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Introduction
High-throughput sequencing of RNA (RNA-seq)1 has become 
the preferred method to reveal the complex landscape and 
dynamics of transcriptomes since the advent of next-genera-
tion sequencing (NGS) platforms.2,3 One of the most popular 
use cases is to generate a catalog of transcripts without genomic 
information and to study gene expression using short-read 
sequencing.4,5 In this process, RNA molecules are isolated, 
enriched and reverse transcribed into complementary DNA 
(cDNA). The cDNA sequences are fragmented, random 
primed, amplified by polymerase chain reaction (PCR), and 
sequenced.6 Fragmentation and PCR amplification are due to 
the technical constraints inherent in short-read sequencing 
equipment. The result of sequencing is millions of short reads 
containing a mixture of fragments corresponding to different 
parts of different transcripts. The sequencing data obtained for 
each study can be affected by different variables grouped as 
coming from sequencing artifacts,7 experimental design,6 and 
biological complexity.8 For example, the alternative splicing 

level produces transcript isoforms and results in the appearance 
of very similar short reads from shared exons.9 In the presence 
of a genomic reference or transcript catalog, the process of 
expression quantification involves mapping and counting the 
number of sequencing reads coming from each gene.

In the absence of a genomic reference, the short reads must 
be assembled to recreate the sequences from which they origi-
nated. Ideally, this process can be performed taking into 
account all the issues mentioned above to obtain full-length 
transcripts (or isoforms). This is the computationally demand-
ing task of transcriptome assembly10,11 and it must be per-
formed using only the information contained in the reads. The 
completeness and quality of the final assembly are very impor-
tant as they affect all subsequent steps of the data analysis, eg, 
annotation12,13 or quantification of the expression level.14,15 
The assembly process is typically accomplished by analyzing 
overlaps to concatenate the reads into extended contiguous 
sequences or contigs. In most cases, researchers achieve this 
concatenation using De Bruijn graphs. This graph is a compact 
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representation of a series of nucleotide-overlapping k-mers of 
reads that form a directed graph structure. A k-mer is a sub-
string of size k derived from reads, 1 nucleotide shifted at a 
time, resulting in a total of N − k + 1 k-mers of size k from a 
read of size N. In the De Bruijn graph, each node represents 
a k-mer, and the edges between the nodes indicate overlaps of 
size k-1 between neighboring k-mers. The De Bruijn graph-
based assembly is sensitive to the k-mer size, since it deter-
mines the set of assembled contigs by controlling the 
complexity of the graphs. In general, the choice of k-mer size 
has a varying impact on different sizes and abundance in iso-
form reconstruction.16-18

Certainly, the assembly process is not error-free19,20 and the 
quality of assembly can be assessed from different perspectives. 
Recent research has found species-specific differences in the 
performance of assembly tools. It has also been described that 
no tool delivered the best results for different data sets;21 sug-
gesting that there is a strong dependence on the conformation 
of each particular sample.

To our knowledge, most research has focused on assembly 
methods rather than the impact of sequencing data complexity 
on de novo assembly. In the last decade, research has been con-
ducted to analyze the effect of some variables, such as sequenc-
ing depth,22 error correction,23 and read length.9 These studies 
highlight the importance of selecting appropriate values for 
these variables, taking into account the objectives of the 
experiment and the characteristics of the species studied. 
Here, we analyze the impact of several variables that com-
pound the complexity of RNA-Seq data and assess how these 
variables affect the completeness and quality of the assembly. 
Understanding the impact of each variable is critical in the ini-
tial stages of the project design to adequately account for them. 
To achieve this, we generated simulated Illumina RNA-Seq 
data sets and used a set of open-source de novo assembly tools 
to assess possible different outcomes. To evaluate the accuracy 
of each assembly and identify the commonalities between 
them, we compared the results using multiple quality metrics. 
In addition, we investigated which metrics best predict assem-
bly accuracy to develop a criterion that can be applied in prac-
tice and real-world experimental designs.

Materials and Methods
A simulation test was performed by simulating Illumina data 
to examine the impact of read length, fragment size, alternative 
splicing, and dynamic expression range on the de novo assem-
bly of RNA-Seq data. The test comprised the following steps: 
(1) generation of simulated data; (2) assembly of transcripts 
using free available software; (3) calculation of metrics for 
quality assessment; and (4) analysis of the obtained metrics.

Generation of simulated data

The data generation process was implemented in an in-house 
Python script starting with random sampling from the Homo 
sapiens genome obtained from Ensembl (GRCh38.p12),24 fol-
lowed by simulation of nonstranded sequencing reads. This ver-
sion of the H sapiens genome has 54 644 genes with 160 474 
transcripts (113 620 mRNAs and 46 854 ncRNAs) conformed 
by 408 659 exons. The alternative splicing events can be esti-
mated from approximately 95% of multi-exon genes.25 During 
the sampling process, 3000 genes were randomly selected from 
the structural annotation of the genome for each sample. The 
degree of alternative splicing in the samples was controlled by 
the maximum number of isoforms extracted from those availa-
ble for each gene in the structural annotation, and by consider-
ing the desired level of alternative splicing. In the simulation 
process, the read length, fragment size, and transcript expres-
sion were controlled by the art_illumina software.26 A lognor-
mal distribution was used to generate expression values with a 
consistent mean and a variable standard deviation to allow the 
desired dynamic range of expression.27 The generated datasets 
and their characteristics are shown in Table 1. Each dataset was 
generated by maintaining all variables constant except the tested 
variable. Three independent replicates were performed for each 
condition. Gene duplications were eliminated by employing the 
Duplicated Gene Database (DGD)28 and keeping only 1 locus 
from each family, which provided the largest predicted tran-
script. The gene deduplication process using DGD prevented 
the presence of gene families from contributing to the complex-
ity of the datasets. Consequently, the bias due to gene duplica-
tions was not included in the effect of each variable tested.

Table 1. Parameter setup for generating simulated datasets without sequencing errors.

DATASET NAME READ LENGTh 
(BPS)

FRAGMENT SIzE 
AVERAGE (BPS) (σ = 0)

READ TyPE 
(SE / PE)

LOGNORMAL 
STANDARD DEVIATION 
(μ = 4)

MAxIMUM NUMBER 
OF ISOFORMS PER 
GENE

Alternative splicing 150 - SE 0.001 1/4/7/10

Expression range 150 - SE 0.001/0.01/0.1/1 1

Read length 100/150/200/250 - SE 0.001 1

Fragment size 150 300/400/500/600 PE 0.001 1

Fragment size with splicing 150 300/400/500/600 PE 0.001 10
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The selected variables were measured to assess the nature 
and complexity level of the simulated datasets: (1) quality of 
reads, (2) number of sequencing errors, (3) dynamic expression 
range, (4) degree of alternative splicing, (5) size of reads and 
fragments (PE), (6) sequencing depth of transcripts, and (7) 
random fragment selection. The evaluation of the sequencing 
quality, read length, read duplications, and random sampling 
were performed using the figures obtained from FastQC29 and 
MultiQC.30 However, the reads were globally mapped to the 
reference transcripts using Bowtie231 to determine the number 
of sequencing errors and indels. Furthermore, the expression 
level was estimated by counting and normalizing the mapped 
reads/fragments for each transcript, with the fragments per 
kilobase million (FPKM) values acquired using RseQC.32

The sequencing errors were quantified using mpileup33 and 
VarScan.34 A sequencing error at a position was defined when 
at least 1 nucleotide of a read differed from the reference tran-
script. The BAM files were used to analyze sequencing depth 
and fragment size (PE) with RseQC. The differences in alter-
native splicing levels were assessed by obtaining all possible 
alignments of at least 100 bps between the reference transcripts 
using nucmer.35

Assembly of transcripts using 6 free  
available software

The assembly process was performed using the 6 most popular 
assembly tools with default parameters: Trinity,36 Bridger,37 
Oases,16 Trans-abyss,17 SOAP,38 and IDBA-Tran39 with 2 
k-mer values: 25 and 31 for the first; 23 and 31 for the sec-
ond; and 23, 35, 47, and 59 for the others. The selected k-mer 
size ranges relate to sizes commonly used in practice for short-
read assemblies. Specifically, for Trinity and Bridger, only sizes 
up to 31 were tested because it is the maximum value allowed 
by the programs. Other commonly used assembly tools were 
tested, including Shannon,40 BinPacker,41 and rnaSPAdes42 
(Supplemental Table 1).

Calculation of metrics for quality assessment

A set of 12 assembly metrics specifically interesting to our 
study were selected based on previously defined metrics from 
the literature and divided into 2 classes: 6 reference-based (RB) 
and 6 reference-free (RF).9,18,20,43-47 The RB metrics compare 
the nucleotide composition of the contigs against the reference 
transcripts rather than the complete genome sequence. The 
selected RB metrics were chosen to evaluate the assembly con-
tent, focusing on both completeness and correctness. We 
curated a concise set of metrics to assess reconstruction and 
nucleotide-level accuracy. We prioritized error quantification 
metrics such as transcript coverage, collapsed contigs, and frag-
mented transcripts (Table 2). When selecting metrics, we 
excluded metrics that only consider amounts of contigs and 
their sizes. The RB metrics were computed using reciprocal 

BLAT48 alignments between the reference transcripts and the 
contigs, along with an internal Python script that considered 
only alignments with an identity greater than 95%. The align-
ment length was determined by adding the length of matches, 
mismatches, repmatches (matches on repetitive regions), and 
indels from the results of BLAT. Based on the alignment 
length, we defined a correct nucleotide as a nucleotide with an 
exact match within an alignment that covers at least 50% of a 
contig. In addition, the metric “70% reconstructed transcripts” 
was calculated. This measurement represents the percentage of 
reference transcripts that have an alignment covering over 70% 
of both the transcript and the contig, with an indel length of 
less than 1% relative to the alignment length.

Regarding collapsed contigs, a contig is considered col-
lapsed if it aligns with 2 or more transcripts with at least 50% 
coverage over the contig and 40% coverage over each transcript. 
In addition, the alignments between the contig and the tran-
scripts must overlap by more than 80%. A transcript was clas-
sified as fragmented if it is aligned with 2 or more contigs with 
at least 50% coverage of each contig and 10% coverage of the 
transcript. The alignment between the transcript and contigs 
must have less than 5% indels. Furthermore, the alignments 
must overlap by less than 20% but collectively cover more than 
50% of the transcript. Finally, a contig was categorized as 
incomplete if it matched at least 50% of a transcript but more 
than 5% of the alignment length composed of indels. To be 
classified as 1 of these 3 types of erroneous contigs, the contig 
must not have been previously classified as a transcript recon-
struction with 70% coverage. For the datasets containing alter-
native splicing, in addition to quantifying transcript 
reconstruction, we also calculated the percentage of assembled 
genes. In this case, a gene was considered as assembled if at 
least 1 transcript from that gene was classified as 70% 
reconstructed.

RF metrics (Table 3) were evaluated using the values 
obtained from 2 specific packages: RSEM-EVAL46 and 

Table 2. Reference-based metrics definition.

METRIC NAME DEFINITION

Nucleotide specificity Proportion of correct nucleotides in 
contigs

Nucleotide sensitivity Proportion of correct nucleotides in 
transcripts

70% reconstructed 
transcripts

Percentage of reference transcripts 
covered 70% at least

Collapsed contigs Percentage of contigs that 
correspond to the same transcript

Fragmented transcripts Percentage of transcripts 
assembled in 2 or more contigs

Incomplete contigs Percentage of contigs with 
insertions or deletions that modify 
the transcript structure
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Transrate.47 The RSEM-EVAL package was used by extract-
ing the general score provided by the DETONATE software. 
However, 5 statistics were considered with the Transrate pack-
age: assembly score, percentage of mapped fragments, number 
of potential bridges, percentage of uncovered contigs, and per-
centage of segmented contigs. Transrate statistics are obtained 
by mapping reads to contigs with SNAP,49 assigning multi-
mapping reads with Salmon,50 and finally checking alignments 
with transrate-tools.51 It is worth noting that RF metrics were 
calculated exclusively for paired-end datasets, as Transrate only 
supports this type of reads.

Analysis of the obtained metrics

The 2 groups of evaluation metrics (RB and RF) were analyzed 
using multivariate and correlation methods. The average values 
of each metric were compiled into matrices for each assessed 
variable. Only the average values were used because the stand-
ard deviations were very small in all cases (considering all met-
rics, approximately 95% of the samples showed a standard 
deviation of less than 5% from the average). These matrices 
were examined using the R package “GGally,”52 whereas cor-
relations between groups and within groups were estimated 
using the Spearman coefficient. The correlation coefficients 
were estimated using the results metrics for all samples together, 
encompassing all variables and their levels, as well as all assem-
blers and k-mer sizes. Analyzing all the samples collectively 
enabled us to derive robust correlations between metrics, inde-
pendent of the variable or assembler utilized. Principal compo-
nent analysis (PCA) was performed separately for the 2 classes 
of metrics using the R package “stats.”53 Regarding PCA, only 
the results with the extreme k-mer values (maximum and mini-
mum) were used for each of the assembly software to reduce 
the complexity of the plot. In addition, the metric values were 
scaled previously. PCA was chosen as a methodology to observe 

the evaluation metrics collectively, rather than viewing them 
separately in individual figures.

An analysis was conducted to examine the relationship 
between the reconstruction level of the transcripts and frag-
ment sizes prior to sequencing. The average and standard devi-
ation of “70% reconstructed transcripts” were calculated across 
the replicates for each 5% percentile of the length distribution 
of reference transcripts. The impact of the fragment size on 
assembling transcripts of different lengths was assessed by sim-
ulating 4 groups of datasets with varying standard deviation 
values for the fragment size distribution (Supplemental Table 
2). Finally, a series of graphs was generated to visualize the 
reconstruction level for different forms of fragment size distri-
butions (represented by different standard deviation values) 
using cumulative curves based on transcript length.

The “expression range” dataset was analyzed by calculating 
the average and standard deviation of the “70% reconstructed 
transcripts” across replicates for each 5% percentile of expres-
sion. This analysis aimed to investigate the relationship 
between dynamic expression range and k-mer size. These data 
were shown in a series of cumulative plots depicting the recon-
struction level per expression percentile, which was normalized 
relative to the total reconstruction level.

Results
Simulated dataset quality and distribution

Initially, we verified the quality and composition of our simu-
lated datasets. Sequencing quality, random fragment sampling, 
GC content, and read duplication degree analyses were per-
formed based on the FastQC and MultiQC plots. For all data-
sets, the sequence quality profile, as determined by read 
position, showed a quality value greater than 40 with extremely 
low variability. The nucleotide content per read position was 
independent of the position, with a uniform distribution of 

Table 3. Reference-free metrics definition.

METRIC NAME DEFINITION

RSEM assembly score The logarithm of the conditional probability of obtaining that set of contigs given the set of 
reads

Transrate assembly score The geometric mean of all contig scores multiplied by the proportion of input reads that 
provide positive support for the assembly. The contig score can be thought of as a 
measure of whether the contig is an accurate, complete, nonredundant representation of 
a transcript that was present in the sequenced sample

Transrate percentage of mapped fragments Percentage of fragments that map to contigs with both reads aligning to the same contig 
in the correct orientation

Transrate number of potential bridges Total number of potential bridges in the assembly, where a bridge represents a 
connection between contigs

Transrate percentage of uncovered contigs Percentage of contigs with an average depth less than 1

Transrate percentage of segmented contigs Percentage of contigs with a probability greater than or equal to 0.5 of having been 
segmented
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25% for each nucleotide. This indicates accurate random sam-
pling at the read positions. The GC content histograms dis-
played an expected Gaussian distribution with a mean close to 
50% (Supplemental Figure 1).

Low read duplication rates were observed (Supplemental 
Figure 2), generally below 5%, except in the presence of alter-
native splicing. In datasets where all reference genes had 2 or 
more isoforms, duplication values were found to be between 
10% and 20%. Increased duplication was also present in the 
“expression range” dataset with the highest dynamic range, 
where duplications reached nearly 15%. This was attributable 
to sampling limitations, as the highly expressed transcripts had 
a restricted number of possible distinct fragments.

Bowtie2 yielded mapping rates of 100% in all datasets with 
multimapping values below 5% and equal assignments to both 
strands. The multimapping rates increased up to 75% in data-
sets with the highest degree of alternative splicing. Furthermore, 
no sequencing errors were detected in any of the datasets. The 
100% mapping rates were a result of intentional exclusion of 
sequencing errors. Although this scenario does not necessarily 
reflect real-world conditions, it was important for our analysis 
as it allowed us to avoid bias due to sequencing errors. All 
curves for depth as a function of relative transcript position 
were as expected, with a plateau in the central region and drops 
at the ends. However, for the curves that involve the “fragment 
size” variable, the depth also decreased in the central regions 
(Supplemental Figs. 3 and 4). In these cases, the central depth 
drops were deeper and wider with increasing fragment size. 
These effects of depth drops at the ends and in the middle of 
transcripts were defined as sampling issues. The sampling 
issues were caused by the decreasing number of possible frag-
ments in these regions. In paired-end datasets, the depth drop 
effect occurred mainly in the middle of transcripts whose size 
is less than twice the fragment size. In the “alternative splicing” 
datasets, the total number of alignments obtained between 
pairs of different transcripts using nucmer was 60 000, 120 000, 
and 180 000 in the datasets with up to 4, 7, and 10 transcripts 
per gene, respectively. Datasets without alternative splicing had 
a number of transcripts pairwise alignments of 5000 or less. 
The fragment sizes obtained were as expected in all cases 
(Supplemental Figure 5).

Finally, the histograms of the FPKM values followed the 
expected distributions. For datasets lacking the expression 
range effect, they showed similar shapes, with close expression 
values and smaller expression ranges between different samples 
and replicates. In contrast, the FPKM distribution in “expres-
sion range” datasets showed different shapes, expression values, 
and dynamic ranges between samples (Supplemental Figure 6).

Overall metrics analysis

Figure 1 and Supplemental Figure 7 summarize the effects of 
the assessed variables on the assembly results. Two groups of 

assembly programs were distinguished based on their behavior 
in the evaluation metrics. Group “A,” which included the results 
from Trinity, Oases, and Bridger, had higher rates of collapsed 
and incomplete contigs, lower fragmentation rates, and higher 
percentages of transcripts reconstructed at 70%. In contrast, 
Group “B”—which included the results of SOAP, Trans-abyss, 
and IDBA-Tran— had higher fragmentation rates and lower 
percentages of reconstructed transcripts. The differences 
between the 2 groups become even more pronounced, particu-
larly in the presence of alternative splicing. For other com-
monly used assemblers that were tested but not included in the 
analysis, we observed similar results that were within the limits 
of those originally included. rnaSPAdes behaved similarly to 
the tools in Group “A” (Sup Table 1), while Shannon and 
BinPacker showed similar behavior to the tools in Group “B” 
(Data not shown).

We examined the correlation coefficients across all assessed 
variables for the metrics separately for each group: RB 
(Supplemental Figure 8) and RF (Supplemental Figure 9). 
However, we found remarkable correlation coefficients (greater 
than 0.8 or lower than −0.8) between RB and RF metrics 
(Supplemental Figure 10) included “70% reconstructed tran-
scripts” with “RSEM assembly score,” “Transrate percentage of 
mapped fragments,” “Transrate number of potential bridges,” 
and “Transrate percentage of segmented contigs”; and 
“Fragmented transcripts” with “RSEM assembly score” and 
“Transrate percentage of mapped fragments.” The positive cor-
relation of “Transrate percentage of mapped fragments” with 
“70% reconstructed transcripts” corresponded to the fact that 
the presence of a greater number of reconstructed transcripts 
increased the mapping percentages. Moreover, the fragmenta-
tion of contigs produced lower mapping rates because only part 
of the reads could be aligned, resulting in the observed negative 
correlations of “Transrate percentage of mapped fragments” 
and “Fragmented transcripts.” Finally, “RSEM assembly score” 
correlated positively with “70% transcripts reconstructed” and 
negatively with “Fragmented transcripts,” demonstrating that 
the generated model was informative for evaluating the assem-
bly correctness.

Multivariate analysis

Figure 2 illustrates the results of the PCA based on the RB 
metrics, divided by the evaluated variable. The figures display 
the first and most informative 2 principal components, with 
vectors representing the evaluation metrics. The direction and 
orientation of the vectors indicate the weight and sign of the 
metrics in each principal component. The absence of alterna-
tive splicing generally resulted in high rates of reconstructed 
transcripts and low error rates. Again, we could observe a clear 
separation into 2 groups, which was even more pronounced in 
the presence of alternative splicing. Group “A” tended to have 
higher levels of reconstruction at the expense of more 
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incomplete and collapsed contigs. The assembly results were 
grouped first by assembly program and then by k-mer size 
when evaluating expression range and read length (Figure 2B 
and C). This suggests that these variables had a smaller effect 
on the results, especially at higher k-mer sizes. For the variable 
read length, the worst results were consistently observed with 
the smallest read length (100 bps), while read lengths of 150, 
200, and 250 bp had similar outcomes. Finally, when analyzing 
the variable fragment size with a standard deviation of zero 
(Figure 2D and E), we found that the results improved with 

smaller fragment lengths, regardless of whether alternative 
splicing was present or not.

Figure 3 shows the PCA using the RF metrics. The results 
were similar to those obtained with the RB metrics. Better 
results corresponded to higher values for “Transrate assembly 
score,” “RSEM assembly score,” and “Transrate percentage of 
mapped fragments” and lower values for “Transrate percentage 
of segmented contigs,” “Transrate number of potential bridges,” 
and “Transrate percentage of uncovered contigs.” These find-
ings are in line with the observations made for the RB metrics 

Figure 1. Boxplots of the reference-based metrics (rows) for each dataset (columns), separated by assembly program. Each boxplot for every assembler 

includes the results of the metrics for all samples combined, covering all levels of each variable and all k-mer sizes. For the datasets with alternative 

splicing, there is a clear difference between Group “A” (Trinity, Oases, and Bridger) and Group “B” (SOAP, Trans-abyss, and IDBA-Tran), especially for the 

metrics: “Specificity,” “Incomplete contigs,” “Collapsed contigs,” and “fragmented transcripts.”
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in terms of assembly software and datasets. The best outcomes 
were obtained with the largest k-mer size and smallest frag-
ment size, which further enhance the separation between 
groups in the presence of alternative splicing.

Transcript and gene reconstruction evaluation

In the absence of alternative splicing, the average percentages 
of transcript reconstruction ranged from 62.8% to 76.5% for 

the minimum k-mer size, and from 73.5% to 96.3% for the 
maximum k-mer size. However, for the maximum degree of 
alternative splicing, the percentages decreased to a range of 
11.6% to 46.4% for the minimum k-mer size, and of 17.9% to 
48.7% for the maximum k-mer size. In the case of the frag-
ment size dataset with alternative splicing, the reconstruction 
levels ranged from 14.5% to 52.5% for the minimum k-mer 
size, and from 21.3% to 55.6% for maximum k-mer size. In 
addition, the average percentage of assembled genes in the 

Figure 2. PCA plots for reference-based metrics divided by evaluated variables. The average scaled values of each metric and only the results from the 

extreme k-mer sizes (maximum and minimum) are included. The direction and orientation of the vectors indicate the weight and sign of the metrics in 

each principal component. A clear separation between the groups can be observed, especially in the presence of alternative splicing (A and E), with 

distinctions based on “fragmented transcripts” as opposed to “70% reconstructed transcripts” mainly represented on the PC1 dimension. The metrics 

“Incomplete contigs” and “collapsed contigs” appear to be related. For the expression range (B) and read length (C) variables, the results were primarily 

grouped by assembler and then by k-mer size. For the fragment size variable (D and E), better results were obtained with smaller fragment lengths.
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alternative splicing dataset with the higher degree of splicing 
ranged from 44.5% to 91.3% for the minimum k-mer size, and 
between 61.3% and 93.5% for the maximum k-mer size. 
Moreover, in the fragment size dataset with splicing, the per-
centage of assembled genes ranges from 36.1% to 85.3% for 
the minimum k-mer size and from 51.2% to 88.9% for the 
maximum k-mer size. The higher percentages of assembled 
genes corresponded to the assembly programs classified under 
Group “A.”

Transcript reconstruction as a function of  
expression level

The relative transcript reconstruction levels were plotted 
against the expression level (Figure 4). The plot shows the 
challenges of assembling low-expression transcripts. The lower 
expression percentiles at the minimum k-mer size for Oases, 
SOAP, and Trans-abyss assemblers gave the better results. 
However, these differences did not yield significant results, as 
indicated by the Mann–Whitney test. It is worth noting that 
Trinity and Bridger exhibit a difference of 6 and 8, respectively, 
between the maximum and minimum k-mer sizes, while the 

other programs show a difference of 36. In addition, IDBA-
Tran generates the De Bruijn graph by iteratively considering a 
range of k-mer values and constructing the contigs stepwise. 
This strategy of IDBA-Tran could potentially account for the 
results obtained.

Transcript reconstruction as a function of  
transcript size

Figure 5 presented the reconstruction levels as a function of the 
length of the reference transcripts. It is important to note that 
all datasets used for Figure 5 had a standard deviation of zero 
for the distribution of fragment sizes. As the fragment size 
increased, the percentage of smaller transcripts that could be 
reconstructed decreased. This phenomenon was observed 
across different assemblers and can be attributed to the deep 
sampling problem illustrated in Supplemental Figure 3 and 
Supplemental Figure 4. For instance, at a fragment size of 400 
bps, no assembler was able to reconstruct transcripts up to the 
10th percentile. As the fragment sizes increased to 500 and 600 
bps, this threshold shifted to the 15th percentile. Supplemental 
Figure 11 illustrates the reconstruction level as a function of 

Figure 3. PCA plots for reference-free metrics for fragment size datasets with (A) and without alternative splicing (B). In the PC1 dimension, a clear 

separation was observed based on the metrics “Transrate percentage of mapped fragments,” “Transrate assembly score,” and “RSEM assembly score” 

as opposed to “Transrate number of potential bridges,” “Transrate percentage of uncovered contigs,” and “Transrate percentage of segmented contigs..” 

Better results were consistently obtained with shorter fragment lengths, regardless of the presence of alternative splicing and k-mer sizes.
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transcript length percentile for the datasets described in 
Supplemental Table 2. Evidently, the reconstruction level of 
short transcripts improves with an increase in standard devia-
tion, irrespective of the assembler used. For the fragment size 
datasets of 300 and 400 bps, a standard deviation of 50 bps or 
greater yielded better results compared with the best outcome 
achieved in the absence of a standard deviation (300 bps). 
Similarly, for the datasets of 500 and 600 bps, a standard devia-
tion of 100 bps or greater led to improved outcomes compared 
with the scenario without a standard deviation.

Discussion
In this work, we evaluated the effects of 4 variables on the com-
pleteness and quality of transcriptome assembly using error-
free simulated datasets from the Human Genome Project. We 
selected a set of RF and RB metrics to evaluate the assembly 
results. The same test was performed using rnaQUAST,54 a 
newly developed tool, by computing a comprehensive set of RB 
metrics that yielded similar results (Supplemental Figure 12). 
By measuring the correlations between the used metrics, we 
gained further insights into which metrics are better predictors 
of assembly quality. Our correlation analysis revealed that the 
RF metrics “RSEM assembly score,” “Transrate percentage of 
mapped fragments,” “Transrate number of potential bridges,” 
and “Transrate percentage of segmented contigs” provide valu-
able information for predicting the degree of fragmentation 

and reconstruction, but not for assessing collapsed and incom-
plete contigs. It is important to note that recent studies empha-
size the importance of using a consistent set of metrics for the 
systematic evaluation of assembly results.11,18 Rather than 
reducing the evaluation to a single value, a comprehensive 
study takes into account the weighting of different metrics, 
ensuring a most accurate assessment of assembly quality.20,44,45 
This approach allows for a more comprehensive understanding 
of the strengths and limitations of different assembly methods. 
The selected metrics can then serve as valuable decision sup-
port for selecting execution parameters and comparing the 
results obtained from different methods. Multivariate analysis 
and charts have proven to be good options for looking at a set 
of metrics as a whole and capturing the relationships and inter-
actions between the different metrics, providing a more holistic 
perspective on assembly quality. The correlated RF metrics 
identified in our analysis can be used to evaluate assemblies, 
while also considering the consistent results obtained from 
multivariate analysis using both RB and RF metrics.

The global analysis of the assembly metrics showed that 
alternative splicing had the greatest negative impact on tran-
script reconstruction. The quality analysis showed that varia-
tions in alternative splicing increase the biological complexity 
of the datasets, leading to high levels of read duplication, mul-
timapping rates, and the number of alignments between refer-
ence transcripts. Recent studies on plant and animal genomes 

Figure 4. “70% reconstructed transcripts” per percentile of expression in the expression range dataset with a standard deviation of 1, separated by 

assembler. The average and standard deviation of the “70% reconstructed transcripts” across replicates for each 5% percentile of expression were 

calculated and relativized to the total reconstruction level. All programs had difficulty reconstructing transcripts with low expression. Oases, SOAP, and 

Trans-ABySS showed differences in reconstruction levels for low-expression transcripts at extreme k-mer sizes.
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have shown that almost all multi-exonic genes in vertebrates 
and up to 70% of multi-exonic genes in plants have alternative 
splicing isoforms.55,56 These high percentages indicate that 
alternative splicing is widespread in real-world samples. 
However, the effects of other evaluated variables such as read 
length, fragment size, and expression range were comparatively 
more moderate. This behavior could be clearly observed in the 
PCA and boxplots, where the effects of splicing were stronger 
than the effects of k-mer size and other variables. The metrics 
most affected by alternative splicing were “70% reconstructed 
transcripts,” “collapsed contigs,” and “incomplete contigs,” 
which can be attributed to the challenge of resolving very simi-
lar transcripts. While the dependence of assembly on splicing 
level has been investigated in Chang et al9 with similar results, 
the effects of variables were not independently evaluated. 
Increasing read length, without sequencing errors, in single-
end data improved the assembly but had limitations on its 
length, as obtained in previous studies.9 Individual analysis of 
metrics showed minimal changes between 200 and 250 bps 
read lengths, with some metrics showing even worse results at 
250 bps. The PCA plots showed that the results at 150, 200, 
and 250 bps were close to each other and different from the 
results at 100 bps. However, these differences could deepen at 
the minimum contig length of 200 bps. In this case, the 

distribution of the transcript length should be taken into 
account due to sampling issues, especially for transcripts whose 
length is comparable to the read length.

Regarding variations in the dynamic range of expression, it 
was observed that samples with smaller standard deviations 
(0.001, 0.01, and 0.1) are minimally separated from samples 
with a standard deviation of 1. In general, the results improved 
for all the metrics as the k-mer size increased, regardless of the 
evaluated variable. This finding agrees with previous reports 
that suggest smaller k-mer sizes can theoretically only lead to 
better reconstruction of transcripts with low expression lev-
els.10,17,21 However, we did not find significant differences in 
reconstruction for the lower percentiles of expression with 
respect to k-mer size. It is worth noting that previous studies 
have reported contrasting results,16,44 with higher reconstruc-
tion levels observed in the lower percentiles of expression, using 
small k-mer sizes. It is important to consider that these studies 
did not control for the effects of different variables on tran-
scriptome complexity. They used real data and experimentally 
quantified transcript expression with RPKM. Reads per kilo-
base million has been shown to be inconsistent, because it does 
not account for all the biases inherent in transcriptomic data-
sets, such as relative abundance.57 Based on our results, we can 
state that no differences were observed for the expression levels 

Figure 5. “70% reconstructed transcripts” per percentile of reference transcripts length for the fragment size datasets with standard deviation of zero, 

separated by assembly program. The average and standard deviation of “70% reconstructed transcripts” were calculated across replicates for each 5% 

percentile of the length distribution of the reference transcripts. All programs had difficulty reconstructing transcripts of smaller size. Moreover, this 

phenomenon increases with fragment size, and extends to a greater number of lower percentiles.
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tested in this study, which had an average minimum expression 
of 1X and a 5th percentile of 10X. However, it is possible that 
differences in reconstruction occur at more extreme minimal 
expression and k-mer values.

When analyzing the assays with different fragment sizes, it 
became clear that the reconstruction of shorter transcripts 
became more difficult with increasing fragment size. This phe-
nomenon was not specific to a particular software but rather a 
general characteristic of the assembly process. Despite the 
expectation that increasing the size of the Illumina fragments, 
which contain more information, would lead to better results, 
the evaluation metrics deteriorated in the opposite way. One 
would anticipate that larger fragments would allow resolution 
of regions that are difficult to assemble with shorter fragments, 
such as determining the order of exons in different isoforms.17,38 
The decrease in sequencing depth within the central region of 
transcripts poses a limitation in correctly assembling tran-
scripts. This sampling issue is particularly relevant when the 
length of transcripts is equal to or shorter than twice the frag-
ment size. For instance, with a fragment size of 600 bps, we 
found this problem with transcripts of sizes around 1200 bps 
and smaller. It is important to note that the zero values for 
standard deviation in fragment size distributions do not reflect 
real-world scenarios, where distributions typically exhibit 
standard deviations around a mean value. Generally, efforts are 
made to minimize the standard deviations in fragment sizes, as 
this information is crucial for accurate assembly. By introduc-
ing a nonzero standard deviation, smaller fragments were gen-
erated, leading to increased depth uniformity and, consequently, 
improved assembly results. Furthermore, the observed trend 
indicated that larger average fragment sizes required larger 
standard deviation values to achieve better assembly results. 
Similar reasoning can be applied as a hypothesis to explain the 
minimum threshold of read length, considering the relative 
abundances of transcripts that are comparable in size with the 
read length. In transcriptomes with a higher abundance of 
smaller transcripts, optimal read lengths and fragment sizes 
tend to be smaller. The results of Chang et al9 indicate that dif-
ferent organisms may have varying optimal read sizes for tran-
scriptome assembly. In their study, they found that a lower 
threshold read size of 75 bps was sufficient for Saccharomyces 
cerevisiae, while H sapiens and Mus musculus required a larger 
read size of at least 150 bps. This read size threshold can be 
attributed to several factors, including differences in the distri-
butions of transcript size between the organisms. H sapiens and 
M musculus have larger transcript size distributions that are 
similar to each other, while S cerevisiae has a comparatively 
smaller transcript size distribution. As a result, S cerevisiae can 
achieve satisfactory assembly results with shorter reads, whereas 
larger transcriptome organisms require longer reads to ade-
quately capture their complexity.

Conclusions
The evaluation of de novo transcriptome assemblies has been a 
topic of frequent study; however, there is still a lack of 

knowledge regarding the impact of variables that compound 
these datasets on assembly results. In this study, we present a 
comprehensive assessment of RNA-Seq datasets complexity 
using 6 commonly used de novo assembly tools and controlled 
simulated data. We selected a set of 4 variables that affect the 
biological and technical complexity of the RNA-Seq data. 
Subsequently, we created different datasets to explore the 
effects of each variable and their interactions. Simulated data 
were employed instead of real data to ensure knowledge of the 
true transcriptome and maintain control over each variable’s 
contributions to the complexity. Although simulated datasets 
may not fully reflect the complexity of real transcriptomes, they 
are valuable for isolating and examining the individual effect of 
each variable on transcriptome assembly.

Among the variables evaluated, alternative splicing level 
emerged as the variable with the most negative impact on 
assembly results as it leads to increased biological complexity. 
While the presence of alternative splicing strongly affected the 
percentage of transcript reconstruction, the decreases in the 
percentage of reconstructed genes were not as significant. 
These results are relevant in real-world scenarios and should be 
considered in subsequent analysis steps, such as expression 
quantification. In general, the programs of Group “A,” consist-
ing of Trinity, Oases, and Bridger, achieved better results in 
terms of reconstruction of genes and transcripts in datasets 
with high complexity. Among these programs, Trinity stands 
out as the one with the best performance in most cases. 
Regardless of the variable being evaluated, higher assembly 
results were consistently obtained when the k-mer size was 
increased. However, the evaluation of the degree of reconstruc-
tion as a function of expression level did not reveal a significant 
performance advantage for smaller k-mer sizes for the tran-
scripts with low expression levels. It is important to note that 
these evaluations could be extended to include the lower 
extremes of the expression distributions, and adjust the relative 
abundance of lower-expressed transcripts, to fully understand 
and generalize their effects.

The multivariate analysis of RB metrics allowed the inte-
gration and comparison of results across samples. In addition, 
the RF metrics employed yielded similar results to the RB met-
rics. The RF metrics, including “RSEM assembly score,” 
“Transrate percentage of mapped fragments,” “Transrate num-
ber of potential bridges,” and “Transrate percentage of seg-
mented contigs,” derived from probabilistic models of 
assemblies or by analyzing the results of mapping reads to con-
tigs. Here, the RF metrics showed their potential for use in 
real-case comparisons. Finally, multivariate analysis proved to 
be a valuable tool for comparing assemblies, as it considers 
multiple metrics simultaneously.

Increases in read length and fragment size enhanced assem-
bly results by providing additional information. However, dif-
ficulties arose when encountering sampling issues, particularly 
impacting the reconstruction of transcripts shorter than twice 
the read or fragment size. The sampling issues resulted from 
the number of fragments of size N that can be obtained from a 
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transcript of size M. These sampling issues resulted in depth 
drops at the ends of the transcripts and, in the case of paired-
end reads, also led to depth reductions in the middle of the 
transcripts. Optimal size values for reads and fragments depend 
on the size distribution of the transcripts, what is related to the 
level of alternative splicing, and the size and number of exons 
within the sample. Notably, the results improved by increasing 
standard deviation and working with fragments of different 
sizes. Larger reads and fragments facilitated the resolution of 
splicing isoforms by capturing information about the order of 
exons, while smaller ones were necessary to achieve uniform 
depth. Considering the sampling issues resulting in variations 
in sequencing depth across regions of transcripts, and in a real 
scenario where the distribution of transcript sizes is unknown, 
it is advisable to generate at least 2 libraries with different frag-
ment sizes to achieve a uniform depth across transcript posi-
tions. For example, one could utilize a paired-end library with 
long fragment sizes (600 bps) along with another single-end 
library with short reads (150 bps).
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