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Network science is largely consumed
with the study of graphs with heteroge-
neous degree: typically large graphs with
no strong topological symmetry. Net-
work science borrows approaches from
statistical physics to understand this het-
erogeneous structure, in a manner quite
distinct from the rich symmetry of the
graphs that are studied by algebraic graph
theorists. Shi et al. [1] move toward
bridging this divide by switching the fo-
cus from the analysis of node degree se-
quence to cycles. Rather than focusing on
a statistical description of degrees and the
connective paths between nodes, they in-
stead study cycles of specific order within
networks.

Identifying cycles in a network is a de-
ceptively difficult problem, and has long
been a mainstay of computational net-
work science. While it is obvious what we
mean by a cycle, it is much harder to ex-

network. In 2008, Xu et al. [2] presented
the first of what has become a modest in-
dustry of techniques aimed at uncovering
dynamical properties of deterministic dy-
namical systems by representing time se-
ries as complex networks. The networks
produced were particularly evocative as
they contained many holes and loops—
much like a work of crochet (see Fig. 1a).
At the time, the only computationally fea-
sible approach to study these was to ex-
amine the motif super-family: the relative
frequency of distinct connected (but not
fully connected) subgraphs of fixed size.
Shi et al. [1] describe a broader frame-
work that shows great promise for the un-
derstanding of networks such as these, as
well as networks arising in a wide range of
other physical and engineering settings.
The key idea is to borrow the rich
mathematical structure of algebraic

topology as it applies to graph theory—

homology group, Betti numbers and per-
sistent homology [3]. Collectively, these
methods quantify the local dimension of
solid objects by comparing volume and
boundary. When applied to networks,
this means decomposing a network to
its fully connected sub-components (the
‘simplexes’ of [1]) and their bound-
aries. Figure 1 shows our application of
this simplicial approach to a network
constructed from the time series of the
Lorenz system [4]. The distribution,
interconnection and placement of sim-
plexes within this simplicial complex
reveal structural properties of the under-
lying chaotic dynamical system that we
are only just beginning to understand.
This leads to a new framework of
clique vector spaces by decomposing
the graph into cycles, simplexes and
boundaries. One can then obtain tech-
nical, but also fairly easily computable,

haustively enumerate the cycles ofalarge  to compute characteristic number, definitions for chain group, cycle group,
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Figure 1. (a) Following [2], a network constructed from a Markov transition matrix of a quantization of the Lorenz system. (b) Simplicial complex induced
from the network in (a). The 2-simplexes are marked by blue triangles, 3-simplexes by green tetrahedrons and 4-simplexes by yellow. Persistent homology
computed from this complex reveals signatures unique to deterministic chaotic dynamics.
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boundary group and homology group, all
of which can be obtained directly from
the network.

In their seminal description of small-
world networks, Watts and Strogatz [5]
show that regular networks with a small
number of long-range connections gain
both the strong clustering of a lattice and
the small diameter (or short path-length)
of random graphs. They argue that this
combination is particularly useful for syn-
chronization of dynamics on a network.
In [1], the new paradigm of network ho-
mology is applied to show that charac-
teristic number is indicative of network
synchronizability. Moreover, simulations
of disease transmission on networks indi-
cate that regular network topology—and
in particular the exemplar totally homo-
geneous network—is most effective for
transmission. In the future we can expect

methods like those introduced in [1] to
have a significant impact on our under-
standing of structure in large complicated
networks. This is particularly important
for network models of real systems with
structure much more complicated than
described by the statistical properties of
degree sequence [6].
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