Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,4'-[Oxalylbis(azanediyl)]dipyridinium bis(perchlorate)

Wayne Hsu, Hui-Lin Hsiao and Jhy-Der Chen*
Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw

Received 14 October 2010; accepted 15 October 2010

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.051 ; w R$ factor $=0.119$; data-to-parameter ratio $=11.4$.

In the title molecular salt, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-}$, the complete cation is generated by crystallographic inversion symmetry. In the crystal, the cations and anions are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds, forming a three-dimensional framework.

Related literature

For the applications of N, N^{\prime}-bis(pyridyl)oxamides, see: Hsu et al. (2004); Hu et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-}$
$V=832.4(2) \AA^{3}$
$M_{r}=443.16$
Monoclinic, $P 2_{1} / n$
$a=7.873(1) \AA$
$b=9.3728$ (15) A
$c=11.3205$ (16) A
$\beta=94.827$ (10) ${ }^{\circ}$

Data collection

Bruker P4 diffractometer
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.919, T_{\text {max }}=0.982$
2017 measured reflections
1450 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.119$
$S=1.03$
1450 reflections

921 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
3 standard reflections every 97 reflections
intensity decay: none

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4$	0.86	2.21	$2.950(4)$	144
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 3^{\mathrm{i}}$	0.86	2.35	$2.966(5)$	129
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.14	$2.975(5)$	162

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.
Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of specific research fields in ChungYuan Christian University, Taiwan, under grant No. CYCU-$98-\mathrm{CR}-\mathrm{CH}$.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2310).

References

Hsu, Y.-F. \& Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 1488-1493.
Hu, H.-L., Yeh, C.-W. \& Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 46964701.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

4,4'-[Oxalylbis(azanediyl)]dipyridinium bis(perchlorate)

W. Hsu, H.-L. Hsiao and J.-D. Chen

Comment

Several $\operatorname{Ag}(\mathrm{I})$ complexes containg N, N^{\prime}-bis(2-pyridyl)oxamide ligands have been prepared, which show one-dimensional and two-dimensional structures (Hsu, et al., 2004; Hu, et al., 2004). To investigate the effect of ligand-isomerism on the structural type of such complexes, the ligand N, N^{\prime}-bis(4-pyridyl)oxamide was synthesized and reacted with AgClO_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction resulted unexpectedly in the perchlorate salt of the organic ligand. Within this project the crystal structure of the title compound was determined.

Experimental

N, N^{\prime}-bis(4-pyridyl)oxamide $(0.24 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(0.21 \mathrm{~g}, 1.0 \mathrm{mmol})$ were placed in a flask containing 10 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was then reflux for 12 h . The resulting solution was then filtered and then layered with diethyl ether to afford coloress plate crystals of the title compound suitable for X-ray crystallography.

Refinement

All the hydrogen atoms were placed in idealized positions and refined using the riding model approximation with $C-\mathrm{H}=$ $0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figures

Fig. 1. Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. Symmetry code: $i=-x+1,-y+2,-z+2$.

4,4'-[Oxalylbis(azanediyl)]dipyridinium bis(perchlorate)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}^{-}$
$M_{r}=443.16$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=7.873$ (1) \AA
$b=9.3728(15) \AA$
$c=11.3205(16) \AA$
$\beta=94.827(10)^{\circ}$
$V=832.4(2) \AA^{3}$
$F(000)=452$
$D_{\mathrm{x}}=1.768 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=5.6-14.2^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, colorless
$0.6 \times 0.4 \times 0.2 \mathrm{~mm}$

supplementary materials

$Z=2$

Data collection

Bruker P4
diffractometer
Radiation source: fine-focus sealed tube graphite
ω scans
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.919, T_{\text {max }}=0.982$
2017 measured reflections
1450 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.119$
$S=1.03$

1450 reflections
127 parameters
0 restraints

921 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.038$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-9 \rightarrow 1$
$k=-1 \rightarrow 11$
$l=-13 \rightarrow 13$
3 standard reflections every 97 reflections intensity decay: none

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0424 P)^{2}+0.6192 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.30$ e \AA^{-3}

Special details

Experimental. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.3752(6)$	$1.1939(5)$	$0.5833(3)$	$0.0381(11)$
H1B	0.3929	1.2868	0.5582	0.046^{*}
C2	$0.4314(5)$	$1.1532(5)$	$0.6960(3)$	$0.0326(10)$
H2C	0.4865	1.2182	0.7482	0.039^{*}
C3	$0.4053(5)$	$1.0143(4)$	$0.7310(3)$	$0.0248(9)$
C4	$0.2689(6)$	$0.9652(5)$	$0.5391(3)$	$0.0382(11)$
H4B	0.2127	0.9029	0.4851	0.046^{*}
C5	$0.3260(5)$	$0.9182(5)$	$0.6505(3)$	$0.0327(10)$
H5A	0.3118	0.8234	0.6718	0.039^{*}
C6	$0.4772(5)$	$1.0472(4)$	$0.9445(3)$	$0.0288(9)$
N1	$0.2943(5)$	$1.0996(4)$	$0.5092(3)$	$0.0376(9)$
H1A	0.2575	1.1276	0.4394	0.045^{*}
N2	$0.4560(4)$	$0.9647(4)$	$0.8451(2)$	$0.0285(8)$
H2A	0.4754	0.8748	0.8533	0.034^{*}
O1	$0.4640(4)$	$1.1740(3)$	$0.9511(2)$	$0.0426(8)$
C1	$0.07220(14)$	$0.92622(11)$	$0.21648(8)$	$0.0338(3)$
O2	$0.0153(5)$	$0.8460(4)$	$0.3141(2)$	$0.0579(10)$
O3	$0.1889(4)$	$0.8433(4)$	$0.1564(3)$	$0.0653(11)$
O4	$0.1543(4)$	$1.0522(3)$	$0.2623(2)$	$0.0539(9)$
O5	$-0.0718(4)$	$0.9610(4)$	$0.1369(3)$	$0.0598(10)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.057(3)$	$0.031(2)$	$0.027(2)$	$0.002(2)$	$0.005(2)$	$0.0014(19)$
C2	$0.040(3)$	$0.034(3)$	$0.0221(18)$	$0.000(2)$	$-0.0045(19)$	$-0.0037(18)$
C3	$0.027(2)$	$0.031(2)$	$0.0155(18)$	$0.000(2)$	$-0.0032(16)$	$0.0006(17)$
C4	$0.047(3)$	$0.041(3)$	$0.025(2)$	$0.000(2)$	$-0.0038(19)$	$-0.003(2)$
C5	$0.040(2)$	$0.031(2)$	$0.0267(19)$	$0.001(2)$	$-0.0010(18)$	$0.001(2)$
C6	$0.032(2)$	$0.032(3)$	$0.0213(19)$	$0.001(2)$	$-0.0044(17)$	$-0.0023(19)$
N1	$0.047(2)$	$0.046(2)$	$0.0185(15)$	$0.002(2)$	$-0.0052(15)$	$0.0025(17)$
N2	$0.039(2)$	$0.0258(19)$	$0.0195(16)$	$0.0027(16)$	$-0.0035(14)$	$-0.0014(14)$
O1	$0.071(2)$	$0.0297(18)$	$0.0259(15)$	$0.0076(17)$	$-0.0039(14)$	$-0.0017(13)$
C1	$0.0438(6)$	$0.0314(6)$	$0.0252(5)$	$0.0015(6)$	$-0.0035(4)$	$-0.0029(5)$
O2	$0.087(3)$	$0.051(2)$	$0.0344(15)$	$-0.015(2)$	$-0.0001(17)$	$0.0134(16)$
O3	$0.061(2)$	$0.077(3)$	$0.058(2)$	$0.019(2)$	$0.0025(18)$	$-0.034(2)$
O4	$0.082(2)$	$0.035(2)$	$0.0436(17)$	$-0.0117(18)$	$0.0001(17)$	$-0.0096(15)$
O5	$0.0471(19)$	$0.080(3)$	$0.0489(18)$	$0.005(2)$	$-0.0158(16)$	$0.0135(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.342(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.368(5)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9300

$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$
$\mathrm{C} 6-\mathrm{O} 1$
$\mathrm{C} 6-\mathrm{N} 2$
0.9300
1.196 (5)
1.363 (4)

supplementary materials

C2-C3	1.382 (6)	C6-C6 ${ }^{\text {i }}$	1.555 (7)
C2-H2C	0.9300	N1-H1A	0.8600
C3-C5	1.391 (5)	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8600
C3-N2	1.399 (4)	$\mathrm{Cl}-\mathrm{O} 3$	1.419 (3)
$\mathrm{C} 4-\mathrm{N} 1$	1.324 (5)	$\mathrm{Cl}-\mathrm{O} 4$	1.423 (3)
$\mathrm{C} 4-\mathrm{C} 5$	1.375 (5)	$\mathrm{Cl}-\mathrm{O} 5$	1.425 (3)
C4-H4B	0.9300	$\mathrm{Cl}-\mathrm{O} 2$	1.439 (3)
N1-C1-C2	119.9 (4)	O1-C6-N2	127.6 (4)
N1-C1-H1B	120.0	O1-C6- $6^{\text {i }}$	122.0 (4)
C2-C1-H1B	120.0	N2-C6-C6 ${ }^{\text {i }}$	110.4 (4)
C1-C2-C3	119.1 (4)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	122.7 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	120.5	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	118.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	120.5	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	118.6
C2-C3-C5	119.4 (3)	C6-N2-C3	125.3 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	122.7 (3)	C6-N2-H2A	117.3
C5-C3-N2	117.9 (4)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	117.3
N1-C4-C5	119.6 (4)	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{O} 4$	109.7 (2)
N1-C4-H4B	120.2	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{O} 5$	109.6 (2)
C5-C4-H4B	120.2	$\mathrm{O} 4-\mathrm{Cl}-\mathrm{O} 5$	110.7 (2)
C4-C5-C3	119.2 (4)	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{O} 2$	109.7 (2)
C4-C5-H5A	120.4	$\mathrm{O} 4-\mathrm{Cl}-\mathrm{O} 2$	108.32 (18)
C3-C5-H5A	120.4	$\mathrm{O} 5-\mathrm{Cl}-\mathrm{O} 2$	108.8 (2)

Hydrogen-bond geometry ($A,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 4$	0.86	2.21	$2.950(4)$	144
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.86	2.35	$2.966(5)$	129
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.86	2.14	$2.975(5)$	162

Symmetry codes: (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $x+1 / 2,-y+3 / 2, z+1 / 2$.

Fig. 1

