SE), both in the

3 km buffers. We conclude that wetlands may serve as keystone habitats for jaguars in land-

scapes fragmented by cattle ranches and oil palm plantations. Greater focus on wetland

preservation could facilitate jaguar persistence in one of the most important yet vulnerable

areas of their distribution.
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Introduction

South American rainforests experienced the highest rates of deforestation globally from 2000–

2012 [1]. Large carnivores in the Neotropics are especially susceptible to the effects of forest

loss and fragmentation due to their occurrence at low densities [2], propensity for conflict

with humans [3–4], and dependence on landscape connectivity [5–7]. Yet, empirical data on

large carnivore response to habitat loss and fragmentation in the Neotropics is scarce and, in

the case of jaguars (Panthera onca), most studies have not been conducted in study areas of

sufficient size to make robust inferences on the species’ habitat requirements and population

parameters [8].

Jaguars are the largest felid in the Americas and the largest terrestrial carnivore in the Neo-

tropics. They favor tropical lowland habitats with sufficient natural cover and access to water

and prey [9–11] but the species also inhabits numerous biomes ranging from tropical moist

and tropical dry forests to coastal mangroves and herbaceous lowland grasslands [11–12]. Jag-

uar home ranges vary considerably in relation to prey abundance, habitat quality, and rates of

human disturbance [13].

Prey availability is a key determinant of the distribution and abundance of large carnivores

[14–15], including jaguars [16–17]. Among terrestrial mammalian species, jaguars tend to pre-

fer capybara (Hydrochoerus spp.) and giant anteater (Myrmecophaga tridactyla) [18]. White-

nosed coati (Nasua narica), nine-banded armadillo (Dasypus novemcinctus), white-lipped pec-

cary (Tayassu pecari), and collared peccary (Pecari tajacu) are also frequently recorded in jag-

uar diet in lowland biomes of the Neotropics [19–22]. In seasonally flooded ecosystems,

however, arboreal mammals (i.e. brown-throated sloths Bradypus variegatus and red howler

monkeys Alouatta juara), can be principal prey [17]. In other wetland habitats, species in the

reptilian orders of Crocodilia and Testudines dominate both available and consumed biomass

[23–26].

Due primarily to habitat loss and poaching, jaguars have been extirpated from approxi-

mately 54% of their range, which now spans 18 countries from Mexico to Argentina [6]. The

identification of corridors has been a focal strategy in efforts to facilitate connectivity and

maintain genetic diversity among jaguar populations (jaguar conservation units, JCUs) [6–7,

9–11]. JCUs are defined as either: (1) areas with a stable prey base and adequate habitat capable

of maintaining at least 50 adult jaguars or (2) areas with less than 50 jaguars but with adequate

habitat and a stable, diverse prey base that could potentially support an increased jaguar popu-

lation [11].

Jaguars are considered a vulnerable species in Colombia [27], a critical country within the

species’ distribution because it represents part of an intercontinental connection between

Mesoamerican and South American JCUs. Embedded in the northeastern portion of the

274,597 km2 Tumbes-Chocó-Magdalena hotspot [28], the middle Magdalena River Valley

(hereafter, middle Magdalena) is one of the most degraded and least protected biogeographic

regions in Colombia [29–30]. It has also long been recognized as a key linkage between jaguar

populations east and west of the Andes Mountains [31].

Spanning ~1,291 km2, oil palm plantations are increasingly transforming jaguar habitat in

the middle Magdalena (S1 Fig; see also [32]). Planted in mono-cropped rows, frequently in

industrial-scale plantations that are characterized by high rates of human disturbance and hab-

itat generalists, oil palm is one of the most incompatible land use types for the conservation of

tropical biodiversity [33–35]. Colombia is the leading producer of palm oil in Latin America

[36] and the middle Magdalena is one of the main areas of production. Information on jaguars

in oil palm plantations is limited to studies that did not record jaguars or recorded too few
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detections to draw conclusions about the species’ response to these vast monocultures [34, 37–

38].

Our study evaluated jaguar habitat use in a heterogeneous landscape of the middle Magda-

lena in an attempt to elucidate the habitat requirements associated with the species’ presence

at three spatial scales: 1, 3, and 5 km radii buffers surrounding each camera trap. Since the

middle Magdalena is considered a jaguar corridor [39], not a JCU, we sought a better under-

standing of the probability of our study area being used by jaguars, rather than generating an

estimate of their population size. Therefore, we used occupancy as a measure of jaguar habitat

use, predicting that jaguar habitat use would increase as the proportion of forest cover and

wetlands increased and oil palm and pasture decreased in each buffer size around the camera

traps. We further predicted a positive correlation between jaguar detection probability and

detections of their major mammalian prey species, defined here as species comprising >0.10

of consumed biomass in jaguar diet in tropical lowland forest and floodplain habitats. These

predictions were made on the basis of better access to cover and greater prey availability for

jaguars in natural habitats [7, 9, 10, 20–21, 34, 40].

Materials and methods

Study area

Located 400 km east of the intercontinental Colombia/Panama border, our study area spanned

across ten municipalities within three provinces–Antioquia, Bolı́var, and Santander–from 6˚

360 to 7˚520 N, -74˚220 to -73˚290 W. The altitudinal range of sampled sites was 40–202 m asl.

Mean annual temperature was 27˚C and precipitation was 2,500–2,800 mm, and most rainfall

occurred in a bimodal pattern from April–May and September–November. There was a dis-

tinct dry season from December–February when precipitation averaged less than 130 mm/

month. January was the driest month and October was the wettest.

The wetlands in our study area consisted of seasonally flooded swamps, permanently

flooded marshes, and open-water lakes and rivers [41]. One large forest block existed along the

western border of our study area: 27,314 km2 of forests encompassed by the Serranı́a San

Lucas (Fig 1). A 3,770 km2 portion of the Serranı́a San Lucas was under evaluation for a new

national park in 2014 but extensive mining and occupation by guerilla groups has complicated

the declaration process and the park has not yet been formally established.

Data collection

We used data from camera trap surveys to estimate detection probabilities (p) and jaguar occu-

pancy as a measure of their habitat use (ψ) from August 2015–April 2016. To minimize the

possibility of recording false absences [42] (i.e. where no jaguars are detected despite their

home range overlapping a camera trap site), we treated consecutive trap days as repeat surveys

at each camera trap site. False absences are major sources of bias in occupancy surveys [43] but

they can be differentiated from true absences (i.e. where no jaguars are detected because the

camera trap is not placed within a jaguar’s home range) by conducting multiple surveys [42,

44].

Most of our camera traps were placed on private lands where we required permission for

access. A combination of security issues, seasonal flooding, and lack of permission from several

large-scale oil palm plantations inhibited our ability to sample some sites southeast of the Ser-

ranı́a San Lucas and northwest of the Serranı́a de los Yariguı́es (Fig 2). The average size of the

sampled oil palm plantations was 4.27 km2 (range 1.1–9.8 km2). The average distance between

camera traps and the nearest wetland was 3.54 km (range 0.0–15.5 km). Pasture was the domi-

nant land cover compared to forest, oil palm, and wetland (Table 1).
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Using ArcGIS 9.2 (ESRI, Inc.), we calculated proportions of forest cover, oil palm, pasture,

and wetland in radii buffers of 1 km, 3km, and 5 km (3.14, 28.27, and 78.54 km2) around each

camera trap site (S2 Fig; Table 2). Given the lack of GPS telemetry-based home range estimates

from Colombia and the Tumbes-Chocó-Magdalena hotspot [45], we included the multiple

buffer sizes to assess jaguar habitat use at varying scales. Species interact with the environment

at different scales [46–48] and jaguars exhibit distinct responses to landscape variables at the

home range versus foraging scale [49].

We also included detections of principal mammalian prey species as a sampling covariate.

We specifically defined these prey species as armadillo, collared peccary, paca (Cuniculus
paca), lesser capybara (Hydrochoerus isthmius), and giant anteater. Collectively, these species

dominate the relative occurrence and mammalian biomass of jaguar diet in the lowland Neo-

tropics [19, 20–22]. Our index of prey detections was the number of days on which a principal

mammalian prey species was photographed, divided by the total number of trap nights at that

site [sensu [50].

Prior to running the analyses, we standardized the data using z scores (x� �x=s). Standard-

ized z-scores can improve model convergence and facilitate the interpretation of the covariate

coefficients [51]. Each covariate was selected a priori based on our knowledge of jaguar

ecology.

Camera trap surveys

We strategically placed remotely-triggered, passive infrared camera traps (Bushnell Trophy

Cam1, Overland Park, KS, and Reconyx1HC500, Holmen, WI) and remotely-triggered,

flash camera traps (Cuddeback1 Attack, Green Bay, WI and Pantheracam1 V4., New York,

NY) in paired stations 30–40 cm above the ground. To offset slower trigger speeds of the Bush-

nell Trophy Cams (~0.6 seconds), we only paired these particular units with the other, faster-

triggering, cameras (~0.18–0.30 sec) [52–53]. Average spacing between camera traps was 5.5

km (range 2.9–31.2 km) and camera traps were operational 24 h/day. The minimum convex

polygon of our camera trap array covered an area of 7,337 km2.

To ensure proper functioning of the camera traps, we revisited our stations every 30–45

days. Camera trap placement was constrained by security issues and lack of permission from

the management of several oil palm plantations. Our camera trap survey design was further

Fig 1. Jaguar corridors and jaguar conservation units in Colombia. Displayed in relation to wetlands and the middle

Magdalena River valley (a) and the Serranı́a San Lucas (b).

https://doi.org/10.1371/journal.pone.0221705.g001
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influenced by seasonal flooding in some inundated areas flanking the Magdalena River. We

did not use scents or baits to attract animals. We placed all camera traps off-road because our

reconnaissance surveys most commonly recorded jaguar sign on trails and footpaths, which

are known travel routes for these cats [54–55]. Although jaguars also frequently use dirt roads

for travel [56–57], oil palm workers constantly used dirt roads where risk of theft of our cam-

era traps was a major concern.

Fig 2. Study area. Land cover and camera trap locations, including sites of jaguar detections in the middle Magdalena

River valley, Colombia.

https://doi.org/10.1371/journal.pone.0221705.g002

Table 1. Camera trap placement by habitat type. Includes jaguar detections and mean values of habitat covariates at camera trap sites (n = 70) in the middle Magdalena

River valley, Colombia.

Mean (SD) proportion of habitat in radii buffers around

camera trapss

Habitat Number of camera traps Number of camera traps with jaguar detections 1 km buffer 3 km buffer 5 km buffer

Forest 20 8 0.23 (0.21) 0.17 (0.13) 0.16 (0.10)

Wetlands 14 11 0.09 (0.24) 0.11 (0.21) 0.12 (0.18)

Pasture 20 4 0.45 (0.40) 0.46 (0.29) 0.45 (0.25)

Oil palm 16 2 0.09 (0.18) 0.10 (0.16) 0.10 (0.15)

https://doi.org/10.1371/journal.pone.0221705.t001
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Data analysis

Treating each camera trap site as an individual sampling unit, we analyzed the data in an occu-

pancy framework to estimate the probability of occurrence by incorporating an additional

parameter of detection probability [58]. By accounting for detection probability, occupancy

models remove the bias resulting from sites where a species was present, but not detected. We

defined detection probability as the probability that jaguars were detected in a survey period,

given the site was used by jaguars [sensu 59]. Single-season models have three key assumptions:

(1) The system is demographically closed to changes in occupancy of sites during the sampling

period (2) Species are not falsely detected and (3) Detection at a sampling unit (camera trap

site) is independent of detection at other sampling units [59].

We constructed detection histories of jaguars for each camera trap site corresponding to a

camera trap operational in a 4-week period. This resulted in 9 sampling occasions, which we

imported into the program PRESENCE version 2.12.29 [51] to estimate jaguar occupancy (S1

Table). We first modeled detection probability keeping C constant and then, under a maxi-

mum likelihood framework, applied the top-ranked detection model to the site occupancy

models. Covariates were considered to have a significant influence on jaguar occupancy if

their 90% CI did not overlap 0. We created individual (univariate) models for each covariate

and used AIC to compare them with a null model that did not include covariates. If inclusion

of a given covariate improved upon the null model by>2 ΔAIC and the parameter estimate

for that covariate did not include zero within a 90% CI, we considered the covariate informa-

tive and retained it for the next step of creating multivariate, additive models.

Two occupancy states were possible for each camera trap: occupied (corresponding proba-

bility is C) and unoccupied (1–C). Covariates were incorporated into the occupancy and

detection components using the logit-link function, and estimated effect sizes can be inter-

preted in a similar manner to a logistic regression analysis.

We used Akaike’s information criterion (AIC) corrected for small sample sizes (AICc,

n = 70 camera traps) and weighted the support of each model using AICc weights, with lower

values indicating greater parsimony [60]. Jaguar detection probabilities were computed as a

function of predictor variables using a logit link function. We performed a goodness-of-fit test

for single season models to further assess the fit of the selected models [61].

Our data were unable to meet the assumption of population closure as camera traps oper-

ated continuously over a 9-month period, during which time the occupancy status of our

study area could have varied (i.e. cubs becoming sub-adults and dispersing in or out of the

middle Magdalena). Also, given the status of the middle Magdalena as a jaguar corridor [39]

not a JCU, we were most interested in the probability of our study area being used by jaguars,

rather than true occupancy. Thus, our results should be interpreted as jaguar “probability of

habitat use (C)” [48, 62].

Table 2. Definitions of covariates (size of radii buffers in km). Summary of covariates used to evaluate jaguar habi-

tat use in the middle Magdalena River valley, Colombia.

Abbreviations Covariates

for (1, 3, 5) Forest

wet (1, 3, 5) Wetland

palm (1, 3, 5) Oil palm

past (1, 3, 5) Pasture

prey� Detections of principal mammalian prey species

�Detection covariate only

https://doi.org/10.1371/journal.pone.0221705.t002
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Results

Across the 70 sites, the total sampling effort was 15,305 trap nights. We photographed

(detected) 12 unique adult jaguars 77 times (6 males, 4 females, and 2 individuals of unknown

sex). Jaguars were detected at 25 (36%) of the 70 camera trap stations. We never photographed

jaguars at sites without wetlands inside 5 km buffers (n = 16). Three unique females with cubs

were photographed at 3 separate camera trap sites during September 2015 and March and

April 2016. At sites where we photographed cubs (n = 3), the mean (SD) proportion of habitat

in the 1 km radii buffer (3.14 km2) around the camera trap stations was 0.79 (0.32) forest, 0.12

(0.21) pasture, and 0.09 (0.12) wetland. Oil palm plantations were absent from the 1 km radii

at sites of cub detections.

Jaguar habitat use was most strongly associated with the proportion of wetlands, especially

in 3 km buffers (Sw = 0.85) (Tables 3 and 4, Fig 3). The most parsimonious best-fit model for

jaguar habitat use–psi(wet3,past3)p(wet3,palm3) (Table 3)–was consistent with our a priori
expectations of positive associations of jaguar habitat use in buffers with greater spatial extent

of wetlands and negative associations with pasture. Jaguar habitat use was also positively asso-

ciated with the proportion of forest cover, but that association was not significant at any scale.

Jaguar habitat use was negatively correlated with the proportion of pasture (β = -1.40, 0.63

SE) and oil palm (β = -1.21, 0.65 SE). Once extent of plantation coverage reached ~50% of the

area inside 3 km buffers around camera traps, jaguar habitat use declined significantly (Fig 4).

Our goodness-of-fit test for the most parameterized multivariate model revealed no evidence

of overdispersion (lack of independence), suggesting the models provided an adequate

description of the data (Model 2: χ2 = 255.10, P = 0.97, ĉ = 0.40).

The probability of detecting jaguars, given their presence at a site, was 28% (0.03 SE). There

was very strong evidence that detection probabilities were positively influenced by wetland

coverage in 3 km buffers (β = 0.36, 0.14 SE) and negatively influenced by oil palm plantations

in 3 km buffers (β = -0.75, 0.33 SE). Contrary to expectation, there was a negative association

between detections of jaguars and their principal mammalian prey (β = -0.71, 0.40 SE).

Table 3. Top single-season covariate� models. Ranking of the 14 models evaluated for habitat use of jaguars in the middle Magdalena River valley, Colombia.

Model AICc deltaAICc AIC wgt Model Likelihood No. of parameters Log. likelihood Cumwt

1.psi(wet3,past3),

p(wet3,palm3)

248.05 0.00 0.42 1.00 6 236.05 0.42

2.psi(wet3,palm3,past3),p(wet3,palm3) 248.25 0.20 0.38 0.90 7 234.25 0.80

3.psi(wet5),p(wet5,palm5) 250.36 2.31 0.13 0.32 5 240.36 0.93

4.psi(wet3,palm3),p(wet3,palm3) 253.26 5.21 0.03 0.07 6 241.26 0.96

5.psi(wet3),p(wet3,palm3) 253.73 5.68 0.02 0.06 5 243.73 0.98

6.psi(palm3,past3),p(wet3,palm3) 258.87 10.82 0.01 0.00 6 246.87 0.98

7.psi(past3),p(wet3,palm3) 261.90 13.85 0.00 0.00 5 251.90 0.98

8.psi(wet1),p(wet1) 264.05 16.00 0.00 0.00 4 256.05 0.99

9.psi(palm3),p(wet3,palm3) 264.14 16.09 0.00 0.00 5 254.14 0.99

10.psi(for5),p(wet5,palm5) 264.77 16.72 0.00 0.00 5 254.77 0.99

11.psi(.),p(wet3,palm3) 267.26 19.21 0.00 0.00 4 259.26 1.00

12.psi(.),p(wet5,palm5) 268.44 20.39 0.00 0.00 4 260.44 1.00

13.psi(.),p(wet1) 273.21 25.16 0.00 0.00 3 267.21 1.00

14.psi(.),p(.) 274.57 26.52 0.00 0.00 2 270.57 1.00

�Site and sampling covariates: wet1 = percentage of wetland coverage in 1 km buffers around each camera trap, wet3 = percentage of wetland coverage in 3 km buffers

around each camera trap, palm3 = percentages of oil palm coverage in 3 km buffers around each camera trap, for5 = percentage of forest cover in 5 km buffers around

each camera trap.

https://doi.org/10.1371/journal.pone.0221705.t003
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Peccary and paca were the most frequently detected prey species and were also recorded at

the greatest number of camera traps (Table 5). Giant anteaters and paca were most frequently

detected in wetland habitats. Armadillo, capybara, and giant anteater were not detected in oil

palm plantations. However, insufficient giant anteater and capybara detections prevented

detailed analyses for these two species.

Discussion

Despite their well-documented affinity for habitats near permanent surface water [9, 19, 40,

57, 63–65] this is one of the first studies to quantify associations between wetlands and jaguar

habitat use. Wetlands in the Brazilian Pantanal and in the Venezuelan llanos are known

strongholds for jaguars [9, 20, 63, 66] but previous studies in these areas were not specifically

designed to identify associations between habitat features and jaguar presence in landscapes

heavily modified by agriculture.

Notably, jaguar habitat use in the middle Magdalena was most strongly associated with the

intermediate spatial scale (3-km buffer). This scale (28.27 km2) most closely corresponds to

the size of a female jaguar home range size in seasonally flooded habitats [13]. Considering the

lack of home range estimates from both Colombia and the Tumbes-Chocó-Magdalena hotspot

Table 4. Results of the top models. Parameter estimates and 90% credible intervals (CI) influencing jaguar habitat use in the middle Magdalena River valley, Colombia.

Covariates were considered to have a significant influence on jaguar habitat use when their 90% CI did not overlap zero (marked in bold).

Models β int

(90% CI)

βwet5

(90% CI)

βwet3

(90% CI)

βpalm3

(90% CI)

βpast3

(90% CI)

Model1 2.02

(-0.23,4.27)

- 7.16 (1.89,12.43) - -1.40 (-0.37,-2.43)

Model2 0.70

(-0.91,2.05)

- 4.94

(1.33,8.55)

-1.32

(-0.09,-2.55)

-1.36

(-0.33,-2.39)

Model3 7.14

(-1.99, 16.27)

15.38

(-0.97, 31.73)

- - -

Model4 -0.13

(-1.23, 1.07)

- 2.76 (0.47, 5.05) -1.21

(-2.27,-0.15)

-

https://doi.org/10.1371/journal.pone.0221705.t004

Fig 3. Jaguar habitat use (± 90% CI) as a function of wetland coverage. Displayed at camera trap sites surrounded by

3 km buffers in the middle Magdalena River valley, Colombia.

https://doi.org/10.1371/journal.pone.0221705.g003
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[45], the 3-km scale could be the most accurate representation of the utilization of habitats

present within the home range of a female jaguar in the middle Magdalena. Selection for pre-

ferred habitats (i.e. forests for hiding and raising cubs and wetlands for foraging) will influence

how jaguars move in relation to these landscape components and the scale at which they affect

habitat use [49]. For example, compared to the mean proportion of habitats across our study

area, the proportions at sites of cub detections (n = 3) included similar wetland coverage but

significantly greater forest cover and less disturbed habitats (oil palm and pasture).

Nonetheless, the clear lack of support for forest cover in our models suggests that jaguars

may be less dependent on forests in areas dominated by wetlands or they may preferentially

select wetlands in areas lacking forest cover. Across eight study areas in Brazil and Argentina,

jaguars showed increasingly strong selection for forests in landscapes with >58% forest cover

but they showed less avoidance of non-forest areas at sites with greater proportions of open

and deforested areas [49].

Excluding the Serranı́a San Lucas JCU, which is the largest contiguous block of forest in

our study area (27,314 km2), 93% of natural habitats in the middle Magdalena had been

Fig 4. Jaguar habitat use (± 90% CI) as a function of oil palm coverage. Displayed at camera trap sites surrounded

by 3 km buffers in the middle Magdalena River valley, Colombia.

https://doi.org/10.1371/journal.pone.0221705.g004

Table 5. Summary of prey detections. Prey detections by habitat type and mean values of habitat covariates in 1 km radii buffers at camera trap sites (n = 70) in the mid-

dle Magdalena River valley, Colombia.

Mean (SD) proportion of habitat in 1 km radii buffers

around camera traps

Species Number of camera traps with detections Naïve occupancy Total detections Forest Wetland Oil palm Pasture

Collared peccary 21 0.30 76 0.33 (0.22) 0.03

(0.07)

0.08

(0.25)

0.25 (0.23)

Paca 19 0.27 76 0.29 (0.24) 0.08

(0.23)

0.02

(0.06)

0.29

(0.27)

Armadillo 15 0.21 44 0.30

(0.23)

0.01

(0.05)

0.00

(0.00)

0.37

(0.31)

Capybara 4 0.06 16 0.10

(0.11)

0.00

(0.00)

0.00

(0.00)

0.56

(0.37)

Giant anteater 4 0.06 10 0.17

(0.13)

0.19

(0.26)

0.00

(0.00)

0.62

(0.43)

https://doi.org/10.1371/journal.pone.0221705.t005
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converted to agriculture by 2006 [29]. Wetlands could provide increasingly important habitat

for jaguars in degraded landscapes of the middle Magdalena, because the Serranı́a San Lucas

experienced the fourth-greatest extent of habitat loss among JCUs range-wide, losing 1,590

km2 (5.82%) of its forest cover from 2000–2012 [39].

Given the oil palm industry’s demanding water footprint of 5,000 m3 ton–1 [67], wetlands

are now at greater risk to draining in the middle Magdalena, which was recently identified as

one of 14 hotspots of wetland loss in Colombia [68]. Beyond the middle Magdalena, one of the

primary zones targeted for oil palm expansion is the tropical savannah of the Orinoco region

[69–70], an ecoregion that contains both 55% of Colombia’s wetlands [71] and the Orinoco-

Amazon JCU [11]. Wetlands in this region, as elsewhere in Colombia, lack protection.

The Ramsar Convention, which requires a national policy for the management and protec-

tion of wetlands and their biodiversity, has resulted in the establishment of only five Ramsar

sites in Colombia. A Ramsar site is defined as ‘a wetland of international importance that con-

tains representative, rare or unique wetland types important for maintaining biodiversity, sup-

porting threatened species or communities and providing refuge during adverse conditions in

a particular biogeographic region’ [72]. The Estrella Fluvial Inı́rida is the only Ramsar site in

Colombia’s Orinoco ecoregion, where jaguars are present [37]. Ramsar sites are entirely absent

from the middle Magdalena.

Around the world, Ramsar sites provide important habitat for large carnivores besides jag-

uars. These protected wetlands overlap several key tiger (Panthera tigris) conservation units

such as the Sunderbans in Bangladesh and the Beeshazar region of the Terai landscape in

Nepal [73]. In the Terai, tiger occupancy is positively correlated with wetlands, particularly the

highly productive alluvial floodplains and riverine forests, both of which harbor high densities

of ungulate prey [74–75]. Similarly, the Osceola National Forest-Okefenokee Swamp ecosys-

tem provides important foraging habitat for one of the largest remaining black bear (Ursus
americanus) populations in the southeastern USA [76].

The lack of a positive correlation between detections of jaguars and their terrestrial mam-

malian prey raises hypotheses about wetlands as important foraging areas for jaguars. Across

our study area, the ratio of detections of jaguars and principal mammalian prey was 1:1 for

peccary and paca, 1:0.57 for armadillo, 1:0.21 for capybara, and 1:0.13 for giant anteater. These

ratios are suggestive of a depleted mammalian prey base because camera trap surveys–even

those targeting jaguars–generally record more detections of prey than jaguars [16, 34, 55].

In wetlands, significant proportions of jaguar diet may be comprised of aquatic and semi-

aquatic species [23, 25–26, 77]. In the middle Magdalena, potential reptilian prey include spec-

tacled caiman (Caiman crocodilus), American crocodiles (Crocodylus acutus), Magdalena

River turtles (Podocnemis lewyana) and Colombian slider turtles (Trachemys callirostris). In

flooded forests of the Amazon basin, spectacled caimans were recorded in 41% of jaguar scat

samples [78] and reptiles comprised 36% of jaguar diet in the floodplains of the San Jorge and

Cauca rivers [24], which are located 150 km northwest of our study area. We observed evi-

dence of jaguar depredation on Colombian sliders in the middle Magdalena where this species

is widely distributed [79].

We recommend future studies in wetland areas examine the importance of reptilian prey,

which were undetected by our terrestrial, heat-sensitive camera traps. Also, we suggest finer-

scale analyses that differentiate jaguar habitat use of specific wetland habitat types (i.e.

marshes, swamps, and floodplain forests). Globally, there are significant data gaps for the spa-

tial extent of wetland classes–particularly for lower order streams, ponds, and marshes [80]–

but recent advancements have contributed to improved inventories at regional scales [81].

Finally, we stress the importance of long-term monitoring to evaluate trends in jaguar habi-

tat use and occupancy in the middle Magdalena. As the proportion of oil palm and pasture
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increases relative to forests and wetlands, the habitat is likely to become less suitable for jag-

uars. For example, recent camera trap surveys did not detect tigers in oil palm landscapes of

lowland Peninsular Malaysia [82–84], which is one of their historical strongholds [85–86].

Globally, most palm oil is produced in Malaysia and Indonesia where its destructive impacts

on threatened species have been well documented [87–90].

With oil palm cultivation projected to increase in Latin America–including Colombia [69–

70]–there is greater urgency to collect data on jaguars in oil palm landscapes to guide the iden-

tification and implementation of appropriate land use planning and zoning measures. Our

results suggest that jaguars may tolerate oil palm smallholdings but avoid large-scale planta-

tions because habitat use declined significantly once extent of plantation coverage reached

~50% of the area inside 3 km buffers around camera traps. Jaguar avoidance of oil palm planta-

tions is likely a response to the depauperate prey bases and greater rates of human disturbance

in these monocultures [33–35, 87].

Conclusion

Evaluation of occupancy and habitat use at large spatial scales is necessary for identifying the

ecological needs of wide-ranging species [8, 91]. To our knowledge this study is one of the larg-

est, in terms of spatial coverage and sampling effort, to survey jaguars with camera traps using

an occupancy approach. On the basis of our results, we propose that wetlands receive greater

consideration as keystone habitats for jaguars. Keystone habitats have disproportionately large

effects relative to their availability and contain resources (i.e. reptilian prey for jaguars) not

provided by other available habitats [92]. Wetlands comprise ~30% of the Amazon basin [93]

where 16 Ramsar sites span some 342,084 km2, 4.9% of the entire basin. Beyond the Amazon

basin–which is the jaguar’s range-wide stronghold [10–11, 39]–favorable policies for wetland

conservation are grossly lacking [93–95]. For example, there are only 11 Ramsar sites spanning

some 1,330 km2 in the Tumbes-Chocó-Magdalena hotspot [S2 Table]. Greater protection of

wetlands and riparian buffers–which is already required under Colombian law (Resolution

No. 200.41.11–1130, 2011) [96]–could facilitate jaguar persistence in fragmented landscapes

and areas undergoing oil palm and pasture development.

Supporting information

S1 Fig. Overlap between oil palm plantations and modeled jaguar corridors in Colombia.

(TIF)

S2 Fig. Example showing the radii buffers of 1 km, 3km, and 5 km (3.14, 28.27, and 78.54

km2) around camera trap site.

(TIF)

S1 Table. Jaguar detection matrix uploaded to PRESENCE version 12.17.
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S2 Table. Ramsar sites in the Tumbes-Chocó-Magdalena biodiversity hotspot.

(XLSX)
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