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Abstract
In this paper, we make long-term predictions based on numbers of current confirmed cases, accumulative dead cases of

COVID-19 in different regions in China by modeling approach. Firstly, we use the SIRD epidemic model (S-Susceptible,

I-Infected, R-Recovered, D-Dead) which is a non-autonomous dynamic system with incubation time delay to study the

evolution of the COVID-19 in Wuhan City, Hubei Province and China Mainland. According to the data in the early stage

issued by the National Health Commission of China, we can accurately estimate the parameters of the model, and then

accurately predict the evolution of the COVID-19 there. From the analysis of the issued data, we find that the cure rates in

Wuhan City, Hubei Province and China Mainland are the approximately linear increasing functions of time t and their

death rates are the piecewisely decreasing functions. These can be estimated by finite difference method. Secondly, we use

the delayed SIRD epidemic model to study the evolution of the COVID-19 in the Hubei Province outside Wuhan City. We

find that its cure rate is an approximately linear increasing function and its death rate is nearly a constant. Thirdly, we use

the delayed SIR epidemic model (S-Susceptible, I-Infected, R-Removed) to predict those of Beijing, Shanghai, Zhejiang

and Anhui Provinces. We find that their cure rates are the approximately linear increasing functions and their death rates

are the small constants. The results indicate that it is possible to make accurate long-term predictions for numbers of

current confirmed, accumulative dead cases of COVID-19 by modeling. In this paper the results indicate we can accurately

obtain and predict the turning points, the end time and the maximum numbers of the current infected and dead cases of the

COVID-19 in China. In spite of our simple method and small data, it is rather effective in the long-term prediction of the

COVID-19.
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Introduction

In December 2019, a typical pneumonia occurred in

Wuhan City, the capital of Hubei Province, China. On

December 31st, the Health Commission of Wuhan reported

27 cases, and the disease quickly spread to other provinces

in a short time with the Spring Festival Travel Rush. Ini-

tially, this virus was called the SARS-COV-2. On January

30th, 2020, WHO classified the Novel Coronavirus Pneu-

monia epidemic (NCP) as a public health emergency of

international concern, and the NCP outbreak began to

attract the attention of countries around the world. On

February 11th, 2020, the disease was named as the Corona

Virus Disease 2019 (COVID-19) by World Health

Organization.

Mathematical modelling can be employed to better

understand the dynamics of contagious diseases and sim-

ulate different scenarios, providing additional tools for

health authorities to better propose adequate policies.

Nowadays, a multitude of mathematical models have been

employed to describe the dynamics of infectious diseases.

The compartmental models especially the SIR and SIRD

models have been widely used, due to their mathematical

simplicity. First of all, the research works concerning SIR

model are analyzed. Dhanwant and Ramanathan (2020)
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analyzed the COVID-19 spread in different countries, and

identified the main feature of COVID-19 growth by using

the SIR model. To forecast the outcome of the COVID-19,

some scholars used the SIR model and estimated the epi-

demic model parameters (Vattay 2020; Bagal et al. 2020).

Some research works have improved the SIR model.

Martnez-Guerra and Flores-Flores (2021) proposed the

Asymptomatic-Susceptible-Infective-Removed (A-SIR)

model. Yang et al. (2021) proposed a SIR model with time

fused coefficients but no time delay. Alenezi et al. (2021)

used the sensible SIR model to analyze and predict the

outbreak of COVID-19 in Kuwait. Turkyilmazoglu (2021)

examined the SIR model to propose an analytical approach

for providing an explicit formula associated with a

straightforward computation of peak time of the outbreak.

Furthermore, in some papers, the effect of prevention and

control strategies was taken into account in SIR model.

Bittihn and Golestanian (2020) proposed a strategy of

containment based on fluctuations in the SIR model.

Kumar (2020) used an age-structured SIR model with

social distance and Bayesian imputation to study the pro-

gress of the COVID-19 epidemic in India. Geng et al.

(2021) used the SIR model exploring the ramifications of

targeted intervention on spatial patterns of new infections

in the population agglomeration template. Deng et al.

(2021) proposed a non-smooth SIR Filippov system to

investigate the impacts of three control strategies (media

coverage, vaccination and treatment) on the spread of an

infectious disease. Lazebnik et al. (2021) developed an

extended mathematical SIR model, allowing a multidi-

mensional analysis of the impact of non-pharmaceutical

intervention on the pandemic. Fu et al. (2021) extended the

classic SIR model to find optimal decision making to bal-

ance economy and public health in the process of vacci-

nation rollout. Depending on the proportions of variants

and the public health strategies adopted, including anti-

COVID-19 vaccination, Dimeglio et al. (2021) raised a

modified SIR epidemiological model to predict how the

spread of the virus in regions of France will vary.

Next, the research works involving SIRD model are

analyzed. Many scholars have estimated the parameters of

the SIRD model and analyzed the spread of the COVID-19.

Fernndez et al. (2020) used data on death to estimate a

standard SIRD model of COVID-19. Sen and Sen (2021)

provided a modified SIRD model to analyze data of the

pandemic and estimated and compared the key parameters.

Gatta et al. (2021) modeled mobility data through a graph

series in order to infer the parameters of SIR and SIRD

models. Lobato et al. (2021) applied a methodology based

on a double loop iteration process to estimate the param-

eters of SIRD model. Pacheco and Lacerda (2021) proved

with the SIRD model that the approach of quantifying the

different rates by means of function estimation was very

robust and consistent. Gupth et al. (2021) used the SIRD

compartment model for parameter estimation and predic-

tion of COVID-19. Ananthi et al. (2021) predicted the

infection spread and recovery rate of the epidemic by

simulating model and checked the vulnerability. Addi-

tionally, a fractional-order SIRD model (Jahanshahi et al.

2021; Nisar et al. 2021) was introduced to predict the

development of the COVID-19. Some scholars used SIRD

model to estimate the basic reproduction number of the

COVID-19 (Lounis and Raeei 2021; Al-Raeei 2021). The

impact of prevention and control measures have been taken

into account in SIRD models to analyze this epidemic

(Zheng et al. 2021; Jason and Gunawan 2021).

In addition to SIR and SIRD, there were also some

research works using other models. Susceptible-Exposed-

Infective-Recovered (SEIR) (Yang et al. 2020; Peng et al.

2020) was used to analyze this epidemic. Chen et al.

(2020) proposed a novel dynamical system with time delay

to describe the outbreak of 2019-nCoV in China. Hellewell

et al. (2020) used the stochastic transmission model to

quantify the potential effectiveness of contact tracing and

isolation of cases at controlling an acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2)-like pathogen. Liu

et al. (2020) developed a Susceptible-Infective-Reported-

Unreported (SIRU) model to describe this epidemic. Their

research focused on the effect of the Chinese imposed

public policies designed to contain this epidemic, and the

number of reported and unreported cases that have occur-

red. Lin et al. (2019) proposed conceptual models for the

outbreak in Wuhan with the consideration of individual

behavioural reaction and governmental actions. Prediction

of NACP and the plateau phases of COVID-19 in China

were investigated (Pei 2020; Zeng et al. 2020). Transmis-

sion potential and severity of COVID-19 (Remuzzi and

Remuzzi 2020; Shim et al. 2020; Fanelli and Piazza 2020)

were investigated. Model comparison works (Vytla et al.

2021; Chen et al. 2021) have also been done.

Of course, these researches about the COVID-19 were

of great significance, but in the process of modeling, these

scholars did not consider time delay and time-varying

coefficients at the same time. For the adopted SIRD and

SIR model, the incubation delay is non-negligible and

should be included. Besides, their coefficients are usually

not constant but time-dependent. In this paper, we study the

development of the COVID-19 through a non-autonomous

SIRD (S-Susceptible, I-Infected, R-Recovered, D-Dead) or

SIR (S-Susceptible, I-Infected, R-Removed) epidemic

models with time delay. They are two different models,

mainly because R represents different meanings. In the

SIRD model, R represents the cumulative or total number

of the recovered groups, while in the SIR model, R rep-

resents the cumulative total of the recovered and dead

groups. Since in some cities where the scale of the
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epidemic is small and there is almost no death, it is not

appropriate to use the SIRD model, so we have proposed

the SIR model. Using finite difference method, we find that

the cure rates in Wuhan City, Hubei Province, China

Mainland are approximately the linear increasing functions

and their death rates are the piecewisely decreasing func-

tions, and the cure rate in Hubei Province outside Wuhan

(abbreviated as Hubei-Non-Wuhan or HNW) is the

approximately linear increasing function and its death rate

is nearly a constant. The SIRD model is suitable for these

regions. However, the cure rates in Beijing, Shanghai,

Zhejiang and Anhui Provinces are the approximately linear

increasing functions and their death rates are nearly the

very small constants. Therefore SIR model are suitable for

them. According to the data released by the National

Health Commission, the parameters of the model are

accurately estimated, so as to effectively simulate the long-

term development of the epidemic. We make a long-term

prediction of numbers of current confirmed and accumu-

lative dead cases of COVID-19 in some regions of China.

We can estimate the turning points and the end time of

COVID-19 and the maximum numbers of dead cases.

The structure of this paper is as the following. In Sect. 2,

the SIRD and SIR models are introduced. The models’

parameter estimation and numerical solutions are presented

in Sect. 3. The long-term predictions of some regions are

presented in Sect. 4. The conclusion and discussion are

given in Sect. 5.

Model building

This section introduces two non-autonomous time-delayed

epidemic models of COVID-19 in China.

SIRD model

The subjects of SIRD model are susceptible, infected,

recovered, and dead. The population under study is pre-

sumed to be invariant. Obviously, SðtÞ þ IðtÞ þ RðtÞþ
DðtÞ ¼ N. In the model, natural and birth and death rates

are not considered. We use the following symbols to mark

the numbers of people in each category:

S(t) Susceptible, representing the number of people who

do not have infectious diseases at time t, but are

likely to have infectious diseases;

I(t) Infected, representing the number of people who get

infectious diseases at time t;

R(t) Recovered, representing the cumulative or total

number of the recovered groups at time t;

D(t) Dead, representing the cumulative or total number

of the dead groups at time t.

In the paper, the highlights of the model lie in the

following:

Firstly, time delay is introduced to describe the virus

incubation period. Infected cases go through an incubation

period of s days before showing significant symptoms.

Once symptoms appear, the infected person will seek

treatment and be transformed to the confirmed case. Many

works did not consider the effect of the incubation delay.

But actually this delay is long, even up to more than 20

days, and its effect on the dynamic is crucial. So we have to

introduce it into the model and consider its effect on the

dynamics and stability. In this paper, we take the mean

value, 4 days, as the incubation delay.

Secondly, according to the data of the early 16 days

issued by the National Health Commission, we find that

perhaps the cure rates in Wuhan City, Hubei Province, and

China Mainland are the approximately linear increasing

functions and their death rates are a piecewisely decreasing

functions. We verify this argument by the data of longer

periods of 25, 40, or 45 days. The reason is that the medical

resources and treatment measures have been increased and

improved rapidly from January 24th. The results of cure

rates and death rates are displayed in Fig. 1a–f. The cure

rate in Hubei-Non-Wuhan is approximately a linear

increasing function and its death rate is nearly a constant.

The results of cure and death rates are shown in Fig. 1g, h.

Therefore, in our model the cure rate is approximated to be

a linear increasing function. By the finite difference

method, we accurately obtain the death rate functions. It is

very crucial for the modeling and long-term prediction of

the COVID-19 in China.

Through analysis, we can get the non-autonomous time-

delayed dynamic model of COVID-19 in China in these

regions as the following:

dS

dt
¼ � bSðt � sÞIðt � sÞ

N
;

dI

dt
¼ � ðcðtÞ þ lðtÞÞI þ bSðt � sÞIðt � sÞ

N
;

dR

dt
¼ cðtÞI;

dD

dt
¼ lðtÞI:

ð1Þ

In the above model, b represents the rate of transmission

for the susceptible to the infected. In model (1), we take the

values of the incubation delay s as the mean value, 4 days.

Let’s take cðtÞ ¼ jt, where j is a constant and cðtÞ repre-
sents the cure rate of the infected people. lðtÞ represents

the death rate of infected cases. According to the model,

cðtÞ is approximately equal to the number of newly cured

cases per day divided by the current number of infected

cases on the present day. lðtÞ nearly equals the number of
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(a)

(d)(c)

(e) (f)

(g) (h)

Fig. 1 Curves of cure and

mortality rates of different

regions in China
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newly deaths per day divided by the current number of

infected cases on the present day. From Eq.(1), we obtained

the following expressions,

cðtÞ � Rðt þ 1Þ � RðtÞ
IðtÞ ;

lðtÞ � Dðt þ 1Þ � DðtÞ
IðtÞ :

ð2Þ

SIR model

The subjects of SIR model are the susceptible, infected and

removed groups. The removed group includes the dead and

cured cases. Since in some regions, COVID-19 is not so

serious and the number of infected, recovered and dead

cases are very small; sometimes the number of dead cases

is even 0, so the SIRD model will not work due to the big

relative errors of R and D. We combine R (Recovered) and

D (Dead) into one category as R (Removed). We use the

following symbols to mark the numbers of people in each

category:

S(t) Susceptible, representing the number of people who

do not have infectious diseases at time t, but are

likely to have infectious diseases;

I(t) Infected, representing the number of people who

develop infectious diseases at time t;

R(t) Removed, representing the cumulative total of the

recovered and dead groups at time t.

Since Beijing, Shanghai and Zhejiang Province are not

the outbreak sites, their numbers of deaths will be rela-

tively small. Therefore we use the SIR model rather than

the SIRD model for these regions. By the finite difference

method, we find that the removed rates are approximately a

linear increasing function. The results of removed rates in

Beijing and Zhejiang Province are shown in Fig. 2a, b. So,

in the model the removed rates are assumed to be linear

functions of time t. Through analysis, we can get the non-

autonomous time-delayed SIR epidemic model for these

regions as the following:

dS

dt
¼ � bSðt � sÞIðt � sÞ

N
;

dI

dt
¼ � gðtÞI þ bSðt � sÞIðt � sÞ

N
;

dR

dt
¼ gðtÞI:

ð3Þ

In the above model, b represents the rate of transmission

from the susceptible to the infected, gðtÞ represents the

removed rate of infected people. Let’s set gðtÞ ¼ jt, where
j is a constant. According to the model, gðtÞ is equal to the

number of newly removed cases on that day divided by the

current number of infected patients on that day. From

Eq.(3), we obtained the following expression,

gðtÞ � Rðt þ 1Þ � RðtÞ
IðtÞ : ð4Þ

Estimation of parameters in the delayed
SIRD and SIR models

Due to the adjustment of the standard of diagnosis of

COVID-19 in China on February 12th, 2020 and the

revision of data of COVID-19 on April 17th, 2020, we use

the data of February 14th as the initial functions of S(t),

I(t), R(t), D(t) for the DDEs (1) and use the data from

February 15th, 2020 to February 29th, 2020 to estimate the

parameters of the delayed SIRD epidemic model in Wuhan

City, Hubei Province, China Mainland, Hubei-Non-

Wuhan, then make their long-term predictions and compare

them with real data from March 1st, 2020 to April 16th,

2020. We use the data of February 7th as the initial func-

tions of S(t), I(t), R(t) for the DDEs (3) and use the data

from February 8th, 2020 to February 22nd, 2020 to esti-

mate parameters of the delayed SIR epidemic model in

Beijing and Anhui Province. We use the data of February

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t

η(t)

(a) Removed rate of Beijing

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

η(t)
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Fig. 2 Curves of removed rates

in Beijing and Zhejiang

Province
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5th as the initial functions of S(t), I(t), R(t) for the DDEs

(3) and use the data from February 6th, 2020 to February

20th, 2020 to estimate parameters of the delayed SIR

epidemic model in Shanghai and Zhejiang Province, then

make the long-term predictions and compare them with

real data until the end of the epidemic. Since we do not

know exactly the real initial functions, here we have to take

the constants functions as the initial functions of the non-

autonomous DDEs, which will potentially induce errors.

SIRD model parameters inversion

In the SIRD model, the parameters to be estimated are b
and j. From Fig. 1b, d, f, we see that lðtÞ is a piecewise

function. lðtÞ is divided into t\10 and 10� t� 15, and we

get lðtÞ by calculating the average value separately. From

Fig. 1h, we see that the death rate of Hubei-Non-Wuhan is

nearly a constant, and lðtÞ is obtained by calculating the

15-day average. The value of lðtÞ is shown in Table 1.

Based on the least square method, we use the Isqnonlin

function built in Matlab to carry out parameter inversion

and get the optimal parameter solutions. We choose the

data of the February 14th as the initial functions of S(t),

I(t), R(t), D(t). Here, we use R-squared to evaluate the

results of the parameter estimations of the developed

models. Results of model evaluation are shown in Table 2.

Based on the official data, we get the results of parameter

inversion as shown in Table 3.

SIR model parameter inversion

In the SIR model, the parameters to be estimated are b and

j, too. As in ‘‘SIRD model parameters inversion’’ section,

we choose the corresponding initial functions of Beijing,

Shanghai, Zhejiang Province and Anhui Province. We

present the results of model evaluation in Table 4 and the

results of parameter inversion in Table 5.

Long-term prediction

The parameters b and j obtained in Sect. 3 are substituted

into Eqs. (1) and (3) respectively, and the numerical

method is carried out to simulate the evolutions of S(t), I(t),

R(t), D(t) or S(t), I(t), R(t).

Long-term predictions of Wuhan City, Hubei
Province, China Minland and Hubei-Non-Wuhan

In Fig. 3, the predicted data for current infected is com-

pared with its real data. In Fig. 4, the predicted data for

cumulative death is compared with its real data. Since the

parameter estimation of the data of China Mainland is over

fitting, the long-term prediction error is larger. Here, we

take a minor disturbance to the estimated parameters of

China Mainland, and then use the disturbed parameters to

make its long-term prediction. In Fig. 3, we take

b ¼ 0:019097, j ¼ 0:006246. In these figures, solid curves

describe the evolution curves of model (1) with the esti-

mated parameters and points represent the officially pub-

lished data. The blue dots stand for data used to estimate

the parameters, and the red dots are the real data for the

long-term prediction. Figure 3 indicates that the numbers

of current infected will decrease after a peak. The peak is

the turning point of the epidemic and the arrival of the

turning point shows that the epidemic is under control.

Wuhan City, Hubei Province and China Mainland are

Table 1 Death rates in different regions in China

l Wuhan Hubei China Mainland HNW

t\10 0.002627 0.002358 0.001956 0.001655

10� t� 15 0.001042 0.001147 0.001178 0.001655

Table 2 Model evaluation

R-squared Wuhan Hubei China Mainland HNW

I 0.84 0.98 0.99 0.98

R 0.98 0.97 0.94 0.95

D 0.99 0.99 0.99 0.95

Table 3 SIRD model parameter inversion

Parameter Wuhan Hubei China Mainland HNW

b 0.026103 0.021221 0.019097 0.008281

j 0.004649 0.005994 0.007046 0.010862

Table 4 Model evaluation

R-squared Beijing Shanghai Zhejiang Anhui

I 0.98 0.90 0.98 0.94

R 0.95 0.97 0.89 0.99

Table 5 SIR model parameter inversion

Parameter Beijing Shanghai Zhejiang Anhui

b 0.024581 0.029473 0.022831 0.029021

j 0.006505 0.008825 0.008142 0.009658
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expected to end the epidemic at the end of April. Hubei-

Non-Wuhan is expected to end the epidemic at the end of

March. Figure 4 shows that the predicted numbers of final

death are very close to their actual data. And both the total

tendencies of the current infected and dead cases agree

very well with each other.
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Fig. 3 The predictions of

numbers of the current infected

cases in Wuhan City, Hubei

Province, China Mainland and

Hubei-Non-Wuhan. Solid curve

is the evolution curve of the

current infected in model (1),

dots represent the true data of

the current infected issued by

the government. The blue dots

stand for data used to estimate

the parameters, and the red dots

are the real data for the long-

term prediction
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Fig. 4 The predictions of

numbers of the cumulative

death in Wuhan City, Hubei

Province, China Mainland and

Hubei-Non-Wuhan. Solid curve

is the evolution curve of the

cumulative death in model (1),

and dots are the true data of the

death issued by goverment. The

blue dots stand for data used to

estimate the parameters, and the

red dots are the real data for the

long-term prediction
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Long-term predictions of Beijing, Shanghai,
Zhejiang and Anhui Provinces

In Fig. 5, we compare the predicted data for the current

infected with their real data. Since the parameter estimation

of the data of Beijing also appear over fitting, the long-term

prediction error is larger. Here, we take a minor distur-

bance to the estimated parameters of Beijing, and then use

the disturbed parameters to make predictions. In Fig. 5, we

take b ¼ 0:025581, j ¼ 0:005905. And the total tendencies

agree very well with each other. In these figures, solid

curves describe the evolution of model (3) with the esti-

mated parameters and points represent officially published

data. The blue dots stand for real data used to estimate the

parameters, and the red dots are the real data for the long-

term prediction. Figure 5 suggests that the numbers of the

current infected decrease after the turning point and the

epidemic is gradually under control. Beijing are expected

to finish the epidemic at the middle of April. Shanghai,

Zhejiang and Anhui Provinces are expected to finish the

epidemic at the end of March.

Conclusion

SIRD and SIR epidemic models are classical and effective

mathematical models of infectious disease. The SIRD

model is suitable for epidemics with a large scale and a

large number of death. If the scale of the epidemic is small

and the death rate is low, the prediction error with the

SIRD model may increase, and it is better to use the SIR

model. During the modeling phase, we researched many

complex models, such as the SEIR(D) model, where E

represents the number of the exposed persons. Since the

data of exposed persons has been not accurate statistics,

there is no way to predict it precisely. Finally, we find that

the simpler the model is the better the prediction effect. It is

advisable to employ the SIRD and SIR to predict the

COVID-19.

In this paper, SIRD model is used to describe the

development of COVID-19 in Wuhan City and other

regions and SIR model is used to establish the development

of COVID-19 in Beijing and other regions. The simulation

results indicate that the long-term predictions are in good

agreement with the actual data published by the govern-

ment. Our dynamic SIRD and SIR models are very effec-

tive in predicting the tendencies, especially the turning

points, the end time and sizes of the current infected of

COVID-19 epidemic and the highest numbers of death.

The recovery rate significantly increases and the death

rate gradually decreases. From these figures, we can also

estimate the duration and end of the COVID-19. Because

the government has imposed the very strict, scientific and

effective containment measures, we get a lower and lower

rate of transmission and a relatively quick control of the

epidemic. As China concentrated all its efforts on curing
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Fig. 5 The prediction numbers

of the current infected cases in

Beijing, Shanghai, Zhejiang

Province and Anhui Province.

Solid curve is the evolution

curve of the current infected in

model (3), dots represent the

true data of the current infected

issued by the government. The

blue dots stand for data used to

estimate the parameters, and the

red dots are the real data for the

long-term prediction
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the infected and researching treatment options, the cure

rate increases and death rate decreases quickly. Our paper

may provide us an easy and effective method to predict the

long-term evolution of COVID-19.
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