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Abstract Leptin is an adipocyte-derived hormone

involved in a myriad of physiological process, including

the control of energy balance and several neuroendocrine

axes. Leptin-deficient mice and humans are obese, diabetic,

and display a series of neuroendocrine and autonomic

abnormalities. These individuals are infertile due to a lack

of appropriate pubertal development and inadequate syn-

thesis and secretion of gonadotropins and gonadal steroids.

Leptin receptors are expressed in many organs and tissues,

including those related to the control of reproductive

physiology (e.g., the hypothalamus, pituitary gland, and

gonads). In the last decade, it has become clear that leptin

receptors located in the brain are major players in most

leptin actions, including reproduction. Moreover, the recent

development of molecular techniques for brain mapping

and the use of genetically modified mouse models have

generated crucial new findings for understanding leptin

physiology and the metabolic influences on reproductive

health. In the present review, we will highlight the new

advances in the field, discuss the apparent contradictions,

and underline the relevance of this complex physiological

system to human health. We will focus our review on the

hypothalamic circuitry and potential signaling pathways

relevant to leptin’s effects in reproductive control, which

have been identified with the use of cutting-edge technol-

ogies of molecular mapping and conditional knockouts.
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Introduction

Leptin is a hormone primarily synthesized and secreted

by the white adipose tissue [362]. It is encoded by the

Lep/LEP gene (previously named ob gene, for obese) and

circulates in the plasma in free and bound forms. Leptin

receptors, encoded by Lepr/LEPR gene are found in six

isoforms expressed in a variety of organs and cell types

[4, 75, 124, 238, 243, 318, 361]. In the last 15 years or so,

leptin’s crucial role in multiple endocrine, metabolic and

autonomic functions has been unraveled. In the present

review, we will highlight the role of leptin in the control of

the reproductive neuroendocrine axis. Innumerous studies

have described a critical role for leptin in gonadal function,

uterine physiology, pregnancy, and implantation, which

will not be explored in this review. For discussions on these

issues, we recommend consulting the following articles

[40, 51, 130, 150, 166, 207, 271, 321]. Herein, we will give

special attention to recent advances in the identification of

key hypothalamic sites and signaling pathways relevant for

leptin’s action in reproductive control.

Leptin action as a signal of energy sufficiency

Under physiologic conditions, circulating levels of leptin

are highly correlated with stored adipocyte mass [83, 215,

362]. Leptin levels fall quickly during starvation, in
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parallel with the stereotypical response of various neuro-

endocrine systems and, therefore, fluctuations in the levels

of leptin are viewed as a key metabolic cue for the neu-

roendocrine adaptations that occur during negative energy

balance [6, 61, 68, 124]. Falling leptin levels signal energy

insufficiency, inducing counter-regulatory responses to

preserve or accumulate energy. Increases in appetite and

motivation for food search, decreases in thermogenesis and

locomotor activity, inhibition of the thyroid axis and acti-

vation of the hypothalamic–pituitary–adrenal axis are

examples of critical adaptive responses [2]. Additionally,

likely due to the high energetic costs of reproductive pro-

cesses such as pregnancy and lactation, states of negative

energy balance rapidly inhibit the reproductive function.

Fasting rodents and primates exhibit decreases in sex ste-

roids, pulsatile luteinizing hormone (LH) secretion and

fertility [52–54, 215, 221, 258, 339]. Studies from several

laboratories, using different species and paradigms, have

demonstrated that leptin administration blunts the fasting-

induced suppression of LH secretion, restores female

cyclicity and improves fertility [5, 140]. In mice, 48 h of

food deprivation led to decreased LH levels and longer

estrous cycles. Chronic leptin administration sustained

elevated LH secretion and precluded estrus delay [5].

Likewise, chronic administration of leptin prevented the

reduction of LH pulse frequency in fasted female rats, and

maintenance of steady physiologic levels of leptin allowed

a preovulatory LH surge in fasted rats [245, 337] (but see

also [324]). Acute leptin administration to food-deprived

male or female rats induced a rapid increase in LH pulse

frequency and amplitude [98, 140], and intracerebroven-

tricular administration of leptin antiserum disrupted

cyclicity and LH secretion in fed rats [60].

Similar effects of leptin are less clear in non-human

primates as only very high doses of leptin can sustain LH

levels in fasted monkeys [122, 191, 192, 220]. Moreover,

seasonal breeders (e.g., sheep and hamsters) appear to have

evolved divergent strategies to assure reproductive success,

favoring photoperiodic cues over metabolic signals. For

discussion of species differences and contradictions please

see [262, 288]. However, as a valuable proof-of-principle,

leptin treatment increased pulse frequency and mean levels

of LH, estradiol, ovarian volume and number of dominant

follicles in women with hypothalamic amenorrhea result-

ing from extreme exercise and weight loss [68, 206, 234,

335, 341]. Therefore, despite species differences and con-

troversies in the field, it is now well-accepted that leptin is

a key metabolic cue that signals energy sufficiency to

control adequacy and timing of reproductive function.

Recently, a series of compounds with the ability of

blocking leptin action were produced, including leptin

antagonists and antibodies against the leptin binding

domain of LepR [120, 254, 303]. With these tools,

temporary/reversible blockade of leptin action became

feasible and, therefore, the use of these compounds is

expected to contribute to our understanding of leptin

physiology. For example, treatment of rats with leptin

antagonist during early postnatal life impaired the appro-

priate development of several organs, including ovaries

with marked decrease of primordial follicles [12]. This

study highlights a previously unrecognized role of leptin in

postnatal maturation of reproductive organs.

Effects of leptin deficiency in the reproductive

neuroendocrine axis

The genetic mutation causing leptin deficiency was first

identified in C57BL/6 mice (named ob/ob, for obese) at

Jackson Laboratories [165]. The mutation was later defined

as autosomal recessive, and homozygotes are morbidly

obese due to hyperphagia and decreased energy expendi-

ture and display multiple neuroendocrine abnormalities

[79, 362]. Leptin-deficient mice of both sexes are infertile,

but some degree of reproductive capability has been

described in young ob/ob males [194]. At prepubertal

stages, the reproductive organs of ob/ob mice are indis-

tinguishable from wild-type, but neither males nor females

attain sexual maturation. Proper sexual development and

fertility is only achieved if leptin is provided [21, 70, 239].

The infertility phenotype observed in leptin-deficient mice

is dependent on genetic background, as obese ob/ob mice

crossed onto a BALB/cJ strain have improved fertility. The

effect of the so called, but yet unidentified, genetic modi-

fiers appears to be sexually dimorphic. Males from the F2

generation are partially fertile, whereas females only show

improved fertility after ten generations of backcrossing of

the ob mutation onto the BALB/cJ genetic background

[266].

The reproductive organs of leptin-deficient male and

female mice (in C57BL/6 background) display a series of

morphological and biochemical abnormalities. The weights

of ventral prostate and testes are decreased while the

reported weights of the seminal vesicles are variable [239,

317]. The seminiferous tubules contain fewer sperm and

the Leydig cells are reduced in size [239]. The uterus is

immature and ovaries have a comparable number of folli-

cles to wild-type mice at initial stages, but no mature

follicles or corpora lutea were detected [21]. The uterus

and ovaries respond adequately to exogenous estradiol and

gonadotropins [103, 193]. When transplanted to wild-type

females, ovaries of ob/ob mice produce sex steroids and

viable oocytes, and gametogenesis may be restored by

exogenous administration of gonadotropins [24, 161].

Leptin-deficient male and female mice show reduced

pituitary content of luteinizing hormone (LH) and
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increased pituitary content of follicle stimulating hormone

(FSH) [24, 317]. However, circulating levels of LH and

FSH are decreased in both male and female ob/ob mice.

Increased gonadotropin secretion can be induced by cas-

tration, although at a lower magnitude compared to the

wild-type [193, 317]. Notably, ob/ob mice are highly sen-

sitive to the suppressive effects of sex steroids on

gonadotropin secretion, consistent with a prepubertal con-

dition of high negative feedback restraint [317].

Gonadotropes of ob/ob mice respond adequately to gona-

dotropin releasing hormone (GnRH) challenges, and ob/ob

female mice can ovulate and become fertile if levels of

gonadotropins and sex steroids are maintained at physio-

logical ranges [161]. Interestingly, compared to the wild-

type, higher GnRH content is observed in the hypothala-

mus of adult ob/ob mice [24]. These findings indicate that

leptin-deficient mice have adequate development and

functioning of gonadotropes and gonads but deficient

GnRH secretion at the expected time of puberty onset.

Consistent with this concept, in vitro and in vivo studies

have determined that leptin acts primarily in the brain by

stimulating GnRH secretion [198, 199, 257, 347, 358].

Leptin signaling deficiency in humans

In humans, leptin signaling deficiency caused by genetic

mutations is a rare condition. In general, two forms of

congenital leptin signaling deficiency have been identified:

mutation in leptin (LEP) gene and mutation in leptin

receptor (LEPR) gene. Both comprise rare causes of

monogenic obesity and infertility. Individual heterozygotes

for LEP or LEPR genes mutation undergo puberty and

show apparently normal reproductive life. Therefore, only

one functional copy of LEP or LEPR genes is required for

the normal progression of sexual maturation and fertility.

Twenty-nine cases of loss-of-function of LEP gene and 20

cases of mutation impairing LEPR signaling have been

reported in the literature [77, 118, 119, 123, 129, 205, 227,

228, 259]. Affected individuals are usually born with

normal birth weights but rapidly gain weight in their first

few months of life. They exhibit hyperphagia with

aggressive behavior if food is denied, and become mor-

bidly obese. Failure of pubertal growth spurt and lack of

secondary sexual characteristics is usually observed [117].

However, one affected Turkish female with LEP gene

mutation began to have menses after a delay of 20 years. In

addition, three women with LEPR mutations had irregular

menses starting in their third to fourth decade of life, and

sex hormones were consistent with their age [255].

Recombinant leptin therapy to leptin-deficient subjects has

restored the gonatropic axis, induce puberty, correct men-

strual irregularities, increase height and reduce relative fat

mass [116]. No therapy has been described for subjects

with LEPR mutation.

The role of leptin deficiency in constitutional delay in

growth and puberty (CDGP) has also been investigated.

Subjects with CDGP have lower leptin levels compared to

normal controls [31, 137]. They are usually underweight

for their height exhibiting decreased adipose tissue mass

and low circulating levels of leptin and, therefore, the

delayed puberty onset has been interpreted as a conse-

quence of low leptin production [107]. A missense variant

in LEP gene was identified in one individual with CDGP

[241]. The sequence variant was also detected in his

mother that exhibited similar features of decreased fat mass

and delayed sexual maturation. Interestingly, this sequence

variant was associated with delayed puberty in the context

of decreased body mass index (BMI) rather than obesity.

Because of this unexpected outcome, further investigation

is necessary to determine if pubertal delay is directly

associated with deficient leptin signaling.

Leptin as a permissive factor for the onset of puberty

Many aspects of the reproductive physiology are energet-

ically demanding (e.g., territoriality for males or pregnancy

and lactation for females) and, therefore, the individual

nutritional condition is a key factor in the onset of puberty

[91, 108, 272, 322]. Seminal studies by Kennedy and Mitra

[182] showed that the time of puberty initiation in rats is

correlated with body size, not chronological age. Subse-

quently, a series of epidemiological studies in humans

proposed that a critical amount of body fat is required for

proper sexual maturation [126, 127]. Following its dis-

covery as an adipocyte-derived hormone in 1994, leptin

was readily recognized as the potential link between energy

stores (adiposity) and the progression of puberty.

Due to the infertility of the ob/ob mice and the complete

rescue of fertility following leptin administration, leptin

was initially hypothesized to be the key signal for the onset

of puberty. However, it soon became clear that leptin is

rather a permissive factor that is required, but not suffi-

cient, for normal sexual maturation. In this respect, a

critical evaluation of some apparent controversies is nec-

essary. Different laboratories have reported dissimilar

results on the ability of exogenous leptin to advance the

onset of puberty in rodents [3, 9, 72]. Leptin administration

at low concentrations, which are insufficient to alter

metabolism, in female mice induced an advance in the

onset of puberty [3]. In prepubertal female rats, leptin

increased the secretion of gonadotropin and the expression

of ovarian steroidogenesis enzymes and advanced puberty

[9]. In another study, leptin administration was linked to

decreased food consumption and did not advance the age at
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puberty onset. However, pair-fed mice used as controls in

this paradigm showed delayed puberty onset, suggesting

that leptin administration prevented the delayed pubertal

development caused by the negative energy balance [72,

73]. This finding is in agreement with studies showing that

maintenance of adequate leptin levels prevents pubertal

delay in conditions of negative energy balance [143]. In

this context, leptin also functions as a metabolic signal of

energy sufficiency, as previously discussed. Low leptin

levels induced by a negative energy balance halt sexual

maturation, which can be restored by leptin administration.

An additional argument in favor of a role for leptin in

puberty initiation would be the occurrence of changes in

leptin levels or signaling during the pubertal transition.

While still controversial, nocturnal increases in leptin

secretion before puberty have been observed in both rats and

primates [244, 314]. Moreover, mice overexpressing leptin

(transgenic skinny mice) showed early appearance of vaginal

opening followed by uterine and ovarian maturation, sug-

gestive of accelerated activity of the hypothalamus–

pituitary–gonads (HPG) axis [360]. The skinny female mice

also showed an advance in reproductive senescence, indi-

cating that in addition to the advance in the onset of puberty,

hyperleptinemia may promote reproductive failure at early

ages. Whether this represents a physiological correlation to

the dysfunctional activity of the HPG axis observed in obese

patients still needs to be demonstrated. Along the same lines,

recent studies have suggested that the hyperleptinemia

observed in young obesity or overnutrition may be the cause

of reported advances in the age of puberty onset [33, 62, 108,

322]. For more details and discussion, we recommend con-

sulting recently published articles focused on this specific

issue [7, 34, 49, 104, 108, 171].

Leptin signaling and the reproductive function

The LepR is a member of the class 1 cytokine receptor

family and is found in six isoforms, all derived from splice

variants of the LEPR/Lepr gene [75, 200, 318]. Of the six

isoforms, only the LepR long form (302 amino acids

intracellular domain) contains a Box 3 motif, which

enables the activation of the Janus kinase/signal transducer

and activator of transcription (JAK/STAT) signaling

pathway [36, 243, 354]. Binding of JAK2 to STAT3 leads

to its phosphorylation at Tyr1138 and translocation to the

nucleus where it functions as a transcription factor [19,

240]. Thus, the long-form of leptin receptor (a.k.a. LepRb)

is recognized as the physiologically relevant signaling

isoform. Consistent with this concept, loss-of-function

mutations of LEPR/Lepr long-form in humans and mice

(db/db mice) cause metabolic and reproductive phenotypes

remarkably similar to leptin-deficient subjects [77, 79].

The selective deletion of leptin-induced STAT3 signal-

ing in cells that express LepR (LRbS1138 s/s mice)

recapitulates most of the db/db metabolic phenotype, pro-

ducing hyperphagia, high adiposity and disruption of the

melanocortin circuitry in both males and females [23].

However, these mice show improved glucose homeostasis

and increased body length compared to db/db mice, and

while db/db mice are infertile, a relatively high proportion

(40 %) of LRbS1138 s/s female mice are fertile [23]. All

LRbS1138 s/s females displayed estrous cyclicity, develop-

ment of reproductive organs and ovarian signs of ovulation,

supporting the concept that hypothalamic control of

reproduction by leptin is mediated by a STAT3-indepen-

dent signaling pathway [23]. Subsequent studies have

reported a seemingly contrasting result. Deletion of STAT3

signaling (STAT3N-/-) from the brain (Nestin-Cre mouse

model) resulted in hyperphagic obesity, and high plasma

corticosterone, glucose and insulin levels, similar to ob/ob

and db/db mice [134]. Males and females were infertile

with deficient development of the reproductive organs. In

the attempt to evaluate the contribution of STAT3 signal-

ing pathways to the acute effects of leptin, another group

used stereotaxic injection to deliver a cell-permeable

phosphopeptide inhibitor of STAT3 phosphorylation into

the mediobasal hypothalamus. Females with acute block-

ade of STAT3 in the ventromedial hypothalamus did not

show leptin-induced LH secretion during fasting, indicat-

ing that STAT3 expression in the mediobasal

hypothalamus is required for the acute effects of leptin on

fasting-induced suppression of LH secretion [46]. In this

study, the authors also used genetically modified mouse

models to demonstrate the requirement of STAT3 signaling

for the acute effects of leptin on food intake and glucose

metabolism [46]. Although these mouse studies have gen-

erated some controversies concerning the role of leptin-

induced phosphorylation of STAT3 in reproductive func-

tion, it is important to stress that STAT3 signaling

pathways is not unique to leptin response. STAT3 is a

common transcription factor recruited by several cytokines

including ciliary neurotrophic factor (CNTF) and inter-

leukin 6 (IL6) [38]. Moreover, and of particular relevance

to our topic, estrogen appears to also induce phosphoryla-

tion of STAT3 in mediobasal hypothalamic neurons [133].

Deletion of STAT3 from all cells in the brain or stereotaxic

delivery of STAT3 inhibitor into the mediobasal hypo-

thalamus may block a critical pathway for the control of

reproductive physiology unrelated to leptin signaling.

Endogenous and selective blockade of leptin-induced

STAT3 rendered a mouse model with metabolic features

similar to leptin-signaling deficiency but with improved

fertility, indicating that the full effect of leptin on repro-

duction requires the recruitment of a STAT3-independent

signaling pathway.
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Several studies support the hypothesis that leptin also

engages the phosphoinositide 3-kinase (PI3K) signaling

pathways to exert its effects [243, 250, 352, 363]. For

example, in hypothalamic slices, leptin hyperpolarizes a

subset of arcuate nucleus neurons via activation of an ATP

sensitive potassium channel, resulting in reduced firing

rates [309, 310]. This effect is fully blocked by PI3K

inhibitors [250, 345]. Likewise, the leptin-mediated depo-

larizing effect on proopiomelanocortin (POMC) neurons is

dependent on PI3K signaling and administration of PI3K

inhibitors blunted the ability of ICV leptin to reduce food

intake [156, 250, 363]. In addition, blockade of PI3K sig-

naling precluded the ability of hypothalamic leptin

administration to inhibit white adipose tissue lipogenesis

[45].

The mechanism by which leptin triggers PI3K activity is

thought to be via phosphorylation of insulin receptor sub-

strate-2 (IRS-2) [47, 249]. As the name implies, IRSs are

also implicated in insulin signaling [342], but the extent of

overlap between leptin and insulin cellular responses in

different organs and tissue is still unsettled. IRS-2 is

expressed in hypothalamic sites responsive to leptin and

related to metabolic control, including the arcuate nucleus

and the ventromedial nucleus of the hypothalamus [256].

Global deletion of IRS-2 (IRS-2-/-) in mice cause meta-

bolic dysfunction and female infertility [48]. IRS-2-/-

female mice failed to cycle and ovulate, had decreased

levels of sex hormones and deficient ovarian development.

Interestingly, recent studies have shown that mice with

inactivation of IRS-2 specifically in LepR neurons are

fertile, but whether these mice display regular puberty

onset, cyclicity, sex hormone levels in response to meta-

bolic challenges or advanced or delayed reproductive

senescence has not been reported [279].

Multiple forms of PI3Ks exist. The class 1a enzymes are

heterodimers consisted of one regulatory and one catalytic

subunit. There are typically five regulatory subunits, col-

lectively referred to as p85s, and the catalytic subunits are

comprised of three variants referred to as p110s [58, 331].

Activation occurs when p85 binds to IRS and localizes the

catalytic activity/subunit to the cell membrane, where PI3K

catalyzes the phosphorylation of PIP2 to PIP3 that, in turn,

recruits and activates downstream targets. The PI3K cata-

lytic subunits p110a and p110b are ubiquitously expressed,

and global deletion of either one is embryonically lethal

[29, 30, 69, 159]. However, mice carrying a knock-in

mutation causing a 50 % loss-of-function of p110a activity

are viable, but displayed suppressed IRS-2 signaling and,

thereby, decreased responsiveness to insulin and leptin,

hyperphagia, glucose intolerance and increased adiposity

[125]. Both catalytic subunits are coexpressed in hypo-

thalamic neurons, which express LepR [345]. Selective

deletion of these subunits from LepR-expressing neurons

precludes leptin-induced changes in cellular activity [8,

345]. However, whether the lack of leptin-induced PI3K

signaling results in reproductive deficits has not been

reported.

Another signaling pathway potentially recruited by

leptin is the mammalian target of rapamycin (mTOR) [87].

The mTOR is a highly conserved serine-threonine kinase

downstream of the PI3K–Akt pathway, which is involved

in multiple physiologic regulations. Of importance to this

review is its critical function in the control of growth and

development via the integration of signals from nutrients

and circulating factors [160, 196]. The availability of

nutrients (amino acid L-leucine) and adequate levels of

adenosine-triphosphate (ATP) activate mTOR that, in turn,

induces protein synthesis [147, 160, 287]. Therefore,

mTOR is recognized as a sensor of energy availability in

cellular growth and development. Mutation in the gene

encoding Mtor in mice is embryonically lethal, whereas

increased activity of mTOR induces metabolic dysfunc-

tions including obesity and diabetes [131, 151, 160, 237].

High levels of constitutive mTOR activity down-regulate

insulin and growth factor signaling by decreasing insulin

receptor substrate (IRS1/2) expression and protein stability

[299, 327]. In agreement, the activation of mTOR pathway

is elevated in the liver and in the skeletal muscle of insulin-

resistant obese rats maintained on a high-fat diet, whereas

absence of a downstream mTOR target, the ribosomal S6

kinase (S6K), protects against diet-induced obesity and

enhances insulin sensitivity in mice [183, 328]. Following

this line, leptin administration to rodents induced phos-

phorylation of downstream targets of mTOR (S6K1), and

blockade of mTOR by rapamycin precluded leptin-induced

phosphorylation of S6K1 and the effects of leptin to reduce

food intake [87].

A role for mTOR in the neuroendocrine reproductive

axis of the female rats was reported [273, 274]. Activation

of the mTOR pathway by acute administration of L-leucine

increased LH levels in prepubertal mice, whereas L-leucine

chronic treatment resulted in no changes in puberty onset.

Likewise, L-leucine administration slightly increased LH

levels in caloric restricted prepubertal female rats, but did

not correct the delayed onset of puberty typical of this

experimental model. On the other hand, blockade of mTOR

by central administration of rapamycin delayed puberty

and blunted leptin’s effects in promoting pubertal devel-

opment of food-restricted female rats [273, 274]. It will be

important to define whether this effect is directly associated

with leptin signaling or with a general blockade of a crucial

factor of adequate nutrition and energy availability

required for reproductive function.

Recent studies have also suggested a role for Crtc1

(cAMP-responsive element-binding protein regulated

transcription coactivator-1) linking energy balance and
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reproduction [10]. Crtc1 is a cytoplasmic coactivator

highly expressed in the brain. It translocates to the nucleus

following dephosphorylation induced by cAMP or calcium

activation [35, 295]. Two independent groups have repor-

ted that mice with a loss-of-function mutation in the Crtc1

gene develop obesity [10, 42]. However, infertility was

only observed in one mutant mouse line [10]. Females from

the mutant line generated by Alterejos and colleagues,

displayed low gonadotropin and sex steroids levels, and

lacked development of the reproductive tract. Interestingly,

in this study the authors also demonstrated that leptin

increases the dephosphorylated (nuclear) form of Crtc1,

and thereby regulates the transcription of specific neuro-

peptides involved in the control of the reproductive

physiology (i.e., kisspeptin) [10]. Because of the contrast-

ing findings observed by independent groups using similar

techniques and mouse genetic backgrounds, further studies

will be necessary to evaluate the contribution of Crtc1 to

leptin’s effects on the reproductive neuroendocrine axis.

Brain circuitry engaged in leptin’s action

on reproductive control: redundancies for the benefit

of the species

Leptin receptors are expressed in a wide range of organs

and tissues [361]. However, the literature now converges to

a common view that most of leptin’s actions, including

those in the reproductive neuroendocrine axis, are mediated

by the long-form LepR expressed in the central nervous

system [78, 95]. The initial observations of dense LepR

expression in hypothalamic sites and leptin-induced

increases in LH pulsatility in a variety of species and both

sexes suggested that GnRH neurons are direct targets of

circulating leptin [199, 257, 347, 359]. This concept was

later reinforced by the observation that immortalized

GnRH (GT1) neurons and GnRH-expressing human neu-

roblasts (FNC-B4) express LepR and that leptin may

directly alter GnRH cell activity [217, 236, 313, 361].

However, the expression of the LepR gene in GnRH neu-

rons has been difficult to demonstrate. Recently, with the

use of mouse models expressing reporter genes, it has

become evident that mouse GnRH neurons express virtu-

ally no or very low levels of LepR [100, 208, 269]. The

evaluation of the requirement of LepR expression in GnRH

neurons for sexual maturation and fertility came with the

use of conditional knockout mice. Quennell and colleagues

demonstrated that the deletion of LepR from GnRH neu-

rons produces no identifiable reproductive deficits [269].

Males and females show regular pubertal development, are

fertile and retain normal fecundity. This study determined

that LepR expression in GnRH neurons, if proven, is not

required for leptin’s effects on mouse reproductive

physiology. Therefore, it seems reasonable to assume that

leptin stimulation of GnRH secretion is primarily mediated

by a relay station via interneurons that innervate GnRH

cells. The search for these specific neuronal populations

has become a critical issue to the field.

LepR is highly expressed in numerous brainstem and

hypothalamic sites [59, 113, 121, 231, 232, 242, 294]. In

the brainstem, the nucleus of the solitary tract (NTS) might

possibly mediate leptin’s effects as it functions as a sensory

relay of the internal milieu via vagal afferents or the area

postrema [132, 172, 175]. However, a role for the NTS or

the brainstem in leptin’s action on reproductive control is

unlikely because deletion of LepR selectively from fore-

brain nuclei (CamKIIa-Cre mouse model) produced male

and female mice with reproductive deficits similar to lep-

tin-deficient mice [269]. These findings demonstrate that

leptin action in the brainstem is not required for repro-

ductive function. Rather, LepR-expressing neurons located

in the forebrain are the main players.

Stress-induced disruption of the reproductive function:

the role of the paraventricular nucleus

of the hypothalamus

Food deprivation, severe caloric restriction and negative

energy balance are well-described states of nutritional

stress [74, 93]. In general, stressors of different origins

activate the hypothalamus–pituitary–adrenal (HPA) axis

primarily by inducing the secretion of corticotropin

releasing hormone (CRH) into the hypophyseal portal

system. CRH, in turn, stimulates adrenocorticotropin

(ACTH) release from the anterior pituitary gland and

subsequent corticosterone production from the adrenal

gland [152, 312]. The adenohypophyseal neuroendocrine

CRH neurons are located in the medial parvicellular aspect

of the paraventricular nucleus of the hypothalamus (PVH),

a prominent hypothalamic structure involved in the coor-

dination of a series of neuroendocrine and autonomic

responses [282, 284]. Conditions of nutritional stress (i.e.,

perceived negative energy balance) activate the HPA axis,

concomitant with a decrease in leptin and LH secretion [5,

216, 325]. Exogenous leptin infusion during fasting pre-

vents the activation of the HPA axis and the suppression of

the reproductive axis [5]. In light of these coordinated

responses, several groups have postulated that the negative

energy balance-induced decrease in LH secretion might be

an inhibitory response triggered directly by the high

activity of the HPA axis. The experimental approach

selected to test this model was the use of 2-deoxyglucose

(2DG)-induced blockade of cellular glucose utilization as a

controlled experimental tool that mimics states of starva-

tion. In this paradigm, 2DG increased corticosterone levels,

846 C. F. Elias, D. Purohit

123



and decreased leptin and LH secretion [246, 325, 338].

Pharmacologic inhibition of CRH signaling in 2DG treated

female rats normalized LH levels [325]. However, while

leptin treatment prevented the 2DG-induced increase in

corticosterone, it had no effect on LH secretion [246]. Two

important conclusions can be drawn from these findings:

(a) the restraint of LH pulsatility caused by blockade of

cellular glucose utilization appears to be mediated by CRH

signaling in the brain; and (b) leptin’s induction of LH

secretion during negative energy balance is independent of

the normalization of HPA axis activity and does not

overcome the deleterious effects of lack of glucose

availability.

Leptin-deficient ob/ob mice also exhibit abnormal

stimulation of the HPA axis [106]. Leptin administration to

these mice inhibits the activity of the HPA axis by

decreasing ACTH and corticosterone levels [11, 148].

However, the direct action of leptin on PVH CRH-

expressing neurons is still uncertain and a series of

apparent controversies deserves an attentive look. Early

studies have proposed that leptin’s effect on food intake

may be attained by stimulation—not inhibition—of CRH

neurons. For example, intracerebroventricular administra-

tion of leptin to fasted rats increased CRH mRNA levels in

the PVH [291, 326]. This change was not observed in

LepR-deficient Zucker rats, indicating that it is dependent

on LepR signaling, not secondary to the stress of the

experimental procedure. Leptin also stimulated CRH

secretion from hypothalamic explants of rats and adrenal-

ectomized mice [86, 169]. Because it is reasonable to

expect that stimulation of neuroendocrine CRH neurons

would induce ACTH and corticosterone production, these

findings appear contradictory. However, CRH neurons in

the PVH do not comprise a homogeneous population.

Rather, they consist of neuroendocrine and autonomic

components [281, 284]; therefore, data obtained from

changes in CRH expression in the PVH as a whole may not

be very informative. Moreover, the expression of LepR in

the PVH is very low [59, 100, 113, 294] and the colocal-

ization of LepR in PVH CRH neurons has not been clearly

demonstrated. It is interesting though that leptin induces a

neuronal response (Fos-immunoreactivity) in neurons of

the ventral parvicellular subdivision of the PVH (PVHvp)

in rats [109]. The PVHvp projects to sympathetic and

parasympathetic preganglionic neurons in the brainstem

and spinal cord, and a subset of these neurons coexpress

CRH [281, 283, 316]. However, whether PVHvp CRH

neurons have a critical role in leptin’s physiology is still

unsettled. In any event, leptin’s effect on CRH secretion

and/or neurotransmission appears to be achieved via indi-

rect and/or independent pathways, and the response of

specific neuroendocrine and/or autonomic neuronal popu-

lations may be defined by leptin-responsive neuronal

inputs. One component of this circuitry is the arcuate

nucleus [242, 292], a hypothalamic site, which has been

extensively studied in the context of leptin’s physiology.

Arcuate nucleus: a prime sensor of the internal milieu

The arcuate nucleus (Arc) lies adjacent to the median

eminence, a key circumventricular organ located at the

base of the hypothalamus [43, 132]. The median eminence

contains fenestrated blood vessels that allow diffusion and

interchange of bigger molecules (peptides and hormones)

between the brain parenchyma and the bloodstream. Leptin

can passively penetrate the brain through the circumven-

tricular organs, with the highest levels of labeled-leptin

binding observed in the Arc, surrounding the median

eminence [20]. In the Arc, LepRb is expressed in a subset

of proopiomelanocortin (POMC), neuropeptide Y/agouti

related protein (NPY/AgRP) and Kiss1 neurons [22, 71,

306]. POMC and NPY/AgRP neurons mediate a diverse

range of leptin’s actions in metabolism [82, 114, 235, 290,

344, 348] and several studies have identified these popu-

lations also as key players linking leptin action and

reproduction.

The role of the melanocortin system (POMC and AgRP

neurons) in the control of the HPG axis has been the focus

of contentious debate. This is mainly due to inconsistencies

described by independent laboratories using distinct

approaches and the incomparable phenotypes of different

species, mutant mice and genetically engineered mouse

models. Humans with loss-of-function mutations of mela-

nocortin signaling show no reproductive deficits [117, 190,

355], while in ewes, which are seasonal breeders, studies

indicate that melanocortins relay leptin’s action in the HPG

axis [14, 15]. In rodents, inconsistent findings must be

interpreted based on the experimental design and approach.

Arc POMC neurons project to the preoptic area and make

apparent synaptic contact with GnRH and kisspeptin cells

[89, 201]. One important issue to consider is that POMC, a

complex preprohormone, generates neuroactive peptides

(e.g., b-endorphin/bEnd and a-melanocyte stimulating

hormone/aMSH) with seemingly contradictory effects on

the reproductive axis and metabolism. aMSH reduces food

intake and stimulates lordosis behavior in female rats [6,

82, 141, 349], while bEnd stimulates food consumption

and inhibits GnRH/LH secretion [41, 136, 197]. Moreover,

in rats, aMSH may stimulate or inhibit LH secretion

depending on the internal milieu [66, 293]. Mice with loss-

of-function mutations in Pomc or melanocortin receptors

(Mc3r or Mc4r) genes develop hyperphagic obesity [50, 81,

162] and subfertility later in life. Likewise, mice with a

genetic mutation causing constitutive and ubiquitous

expression of the agouti protein (lethal yellow/Ay)—a
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competitive antagonist of melanocortin receptors—are also

obese and display abnormal estrous cycles and subfertility

at older ages [142]. Whether the reproductive deficits of

these mouse models are secondary to the deleterious effects

of their metabolic dysfunction is currently unknown.

AgRP is expressed in a distinct population of Arc neu-

rons and exhibits an antagonistic effect on melanocortin

receptors [144, 252]. AgRP administration or pharmaco-

logic blockade of MC4R blunted the LH surge in

ovariectomized steroid-primed female rats [286, 336] and

suppressed pulsatile release of LH in ovariectomized rhe-

sus monkey [333]. Notably, in male rats, AgRP increased

GnRH secretion from mediobasal hypothalamic explants

and increased gonadotropins and sex steroids levels when

injected into the cerebral ventricles [311].

These observations, although inconclusive, indicated

that the melanocortin system might also mediate leptin’s

action in the neuroendocrine reproductive axis. Initial

findings demonstrated that in female rats starved for

3 days, leptin administration partially restored the LH

surge but the effect of leptin was blunted in the presence of

MC4R antagonists [336]. However, pharmacological

blockade of MC4R did not prevent the ability of leptin to

activate the HPG axis in ob/ob male mice [157]. Following

the same line, deletion of LepR from POMC neurons,

AgRP neurons, or both POMC and AgRP neurons caused

no reported reproductive deficits in these mice [18, 330]. In

this regard, additional information can be extracted from

leptin-signaling (STAT3)-deficient mice (LRbS1138 s/s). In

these mice, as in db/db and ob/ob mice, the expression of

hypothalamic POMC mRNA was reduced and AgRP

mRNA was increased compared with control mice, dem-

onstrating that STAT3 is required for the regulation of both

mRNAs [23]; but while db/db and ob/ob mice were

infertile, s/s mice showed improved fertility indicating that

normalization of melanocortin levels in the brain is not

required for improvement of the reproductive function. It is

interesting that deletion of LepR and insulin receptor

selectively from POMC cells generated a mouse model

with insulin resistance, hyperandrogenism, ovarian abnor-

malities and late onset of subfertility [154]. However, as

noted before, it is not yet clear if the reproductive deficits

observed also in this mouse model are caused by disruption

of a direct melanocortin action on GnRH secretion or are

secondary to their impaired metabolic function. Collec-

tively, these findings indicate that, despite the initial

evidence in female rats, leptin action in melanocortin

neurons is not required for the development and maturation

of the reproductive system in mice.

Studies from two independent laboratories have dem-

onstrated that ablation of AgRP neurons or knockout of one

allele of Mc4r gene corrected the infertility phenotype of

leptin-signaling-deficient mice [167, 351]. These

publications clearly demonstrate that, although leptin

action in melanocortin neurons is not required for repro-

ductive function, blockade of a likely inhibitory action of

AgRP on GnRH secretion is sufficient to improve fertility

in leptin-signaling-deficient mouse models.

AgRP neurons coexpress the inhibitory neurotransmitter

GABA, and NPY, a potent orexigenic peptide highly

implicated in leptin’s physiology [76, 82, 114, 144, 178,

290, 348, 350]. The actions of NPY in reproductive control

are highly dependent on several factors including steroid

milieu, stage of development and expression of sex steroids

receptors [155, 346]. Administration of NPY to ovariec-

tomized steroid-primed rats increases LH secretion [168,

179, 278, 329]. In contrast, in the absence of gonadal ste-

roids or in intact rats, NPY inhibits reproductive function

as seen by decreased circulating levels of gonadotropins

and sex steroids, decreased weight of the reproductive

organs and decreased copulatory behavior in both sexes

[76, 230, 260, 270, 353]. Intracerebroventricular adminis-

tration of NPY antisera or blockade of NPY gene

expression by antisense oligonucleotides diminished pul-

satile GnRH secretion [176, 353], whereas NPY stimulated

the release of GnRH from mediobasal hypothalamic

explants and potentiated GnRH-stimulated gonadotropin

release from the anterior pituitary gland [90, 177]. These

findings may appear contradictory, but it is important to

stress that NPY is expressed in several other brain sites

outside the Arc, making some of the reports difficult to

interpret or reconcile.

Conditions of negative energy balance such as food

restriction, excess exercise and lactation, have been asso-

ciated with elevated levels of hypothalamic NPY

expression, and leptin-signaling-deficient obese mice

exhibit high levels of Arc NPY [6, 267, 290, 307, 348].

Thus, it is reasonable to believe that high NPY expression

in the Arc contributes to the decreased fertility observed in

these conditions [13]. To test this hypothesis, a series of

mouse models were generated. NPY knockout mice and

mice with selective deletion of LepR from NPY/AgRP

neurons display normal reproductive function [115, 330],

but deletion of Npy gene expression in leptin-deficient

ob/ob mice improve their fertility [115]. One-third of

double mutant NPY-/-ob/ob male and 20 % of female

mice were fertile. Because previous studies have shown

that food restriction ameliorates the reproductive capacity

of ob/ob male mice [194], it will be important to define

whether the improved fertility of the NPY-/-ob/ob mice is

secondary to an improvement of their metabolic profile

(e.g., decreased hyperglycemia and reduced adiposity).

The Arc houses one of the most potent regulators of the

reproductive physiology, the kisspeptins (products of the

KISS1/Kiss1 gene). A series of excellent reviews focused

on the kisspeptin role in reproductive biology have been
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published in the last few years and may be consulted for

further details [80, 251, 263, 320]. Loss-of-function

mutations in KISS1/Kiss1 or the kisspeptin receptor

(GPR54/Gpr54) genes causes infertility due to lack of

pubertal development and hypogonadotropic hypogonad-

ism in humans and mice [92, 96, 195, 297, 323]. A steady

increase in hypothalamic Kiss1 and Gpr54 gene expression

is observed across pubertal development and administra-

tion of kisspeptin to juvenile rodents induces vaginal

opening, increases LH secretion and induces ovulation

[247, 300, 319]. Notably, a subset of Kiss1 neurons in the

Arc coexpress LepR but, in this regard, some inconsis-

tencies are apparent. Using dual-labeled in situ

hybridization in castrated male mice, Smith and colleagues

reported 40 % Kiss1/LepR colocalization [306]. In ovari-

ectomized guinea pig, Qiu and collaborators reported 80 %

of Kiss1/LepR colocalization using electrophysiologic

recordings and single cell PCR of Arc neurons [265]. In

contrast, minimal colocalization has been reported using

different lines of female Kiss1 reporter mice and female

rats [89, 208, 324]. In female mice engineered to express

green fluorescence protein (GFP) in Kiss1 neurons (or

Tachykinin 2-expressing neurons), less than 10 % Kiss1/

LepR coexpression was reported in intact mice and 15 %

colocalization was found in ovariectomized mice [89, 208].

In female rats, no colocalization has been observed [324].

Different techniques or approaches (e.g., dual in situ

hybridization, dual immunohistochemistry, single cell

PCR, reporter mice), species differences (i.e., mouse, rat

and guinea pig) or the existence of an unreported sexual

dimorphism in the response of Kiss1 neurons to leptin may

account for these discrepancies. However, the percentage

of colocalization is not always a good indicative of phys-

iological relevance. For example, only around 30 % of

POMC neurons coexpress LepR, but their role in leptin’s

physiology is unequivocal [110, 290, 343, 344]. Following

this concept, the requirement of leptin action in Kiss1

neurons was assessed with the use of conditional knockout

mice (Cre–loxP system) in which LepR was selectively

deleted from Kiss1 neurons [101]. Male and female Kiss1-

Cre/LepR-floxed mice showed normal pubertal develop-

ment, sexual maturation and fertility, indicating that direct

leptin action in Kiss1 neurons is not required for normal

puberty onset and reproduction, in mice. Notably, a recent

report demonstrated that female mice with ablation of

kisspeptin neurons early in development exhibited no

deficits in pubertal development and fertility [226]. While

intriguing, this finding suggests that developmental adap-

tations may be triggered to allow reproduction and species

survival. Therefore, it is also possible that systems redun-

dancy and/or developmental adaptations may occur in mice

with lack of leptin signaling in kisspeptin neurons. Addi-

tional studies will be necessary to test this hypothesis.

Several groups have reported a decrease in Kiss1 mRNA

expression and kisspeptin production in conditions of low

leptin levels (e.g., ob/ob mice or wild-types in negative

energy balance) [63, 174, 212, 268, 306]. Moreover,

streptozotocin-injected diabetic male rats displayed

decreased levels of hypothalamic Kiss1 mRNA concomi-

tant with low circulating levels of leptin, insulin, LH and

androgens [64]. Administration of leptin, but not insulin,

increased hypothalamic Kiss1 gene expression, and levels

of LH and androgens. Collectively, these studies indicate

that leptin administration may restore (or increase) Kiss1

mRNA expression in rodents in negative energy balance.

Whether this effect is achieved via direct leptin action in

Kiss1 neurons or by the stimulation of leptin-responsive

neurons that project to kisspeptin, still needs to be

determined.

The existence of a complex interplay among Kiss1,

POMC and NPY/AgRP neurons in the Arc has been

reported [15, 16, 128]. For example, the melanocortin

system may influence the reproductive physiology of ewes

via actions in kisspeptin-expressing cells [15]. In mice,

subpopulations of kisspeptin neurons in the preoptic area

and Arc coexpress MC4R and, therefore, are also apt to

respond to the melanocortin system [89]. As an alternative

pathway, leptin may influence Kiss1 expression via pro-

jections from the ventral premammillary nucleus, a brain

site recently shown to play a fundamental role in leptin’s

action on reproductive control [98, 101, 203, 208].

Ventral premammillary nucleus: the emergence

of a forgotten pathway

Initial evidence for a role of ventral premammillary

nucleus (PMV) neurons in reproductive control came from

studies in rats focused on the contribution of sex odorants

to the activation of the HPG axis. In response to opposite

sex odors, males and females from different species exhibit

increased circulating levels of gonadotropins and sex ste-

roids [26, 85, 180, 214, 223, 264]. Odors are relayed by the

main and accessory olfactory pathways and converge in the

medial nucleus of the amygdala which in turn innervates

several hypothalamic nuclei related to behavioral adjust-

ments and hormonal secretion, including the PMV [57,

145, 285, 357]. In female rats on proestrus, electrical

stimulation of the medial nucleus of the amygdala pre-

cipitated LH secretion [25], a response that is blocked in

rats with electrolytic lesions of the PMV [27]. Following

copulation, PMV neurons appear activated (Fos immuno-

reactivity), a response that was later shown to be related to

odor stimulation [65, 99, 188, 203, 356]. Projections from

the PMV are particularly dense in forebrain sites related to

the control of the HPG axis, in sexually dimorphic nuclei
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and in those components of vomeronasal circuitry [55,

275]. In particular, the PMV innervates kisspeptin neurons

and GnRH cells in the preoptic area as well as GnRH

terminals in the mediobasal hypothalamus/median emi-

nence [37, 101, 203, 208, 275]. In addition, a high-to-

moderate density of sex steroids-responsive neurons

(estrogen receptors and androgen receptor) is also found in

the PMV of rodents [233, 304]. Thus, PMV neurons are

likely to integrate and convey sexually relevant signals

from external and internal environments to relevant

reproductive control sites in the brain.

The PMV houses a high density of neurons expressing

LepR. Of these, a high proportion is depolarized (and most

likely activated) by leptin [109, 113, 203, 208, 345]. These

neurons coexpress the neurotransmitters glutamate and

nitric oxide, and directly innervate GnRH cells [101, 102,

203, 208]. Together, these findings indicate that PMV

neurons are potentially stimulated by leptin and may

directly activate their terminal targets (e.g., kisspeptin and

GnRH neurons) via the release of glutamate, a classical

excitatory amino acid [39, 219].

The role of PMV neurons as a key site of leptin action in

reproductive control has only recently been demonstrated

in a series of experiments using conditional knockouts and

excitotoxic lesions in rats and mice. Female rats with

bilateral lesions of PMV neurons became anestrus during a

transient period of 2–3 weeks [98]. After this time, their

cyclicity was apparently normalized but, during proestrus,

PMV-lesioned rats showed reduced estradiol and LH lev-

els, GnRH mRNA expression and decreased activation of

GnRH and AVPV neurons. Leptin administration to fasted

PMV-lesioned rats failed to increase LH secretion, indi-

cating that the PMV is a critical site for the stimulatory

effects of leptin on fasting-induced suppression of the HPG

axis. However, it is important to emphasize that only a

subset of PMV neurons coexpress LepR [203] and, there-

fore, the effects of the excitotoxic lesions might result from

disruption of pathways unrelated to leptin’s physiology, but

involved in the control of female neuroendocrine repro-

ductive axis. Thus, to assess the role of PMV in leptin’s

physiology, a more selective approach was performed

using the conditional knockout technique, in which LepR

was endogenously re-expressed in PMV neurons of a LepR

null reactivable mouse model [84, 101]. Re-expression of

LepR selectively in PMV neurons of LepR null female

mice induced pubertal development and improved fertility;

but, intriguingly, no amelioration of male infertility was

observed [101]. These findings demonstrated that leptin

action in PMV neurons of female mice is sufficient to

induce puberty and improve fertility in the otherwise

infertile LepR null mice. They also indicate that leptin’s

action in the reproductive function is sexually dimorphic

and that alternative brain sites relay leptin’s effects in

male’s reproduction. As discussed in previous sections,

neurons in the Arc may convey signals from leptin levels to

the male reproductive system. The role of LepR in the male

PMV neurons still needs to be unraveled.

Due to the expected redundancy of the system, leptin

action in PMV neurons may be sufficient but not required

for reproduction in female mice. To test this, a more pre-

cise approach would be the selective deletion of LepR from

PMV neurons using the Cre–loxP system. However, due to

the lack of a mouse model in which Cre recombinase is

driven by a gene expressed exclusively in PMV neurons,

another strategy was used. PMV neurons of ob/ob female

mice were ablated by the bilateral administration of an

excitotoxic agent (NMDA) and leptin was replaced in these

mice. In PMV-lesioned ob/ob mice, a significant delay in

pubertal development was observed indicating that leptin

action in the female PMV is required for an adequate

maturation of the reproductive system [101]. However,

after 35–40 days in the presence of a sexually experienced

male, 80 % of the PMV-lesioned mice showed sexual

maturation as indicated by the presence of copulatory

plugs, suggesting that alternative/redundant pathways (e.g.,

melanocortin system) were recruited to allow reproductive

success. In agreement, deletion of LepR selectively from

neurons expressing neuronal nitric oxide synthase (nNOS)

delayed pubertal maturation in female mice [202]. LepR

and nNOS are colocalized in neurons of several nuclei,

including the PMV where colocalization rate is very high

[102, 202, 203] reinforcing the relevance of PMV neurons

as key site of leptin action in pubertal initiation.

Of note, several studies have suggested that leptin

facilitates sexual behavior in female hamsters and rats

[135, 334]. The brain pathways involved in this effect by

leptin are not known and the involvement of PMV neurons

in the control/modulation of sexual behavior in males or

females has not been demonstrated. However, it is inter-

esting that a strong interconnection between the PMV and

the ventrolateral subdivision of the ventromedial nucleus of

the hypothalamus, a key site in female sexual behavior, has

been reported [55, 56, 275]. The physiologic relevance of

these reciprocal connections awaits further investigation.

From satiety center to behavioral gate: the many faces

of the ventromedial nucleus of the hypothalamus

The ventromedial nucleus of the hypothalamus (VMH) has

been the focus of the attention of many laboratories inter-

ested in the complex regulation of energy homeostasis since

the seminal report by Hetherington and Ranson [153]. This

study showed that bilateral electrolytic lesions centered in

the VMH induce hyperphagic obesity, characterized by a

remarkable increase in the adipose tissue mass.
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Subsequently, it was suggested that the lesions may have

disrupted the internal connectivity of the medial hypotha-

lamic nuclei and that other hypothalamic sites, including the

PVH, may have played a major role in this phenotype [114,

139]. The relevance of the VMH in metabolic regulation was

reinstated with the demonstration of dense expression of

receptors for metabolic cues (e.g., leptin and ghrelin) and the

presence of glucosensing neurons [112, 113, 181, 277, 294,

308, 364]. However, the VMH, like most of the hypotha-

lamic nuclei, is not a homogeneous structure. Rather, it is

composed of distinct subdivisions with characteristic pro-

jection patterns [56]. The ventrolateral subdivision of the

VMH (VMHvl) expresses sex steroids receptors, projects to

reproductive control sites and plays a well-defined role in the

female sexual behavior [56, 94, 233, 305]. On the other hand,

neurons in the dorsomedial subdivision of the VMH

(VMHdm) are responsive to metabolic cues (e.g., leptin and

insulin) and project to sites related to autonomic and circa-

dian regulation [111, 185, 187]. Therefore, neurons in the

VMHdm may influence energy balance by modulating

autonomic responses, which include thermogenesis, hepatic

glucose production, glucose utilization and secretion of

insulin and glucagon [28, 88, 186, 210, 248].

The VMH is virtually the only site in the brain where the

steroidogenic factor-1 (SF1) is expressed [163, 296]. SF1 is

also found in gonads, adrenal and pituitary gland and, as

the name implies, it is a key component of the steroido-

genic cascade. Mice with deletion of SF1 gene (Nr5a1)

show adrenal and gonadal agenesis, disrupted VMH for-

mation and infertility [164, 211, 280, 302]. Notably,

deletion of SF1 selectively from the central nervous system

(i.e., from the VMH) disrupted VMH neuronal connectivity

and impaired female reproductive function [184]. These

findings make the VMH a potential candidate to mediate

the effects of leptin in reproductive control. Using the SF1-

Cre mouse model, two independent groups demonstrated

that leptin signaling in VMH neurons is required for body

weight homeostasis and adequate control of glycemia and

thermogenesis [32, 97], but these mice (both male and

female) are fertile. Thus, it was concluded that leptin sig-

naling in the VMH is not required for leptin’s effect in

reproductive control. But as noted before, developmental

adaptations and the redundancy of the reproductive cir-

cuitry should be taken into account. Further studies will be

necessary to assess whether mice with leptin signaling only

in VMH neurons show improvements in any aspect of their

reproductive physiology.

Relevance for reproductive human health

Our understanding of leptin’s biology has largely grown

from experiments in rodents, but a series of studies has also

been conducted in humans, demonstrating the unequivocal

relevance of leptin for human’s reproductive health.

Women have higher leptin levels compared to men [229].

This difference is already apparent at birth; leptin is higher

in cord blood of female infants [170, 225, 289]. In girls, a

direct relationship between the increase in leptin and

gonadal steroid levels has been observed during pubertal

development, likely consequent to the increase in body fat.

In late puberty, leptin levels are also higher in females

[158]. Due to its strong positive correlation with BMI,

higher leptin in women has been attributed to a higher

adiposity [229]. However, in a cross sectional study of 204

subjects, gender differences in leptin levels persisted even

when adjusted for body fat [149, 253]. Moreover, studies

demonstrated that women also have higher leptin pulsatil-

ity over a 24-h period [204, 229, 289]. Although still

undefined, a plausible explanation for the gender difference

could be the effects of testosterone to likely decrease leptin

levels in men [213].

As discussed previously, leptin levels fall in states of

acute energy deprivation, and this physiologic response is

seen as an adaptive strategy of diverting energy resources

away from processes that are not essential for immediate

survival. Extreme exercise (e.g., ballet dancers and gym-

nasts) and anorexia nervosa are associated with low

gonadotropin and leptin levels [105, 224, 340]. Nutritional

support to patients with anorexia nervosa improved percent

body fat, BMI, leptin and gonadotropin secretion [17].

Likewise, secondary amenorrhea has been associated with

decreased leptin levels (\2 mcg/l) [189]. Leptin treatment

in women with functional hypothalamic amenorrhea

caused by increased exercise and decreased body weight

improved gonadotropin pulsatility, endometrial thickness,

ovarian volume and ovulation [341]. In addition, leptin

treatment in 72-h fasted healthy men prevented the dis-

ruption of gonadotropin secretion [67].

Obese individuals are usually in a state of hyperleptin-

emia and leptin resistance [229, 301]. However, the direct

adverse effects of high leptin levels on reproduction in

obesity are not well defined. Hyperleptinemia has been

shown to interfere with ovulation and inhibit follicular

growth in mice ovaries [315]. In humans, studies in vitro

showed that higher doses of leptin can interfere with the

ability of the dominant follicle to produce estradiol by

inhibiting the production of androgen substrate and

decreasing the aromatization capacity of granulosa cells [1].

In obese men, fat mass and leptin are inversely correlated

with circulating levels of testosterone. Moreover, following

human chorionic gonadotropin (hCG) stimulation, obese

individuals exhibited higher 17-hydroxyprogesterone

(17-OHP)/testosterone ratio compared to control lean sub-

jects. These findings suggest the existence of an enzymatic

dysfunction in the conversion of 17-OHP to testosterone in
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the Leydig cells [166]. Whether this effect is caused by

excess leptin needs further investigation.

Controversies regarding the association of leptin with

polycystic ovarian syndrome (PCOS) exist. One study

found that leptin levels are elevated in women with PCOS

[44]. However, the investigators did not adjust their data

for BMI or fat mass and therefore the relevance of their

findings has been debated. Moreover, subsequent studies

were not able to reproduce this initial data, refuting the

concept that changes in leptin levels might play a role in

the etiology of PCOS [138, 222, 261, 276, 298].

Lipodystrophy is associated with low leptin levels. In

particular, leptin is marked reduced in individuals with

congenital generalized lipodystrophy (CGL) and acquired

generalized lipodystrophy (AGL), compared to familial

partial lipodystrophy (FPL) and acquired partial lipodys-

trophy (APL) [146]. The prevalence of infertility and

PCOS is higher in patients with lipodystrophy compared to

the general population [173, 332]. Leptin therapy improved

insulin sensitivity, decreased testosterone levels, increased

sex hormone binding globulin (SHBG) and reversed the

features of PCOS [209]. Recently, an interesting case has

been reported of a young woman with CGL, undetectable

leptin levels and primary amenorrhea who after treatment

with leptin underwent menarche and adequate sexual

maturation. Leptin therapy improved her metabolic com-

plications and reproductive dysfunctions. The patient

eventually became pregnant and was able to delivery at

37 weeks of gestation with minimal complications [218].

Conclusion

In recent years, the use of genetic modified mouse models

and the advance of molecular mapping of brain circuitry

have generated a considerable amount of information

regarding leptin’s action in the reproductive neuroendo-

crine axis. Using these techniques we have learned that

leptin activates glutamatergic PMV neurons and inhibits

GABAergic AgRP Arc neurons. Both populations, in turn,

impinge on GnRH and/or kisspeptin neurons, potentially

modulating the reproductive neuroendocrine axis. The

integration of these opposite signals is crucial to the control

of timely secretion of GnRH during pubertal maturation

and in states of energetic challenges. Importantly, lack of

leptin action in one of these neuronal groups does not

preclude sexual maturation, indicating that one neuronal

population can compensate the effects of the other. These

redundancies and systems plasticity are fundamental fea-

tures in reproductive biology, allowing procreation and

species survival. In addition, the identification of alterna-

tive signaling pathways recruited by leptin will allow a

better understanding of the mechanisms by which leptin

acts as a permissive factor in pubertal maturation and

reproduction.
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