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Detection of malfunctioning reactions or molecules from clinical data is essential for disease treatments. In order to find an
alternative to the existing oversimplisticmathematical models, a kineticmodel is developed in this work to infer themalfunctioning
reactions/molecules by quantifying the similarity between the clinical profile and the output profiles predicted from the model in
which certain reactions/moleculesmalfunction.Thenew approachwas tested in IL-6 andTNF-𝛼/NF-𝜅B signaling pathway, for four
abnormal conditions including up/downregulation of single reaction rate constants and up/downregulation of single molecules.
Since limited quantitative clinical data were available, the IL-6 ODE model was used to generate artificial clinical data for the
abnormal steady-state value shown in two key molecules: nuclear STAT3 and SOCS3. Similarly, the TNF-𝛼/NF-𝜅Bmodel was used
to obtain the data in which abnormal oscillation dynamic was shown in the profile of NF-𝜅B. The results show that the approach
developed in this study was able to successfully identify the malfunctioning reactions and molecules from the clinical data. It was
also found that this new approach was noise-robust and that it managed to reveal unique solution for the faulty components in a
network.

1. Introduction

Mathematicalmodeling approaches have generated consider-
able research interest in recent years due to the rising need of a
thorough understanding of the behavior of systems in science
and engineering, including biological networks [1–3]. More
specifically, mathematical models can be used to facilitate
the inference of malfunctioning reactions that lead to human
diseases from clinical data. For example, approaches based
on the Boolean model, which can be developed from well-
studied biological reactions, have been widely utilized to
determine the critical componentswhose dysfunction ismost
likely responsible for a significant impact on the output of sig-
naling pathways [4–7].These approaches also have the poten-
tial to directly localize faulty genes. For an example, faulty
genes were detected on the basis of the mismatch between
the normal gene sequences and the ones predicted byBoolean

models in studying oxidative stress response [8]. Apart from
model-based approaches, model-free approaches, or data-
driven approaches, are commonly used for the detection
of pathological states from “-omics” data based on pattern
recognition techniques for patients with gastrointestinal
stromal tumors [9, 10] and various neurological diseases
[11, 12]. Through comprehensive analysis of “-omics” data
obtained from sophisticated technologies such as gene array
andmass spectrometry, data-driven approaches hold promise
as a novel way to identify disease-specific biomarkers.
Although these existing approaches have provided feasible
avenues for fault detection in signaling pathways involved in
human diseases, they either disregard the transient dynamics
(e.g., the Boolean-model-based approaches) or have insuf-
ficient details of biological systems (e.g., the data-driven
approaches). Approaches based on the Boolean model may
not provide accurate solutions for fault diagnosis, as the use of
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mathematical approximations (either 0 or 1) can cause a coin-
cidence of identical calculation results to occur fromdifferent
combinations of Boolean variables [8]. Significantly different
from the Boolean model, a pure logical-based discrete model
which considers a molecule either active or inactive and is
unable to capture important intermediate states, the ODE-
based kinetic models are able to generate continuous and
quantitative profiles of molecule concentrations [13]. Kinetic
modeling is therefore a more accurate method for investi-
gating malfunctioning pathways in diseases which can be
indicated by the levels of some important molecules that vary
significantly from patient to patient.There are many research
results supporting the superiority of kinetic models. In a
study about the EGFR-ERK signaling pathway, the reaction
rate of c-Cbl and EGFR binding was reduced by a factor of
100 or 1000 by regulating an ODEmodel to mimic the effects
of the endocytosis impairment.The active ERK concentration
at steady state was measured after treatment with the model-
selected concentrations of regulators to reflect the influence
of selected regulators [14]. Besides, the influence of malfunc-
tioning molecules not only does reflect the abnormal steady-
state values, but also may affect the oscillatory behavior [15–
17]. It is reported that a biological network can exhibit diverse
dynamic behaviors caused by negative feedback loops, such
as long-lasting oscillations [18]. The change in the amplitude
of an oscillation profile is a rational indicator of the abnormal
situations of a negative feedback loop associatedwith diseases
[19]. Mathematical modeling has become an innovative way
of investigating the function of feedback loops in a biological
network [20, 21]. Compared to a singlemolecule or reaction, a
feedback loop is an easier target for testing therapy schemes.
For example, Araujo and collaborators modeled a signaling
cascade with a negative feedback loop and found that target-
ing serially connecting upstream nodes wasmost effective for
inhibiting cancer cells [20].

Overall, the aforementioned work yields preliminary
insights into discovering the functions and connections of
important nodes in a signaling pathway by mathematical
modeling approaches.However, none of the existingmethods
combines modeling results with clinical data to directly iden-
tify the malfunctioning reactions, molecules, or genes in a
biological network for diseases. This motivates us to develop
a simulation method that can characterize the malfunction
of individual reactions or molecules in a biological network
so that the exact malfunctioning reactions/molecules can
be identified for patients to receive beneficial therapies that
consider the interaction of all the components in the disease-
related network [23]. In particular, this work presents a
kinetic-model-based approach to infer malfunctioning reac-
tions in signaling pathways involved in acute phase response.
More specifically, the profiles for signaling molecules from
data are compared to the profiles predicted fromkineticmod-
els regarding the malfunction of individual reactions. The
specific reaction whose malfunction returns a similar profile
to the measured molecules is regarded as the malfunctioning
reaction that leads to the abnormal profile shown in clinical
data. The IL-6 signaling pathway and the TNF-𝛼/NF-𝜅B
signaling pathway are used as example pathways in this work,
since quantitative models have already been developed for

them [22, 24, 25].The IL-6 pathwaymodel presented byMoya
et al., 2011 [22], is used to generate profiles of two crucial
proteins in IL-6 signaling pathway, that is, nuclear STAT3
dimmer (STAT3N∗-STAT3N∗) and SOCS3, in malfunction-
ing IL-6 signaling where reactions/preexisting molecules are
up/downregulated. Similarly, the most comprehensive model
developed for TNF-𝛼/NF-𝜅B signal transduction, presented
in Huang et al., 2008 [25], is used to generate data for NF-
𝜅B in the nucleus with abnormal reaction/protein activities.
These twomodels are used here as they have been validated by
experimental data for the accuracy of their prediction. Gaus-
sian white noise is added to the generated STAT3, SOCS3,
and NF-𝜅B profiles to produce artificial clinical data, which
is then used as reference data to identify the malfunctioning
reactions/molecules causing the abnormality shown in these
data. The influence from the added noise on the efficacy
of the developed approach for detecting malfunctioning
reactions/molecules is also evaluated in this work.The results
prove that the developed approach is able to identify typical
malfunctioning reactions/preexistingmolecules from clinical
data with substantial noise.

2. The Method

2.1. The Mathematical Model of IL-6 Signaling Pathway. IL-
6 signaling consists of two pathways, that is, the JAK-STAT
and MAPK-C/EBP𝛽 kinase pathways (Figure 1). It is one of
the major pathways that regulate the acute phase response
triggered by injuries or infections of the human defensive
immune system. The binding of IL-6 to its receptor gp80
on the membrane of hepatocytes activates both JAK-STAT
andMAPK-C/EBP𝛽 pathways in which transcription factors
nuclear STAT3 dimer and C/EBP𝛽 are activated. These two
transcription factors in turn regulate the expression of acute
phase proteins and other proteins such as SOCS3. SOCS3 is
particularly important, as it inhibits the activation of JAKs
and thus downregulates both JAK-STAT andMAPK-C/EBP𝛽
pathways. Hence, SOCS3 initiates a negative feedback loop in
IL-6 signaling.

The mathematical model presented in Moya et al., 2011
[22], is themost comprehensivemodel for IL-6 signaling. It is
represented by ODE model (1) with 68 ordinary differential
equations (as biochemical reactions), 116 parameters (as reac-
tion constants), and a single input (as the extracellular IL-
6 concentration). The model has been validated by experi-
mental data, and it can predict the profiles of 68 intracellular
molecules over time. Nuclear STAT3 dimer and SOCS3 are
selected as the model outputs, as STAT3N∗-STAT3N∗ is a
transcription factor and SOCS3 initiates a negative feedback
loop. Consider

𝑑x
𝑑𝑡

= 𝑓 (x, p, 𝑢) , (1)

where x is a vector of the state variables of the model, p is a
vector of the parameters, and 𝑢 is the input to the system.

2.2. The Mathematical Model of TNF-𝛼/NF-𝜅B Signaling
Pathway. The TNF-𝛼/NF-𝜅B signaling pathway is initiated
by the binding of TNF-𝛼 to its receptor TNFR1 on the cell
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Figure 1: Schematic description of the IL-6 signaling.

membrane (Figure 2). The formed binding complex then
activates IKKn to IKKa, which releases NF-𝜅B from the
complex I𝜅B𝛼|NF-𝜅B. The active NF-𝜅B relocates from the
cytoplasm into the nucleus and initiates the transcription and
translation of I𝜅B𝛼 and A20, both of which get involved in
negative feedback loops that deactivate NF-𝜅B. In particular,
I𝜅B𝛼 binds to active NF-𝜅B in both nucleus and cytoplasm to
form complex I𝜅B𝛼|NF-𝜅B. A20 deactivates IKKa so that it
can not further releaseNF-𝜅B from the complex I𝜅B𝛼|NF-𝜅B.
Due to these two negative feedback loops, NF-𝜅B shows
sustained oscillation in its time profiles for the liver cells
stimulated by TNF-𝛼. The model developed by Huang et al.,
2008 [25], is used in this work for simulation, as it is one
of the most comprehensive models available for the TNF-
𝛼/NF-𝜅B signaling pathway. Specifically, the ODE model for
TNF-𝛼/NF-𝜅B signaling consists of 37 ordinary differential
equations, 38 parameters, and 16 state variables. The detailed
information of the TNF-𝛼/NF-𝜅B model can be found in
Huang et al., 2008 [25].

2.3.TheModel-Based Inference Approach to DetectMalfunction-
ing Reactions/Preexisting Molecules. The irregular activation
level of enzymes, either as inhibition or as overexpression, is

one of the major reasons causing human diseases.The abnor-
mal concentrations of some importantmolecules, such as cell
signaling receptors on the cell membrane, may also lead to
the malfunction of hepatocytes. This work mainly focuses on
studying the malfunction due to abnormal activities in single
reactions or molecules.

Since clinical data was not available for the hepatocyte
cells with the malfunctioning reactions or abnormal protein
concentrations studied in this work, artificial clinical datawas
generated by the following procedure. (1) Extensive simu-
lations for reaction up/downregulation were performed for
both IL-6 and TNF-𝛼/NF-𝜅B pathways. (2) Abnormal pat-
terns shown in the profiles for nuclear STAT3, SOCS3, and
NF-𝜅B were identified. (3) The abnormal pattern that was
the most different from the corresponding normal profile
was selected as the representative pattern for each of the
abnormal conditions that was characterized by the inhibition
or overexpression of the enzymes catalyzing single reactions.
(4) Gaussian white noise was added to the simulation output
for each representative abnormal condition to create artificial
clinical data for that condition. In order to generate random
noise, the value obtained at each time point from the simu-
lation was used as the mean value of a Gaussian distribution
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Figure 2: Schematic description of the TNF-𝛼/NF-𝜅B signaling.

and 20% of the mean value was set as the standard deviation.
Monte Carlo sampling approach was used to generate the
random noise from the Gaussian distribution. (5) A sim-
ilar approach was applied to generate clinical data for the
abnormal conditions with excessive or deficient preexisting
molecules.Therefore, artificial clinical data was generated for
four abnormal conditions: two for irregular reaction activities
and two for irregular availability of preexistingmolecules that
have nonzero concentrations prior to the stimulation.

It is our goal to pinpoint the malfunctioning reactions/
molecules that cause the abnormality shown in the clinical
data. In this work, we developed an approach to infer mal-
functioning reactions and preexisting molecules by using a
kinetic model to simulate potential malfunctioning condi-
tions (i.e., up/downregulated activity of single reactions and
excessive/deficient availability of preexisting molecules).
Potential malfunctioning reactions/molecules were found in
accordance with the similarity analysis between the model-
predicted profiles for the system outputs and those profiles
shown in the clinical data. The similarity analysis consists of
the following steps.

Step 1. The profiles for the measured molecules, such as
nuclear STAT3, SOCS3, and NF-𝜅B, were produced from the
corresponding signalingmodels in which the rate constant of

each reactionwas enhanced gradually (e.g., from 5 to 100with
the interval of 5 and then from 100 to 1000 with the interval
of 100) to mimic the enzyme overexpression condition. For
each reaction rate constant with a certain upregulation level,
the model simulated profiles for the measured molecules are
compared to clinical data profiles to quantify the similarity
defined by the following equation:

𝑆 =

𝑌
𝑇

clinical × 𝑌model
󵄩
󵄩
󵄩
󵄩
𝑌clinical
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑌model
󵄩
󵄩
󵄩
󵄩

⋅

1

(𝑌clinical/𝑌model + 𝑌model/𝑌clinical) /2
,

(2)

where 𝑌model is a vector representing the sampled profiles for
measured molecules, that is, [YSTAT3;YSOCS3] for IL-6 signal-
ing and YNF-𝜅B for TNF-𝛼/NF-𝜅B signaling, generated by the
model simulation; 𝑌clinical is the counterpart vector from the
artificial clinical data; 𝑌clinical and 𝑌model are the mean values
of the measured molecules over time in the clinical data and
model-predicted profiles, respectively; and 𝑆 stands for the
similarity between 𝑌model and 𝑌clinical. The first term on the
right-hand side of (2) quantifies the shape similarity between
𝑌model and𝑌clinical, while the second term determines whether
𝑌model and 𝑌clinical have similar magnitudes. If 𝑌model and
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𝑌clinical are identical in shape, the first term is equal to one.
Similarly, if 𝑌model and 𝑌clinical have the samemean value, that
is,𝑌clinical equal to𝑌model, the second term is of a value of one.
The value of 𝑆 is within the range of [0 1] in which a larger
value indicates a higher similarity between the corresponding
profiles of 𝑌model and 𝑌clinical. In an ideal situation, only a
few 𝑌model would show the same abnormal profiles as 𝑌clinical,
resulting in 𝑆 close to the value of one, while any other
𝑌model returns an 𝑆 much smaller than one. In this way, the
malfunctioning reactions/preexistingmolecules can be easily
identified because they result in large 𝑆 values.

Step 2. The approach shown in Step 1 is applied to the other
three abnormal clinical conditions, that is, the inhibition
of the activity of each individual reaction and the exces-
sive/deficient availability of preexisting molecules. Similar to
Step 1, various regulation levels are tested to obtain the max-
imum possible 𝑆 in these three abnormal clinical conditions.
This work mainly focuses on the preexisting molecules with
nonzero initial concentrations in the ODE models of the two
studied signaling pathways, as these molecules exist before
IL-6 or TNF-𝛼 stimulation and they indicate the pathological
state of the patient.

Step 3. All the inclusive reactions/molecules are sorted by
their 𝑆 values quantified for all four abnormal clinical condi-
tions in Steps 1 and 2, in order to identify the malfunctioning
reactions/molecules that result in the measured molecules
(e.g., STAT3N∗-STAT3N∗, SOCS3, andNF-𝜅B) with the pro-
files that are the most similar to those shown in the artificial
clinical data.These malfunctioning reactions/molecules with
large similarity 𝑆 values may reveal the real reasons for
the artificial clinical data to be abnormal and thus provide
directions for the treatment of diseases.

In addition to the measurement of 𝑆 shown in (2) and the
aforementioned three steps, two supplemental factors𝑅 (with
the unit of nM/s) and𝐴 (with the unit of nM⋅s⋅106) are defined
to achieve better evaluation of oscillation features shown in
NF-𝜅B profile in the TNF-𝛼/NF-𝜅B signaling model:

𝑅 =

2𝐻

𝑃

, (3)

𝐴 = 𝐻𝑃𝑁, (4)

where𝐻 is amplitude, 𝑃 is period, and𝑁 represents number
of peak-pairs shown in the oscillation profiles. The steps
of calculating 𝑅 and 𝐴 factor are illustrated as follows
(Figure 3): (1) all the peak points (maximum and minimum)
are determined within the set time (15 hours) along with
the total number of pairs of peaks, their corresponding time
points, and values; (2) the first minimum peak and the last
maximum peak were eliminated from the calculation, as
these two points rely on the chosen time range and they
may not contain complete peak-pairs; (3) the arithmetic
mean values of maximum peaks and minimum peaks are
calculated, respectively (as 𝐻max and 𝐻min), and then the
mean amplitude𝐻 is obtained by (5); (4) the arithmeticmean
value of the periods was calculated from two adjacent maxi-
mum peaks and two adjacent minimum peaks, respectively
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Figure 3: An illustration of factors 𝑅 and 𝐴. In this example, 𝑁
equals 9, 𝑅 equals tan𝛼, and 𝐴 is the total area of the nine identical
blue rectangles.

(as 𝑃max and 𝑃min), and the period 𝑃 is determined as the
mean of 𝑃max and 𝑃min by (6); (5) the value of 𝐴 is calculated
by (4) and 𝑅 is calculated by (3). Consider

𝐻 = 𝐻max − 𝐻min, (5)

𝑃 =

(𝑃max + 𝑃min)

2

. (6)

For better illustration, it is assumed that the calculated
results of𝐻 and 𝑃 coincidentally exist in Figure 3; thus 𝑅 can
be also approximated as tan 𝛼. Therefore, 𝑅 is used to simply
reveal the overall shape of an oscillation profile. If two profiles
share similar shapes but with an apparent difference in the
magnitude, they may be regarded as similar profiles if only 𝑅
factor is taken into account. In such a situation, the 𝐴 factor
can indicate the difference shown in the magnitude, as 𝐴
represents the sum of areas within blue rectangles in Figure 3.
Two profiles with close 𝑅 values which at the same time have
a large difference in the magnitude will probably have a large
difference in the 𝐴 factor. In addition to the similarity factor
𝑆 defined in (2), the factors 𝑅 and𝐴 are taken into account to
rank the malfunctioning reactions for the oscillatory output
profiles like NF-𝜅B. To determine similar profiles, we mainly
consider 𝑆 first for all situations. When oscillation profiles
are involved, 𝑅 and 𝐴 can be used as supplemental criteria
to further distinguish shape differences. A larger 𝑅 or 𝐴
generally means stronger oscillation.

3. The Results

3.1. Detection of Malfunctioning Reactions and Molecules in
IL-6 Signaling Pathway from Artificial Clinical Data

3.1.1. The Dynamic Patterns of Nuclear STAT3 and SOCS3 in
Hepatocyte Cells with Abnormal IL-6 Signaling. The IL-6
model was used to generate the profiles for STAT3N∗-
STAT3N∗ and SOCS3 for single reaction upregulation
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Figure 4: Continued.
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Figure 4: The patterns shown in STAT3N∗-STAT3N∗ and SOCS3 problems upon the down/upregulation of single reactions/preexisting
proteins: (a) upregulation of each reaction rate constant by 1000 times, (b) downregulation of each reaction rate constant by 0.001 times, (c)
upregulation of each preexisting molecule by 100 times, and (d) downregulation of each preexisting molecule by 0.01 times. The red curves
represent representative abnormal patterns studied in this work, while the green curves are obtained for the normal condition.

(Figure 4(a)), single reaction inhibition (Figure 4(b)), upreg-
ulation of single preexisting molecule (Figure 4(c)), and
downregulation of single preexisting molecule (Figure 4(d)).
As mentioned above, various up/downregulation levels
were applied to each reaction rate constant or preexisting
molecule. There are 116 reaction rate constants and 18 preex-
istingmolecules studied in this work. Due to space limitation,
Figure 4 only shows the simulation results for one up/down-
regulation level. For each of the four abnormal clinical condi-
tions, the irregular profiles (marked in red color) that varied
most significantly from the normal profiles (marked in green
color) were selected as the representative profiles that would
be used later to generate the artificial clinical data. The rep-
resentative irregular profiles were obtained by upregulating
reactionRxn10 (i.e., the red curve in Figure 4(a)) (Rxn10 is the
forward reaction of (IL-6-gp80-gp130-JAK)∗

2
+ STAT3C =

(IL-6-gp80-gp130-JAK)∗
2
-STAT3C), downregulating reac-

tion Rxn44 (i.e., the red curve in Figure 4(b)) (Rxn44 is the
forward reaction of (IL-6-gp80-gp130-JAK)∗

2
+ SOCS3 =

(IL-6-gp80-gp130-JAK)∗
2
-SOCS3), upregulating molecule

STAT3C (i.e., the red curve in Figure 4(c)), and downregu-
lating molecule PP2 (i.e., the red curve in Figure 4(d)). These
profiles were selected as they had the largest change in the
steady-state values for each of the four abnormal clinical
conditions.

Upon the upregulation of individual reaction rate con-
stants, Figure 4(a) shows that both STAT3N∗-STAT3N∗ and
SOCS3 profiles can have significant changes in shape, peak
value, and steady-state value. On the other hand, only a
few profiles deviate significantly from the normal profiles.
They construct a small pool of candidates for identifying
the malfunctioning reactions from the clinical data. They are
closely related to the activation of STAT3 in the JAK-STAT

pathway. An interesting observation from Figure 4(b) is that,
as a contradictory abnormal situation to the one shown in
Figure 4(a), the inhibition of a single reaction caused similar
change pattern in maximum and steady-state level as shown
in Figure 4(a). There is a noticeable difference though. For
the same scale of change, the magnitude change for the
upregulation condition is generally larger than the one for the
inhibition condition.

As shown in Figure 4(c), the upregulation of two preex-
isting proteins, that is, cytoplasmic STAT (STAT3C) and JAK,
leads to a larger increase in the peak values of STAT3N∗-
STAT3N∗ and SOCS3 than the up- or downregulation of
individual reactions shown in Figures 4(a) and 4(b). As a
result of downregulating preexisting molecules, most of the
shapes shown in STAT3N∗-STAT3N∗ and SOCS3 profiles
are different from the profiles of the normal condition. The
largest change in STAT3N∗-STAT3N∗ and SOCS3 profiles
shown in Figure 4(d) is due to the inhibition of the pre-
existing molecule PP2, which is involved in the pathway
deactivating nuclear STAT3 dimer (as shown in Figure 5) and
bringing it back to the cytoplasm. Downregulating the con-
centration of PP2 is therefore expected to enhance the nuclear
STAT3 dimer, which in turn leads to a higher expression of
SOCS3.

Asmentioned in Figure 5, limited clinical data is available
in the literature for abnormal IL-6 signaling. The represen-
tative profiles of STAT3N∗-STAT3N∗ and SOCS3 obtained
in Figure 4 were used to generate the artificial clinical data
as described in Section 2.3. Gaussian white noise was added
to these representative profiles (the red curves shown in
Figure 4) to account for the fluctuation in clinical data. The
artificial clinical data (the blue curve) was plotted with the
original representative profiles in Figure 6, which shows that
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Figure 5: The detail of the IL-6 signaling pathway. It was adapted fromMoya et al., 2011 [22].

the clinical data generally follows the same trends exhibited
in the original simulation data.

3.1.2. Detection of Malfunctioning Reactions from the Clinical
Data. The developed approach described in Section 2.3 was
applied to the clinical data shown in Figure 6 (i.e., the blue
curves) to detect the malfunctioning reactions/preexisting
molecules that lead to the abnormal nuclear STAT3 dimer
and SOCS3 profiles. This section shows the results for
detectingmalfunctioning reactions from the artificial clinical
data, while the next section focuses on the detection of
malfunctioning preexisting molecules from the data.

Table 1 ranks the reactions based on the similarity by
combining the nuclear STAT3 dimer and SOCS3 profiles as
one-column vectors in 𝑌clinical and 𝑌model that were obtained
by upregulating single reaction rate constants. The ranking
that is solely based on the similarity in either the nuclear
STAT3profile or the SOCS3profile is also listed inTable 1.The
combined 𝑆 is calculated by (2) using vector 𝑌 that contains
columns of values for both nuclear STAT3 dimer and SOCS3.
The upregulation of either Rxn10 or Rxn45 shows high
values of similarity in both the nuclear STAT3 and SOCS3
profiles. On the other hand, the upregulation of other
reactions results in small similarity values in both profiles.
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Figure 6: Continued.
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Figure 6: The artificial clinical data generated by adding noise to the nuclear STAT3 dimer and SOCS3 profiles from the model simulation:
(a) upregulation of each reaction rate, (b) downregulation of each reaction rate, (c) upregulation of each preexisting molecule, and (d)
downregulation of each preexisting molecule.

Table 1: The rank of the possibility of the reactions whose upreg-
ulation causes the abnormal profiles shown in Figure 6(a). 𝑆 is the
similarity factor determined by (2) from the nuclear STAT3 dimer
and SOCS3 profiles.

Rank Reaction
index 𝑆 𝑆 (STAT3N∗-STAT3N∗) 𝑆 (SOCS3)

1 10 0.98 0.98 0.98
2 45 0.83 0.80 0.90
3 46 0.58 0.81 0.0012
4 47 0.57 0.80 0.0013
5 41 0.55 0.78 0.0016
6 35 0.12 0.11 0.18
7 40 0.11 0.0010 0.13
8 43 0.11 0.0010 0.13
9 12 0.10 0.080 0.16
10 9 0.079 0.063 0.13

It is thus straightforward to conclude that the upregulation
of Rxn10 or Rxn45 (Rxn45 is the reverse reaction of (IL-6-
gp80-gp130-JAK)∗

2
+ SOCS3 = (IL-6-gp80-gp130-JAK)∗

2
-

SOCS3) accounts for the abnormal profiles shown in the clin-
ical data (i.e., Figure 6(a)). The artificial clinical data for this
test was obtained by upregulating the forward rate constant of
Rxn10. SinceRxn10 is ranked as theNumber 1malfunctioning
reaction in Table 1, it is clear that the developed approach is
able to correctly detect the malfunctioning reaction from the
data. Rxn10 is the reaction for STAT3C to bind to the receptor
complex (IL-6-gp80-gp130-JAK)∗

2
, which is the first step

for the activation of STAT3C to STAT3C∗. It is expected
that it is essential for the activation of STAT3N∗-STAT3N∗.
On the other hand, Rxn45 is the reaction in which (IL-
6-gp80-gp130-JAK)∗

2
-SOCS3 decomposes into SOCS3 and

(IL-6-gp80-gp130-JAK)∗
2
. SOCS3 inhibits the JAK/STAT

Table 2: The rank of the possibility of the reactions whose down-
regulation causes the abnormal profiles shown in Figure 6(b).

Rank Reaction
index 𝑆 𝑆 (STAT3N∗-STAT3N∗) 𝑆 (SOCS3)

1 44 0.98 0.98 0.98
2 43 0.77 0.97 0.0017
3 40 0.77 0.97 0.0017
4 47 0.46 0.015 0.88
5 46 0.42 0.014 0.94
6 36 0.29 0.27 0.34
7 41 0.29 0.0040 0.86
8 42 0.25 0.41 0.036
9 34 0.22 0.20 0.27
10 11 0.17 0.15 0.24

pathway by taking (IL-6-gp80-gp130-JAK)∗
2
away from

binding nuclear STAT3 [24]. If Rxn45 (should this be Rxn10)
is upregulated, a greater amount of (IL-6-gp80-gp130-JAK)∗

2

is available for activating more nuclear STAT3N∗-STAT3N∗.
At the same time, more SOCS3 is released from (IL-6-gp80-
gp130-JAK)∗

2
-SOCS3. This explains the increase in both

nuclear STAT3 dimer and SOCS3 upon the upregulation of
Rxn45. Although the output profiles for upregulating Rxn10
and Rxn45 are similar (as shown in Figure 7), the developed
approach can still separate these two reactions, as shown by
the difference in the similarity values (i.e., 0.979 for Rxn10
versus 0.832 for Rxn45).

The clinical data for downregulating single reactions
(Figure 6(b)) was used to detect the corresponding malfunc-
tioning reaction. The similarity analysis results are shown in
Table 2, where Rxn44 is ranked as the top potential reaction
to cause the abnormal profiles in the artificial clinical data.
Since the data (i.e., Figure 6(b)) was obtained by adding
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Figure 8: The profiles of nuclear STAT3 dimer and SOCS3 in the hepatocyte upon the upregulation of STATC and JAK.

noise to the simulation results after downregulating Rxn44,
Rxn44 is expected to be the most likely malfunctioning
reaction in this case. An interesting fact is that Rxn44 is
the reverse reaction of Rxn45, in which (IL-6-gp80-gp130-
JAK)∗

2
-SOCS3 is formed from SOCS3 and (IL-6-gp80-

gp130-JAK)∗
2
. Therefore, downregulating Rxn44 enhances

the concentrations of nuclear STAT3 and SOCS3 (as shown
in Figure 5).

3.1.3. Detection of Abnormal Preexisting Molecule Concen-
trations from the Data. The artificial clinical data shown

in Figure 6(c) was used to detect the corresponding
malfunctioning preexisting molecule. Results are shown
in Table 3. An enhanced initial condition of STAT3C was
ranked as the top driving force for the abnormal profiles of
the nuclear STAT3 and SOCS3. Since the artificial clinical
data was obtained by enhancing the initial availability of
STAT3C, the results in Table 3 prove that the developed
approach is able to pinpoint the malfunctioning preexisting
molecules from the artificial clinical data. The upregulation
of JAK leads to similar changes in the nuclear STAT3 and
SOCS3 profiles as those for upregulating STAT3C (Figure 8).
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Table 3: Ranking of the possibility of preexisting molecules whose
upregulation causes the abnormal profiles shown in Figure 6(c).

Rank Reaction
index 𝑆 𝑆 (STAT3N∗-STAT3N∗) 𝑆 (SOCS3)

1 STAT3C 0.99 0.99 0.98
2 JAK 0.76 0.74 0.86
3 Grb

2
0.11 0.091 0.16

4 MEK 0.066 0.053 0.12
5 gp180 0.064 0.051 0.12
6 Phosp2 0.064 0.051 0.12

Table 4: The rank of the possibility of preexisting molecules whose
downregulation causes the abnormal profiles shown in Figure 6(d).

Rank Reaction
index 𝑆 𝑆 (STAT3N∗-STAT3N∗) 𝑆 (SOCS3)

1 PP2 0.98 0.98 0.98
2 SHP2 0.087 0.078 0.13
3 Gas-GDP 0.086 0.077 0.13
4 Sos 0.086 0.076 0.12
5 Grb

2
0.085 0.075 0.12

6 PP1 0.081 0.066 0.12

In the JAK-STAT3 signaling pathway, JAK is an important
component for the activation of the receptor complex (IL-6-
gp80-gp130-JAK)∗

2
, which in turn activates nuclear STAT3

(as shown in Figure 5). This explains the upregulation of JAK
concentration results in enhanced concentrations of nuclear
STAT3.

The artificial clinical data for downregulating PP2
(Figure 6(d)) were used to identify the malfunctioning pre-
existing molecule, and the results are shown in Table 4. As
expected, PP2 was ranked as the top possible molecule with
the irregular initial concentration. The similarity value for
PP2 is much higher than any other preexisting molecule.
This again proves the accuracy of the developed approach for
detecting malfunctioning preexisting molecules.

3.2. Detection of Malfunctioning Reactions and
Molecules in TNF-𝛼/NF-𝜅B Signaling Pathway from
Artificial Clinical Data

3.2.1. The Dynamic Patterns of NF-𝜅B from Abnormal TNF-
𝛼/NF-𝜅B Signaling Pathway. The method of generating arti-
ficial clinical data for the TNF-𝛼/NF-𝜅B signaling pathway
follows the same procedure as the one for IL-6 signaling
pathway. Compared to the molecules in IL-6 signaling, the
components (e.g., NF-𝜅B) in the TNF-𝛼/NF-𝜅B signaling
pathway show more complicated and sustained oscillation.
Therefore, the factors 𝑅 and 𝐴 defined by (3) and (4) are
additionally considered here to further quantify the oscilla-
tory dynamics. Similar to the approach for IL-6 signaling, the
TNF-𝛼model was used to generate the profiles for NF-𝜅B for
four scenarios of abnormal conditions by changing a single

component of the network at each run. There are 38 reaction
rate constants and 16 preexisting molecules studied in this
work. For each of the four abnormal clinical conditions, the
irregular profiles (marked in red color) that are significantly
different from the normal profiles in oscillation amplitudes
and periods were selected as the representative profiles to
generate the artificial clinical data. It was identified that the
representative irregular profiles were generated by upregulat-
ing reaction Rxn9 (i.e., the IKK inactivation reaction caused
by A20), downregulating reaction Rxn16 (i.e., the reaction
for IKKa|I𝜅B𝛼 degradation), upregulating molecule cyto-
plasmic I𝜅B𝛼|NF-𝜅B complex, and downregulatingmolecule
TRADD.

Upon the upregulation of individual reaction rate con-
stants, as shown in Figure 9(a), NF-𝜅B profiles have notice-
able changes in shape, peak value, and steady-state value.
Most importantly, the profile type can shift to be a sustained
oscillation curve. The profiles that change most significantly
are key influential reactions for the activation of NF-𝜅B
in the pathway. The inhibition of single reactions causes
similar patterns (Figure 9(b)). However, when compared to
the profiles with the same scale of change (i.e., comparing
downregulation of ×0.1 times with upregulation of ×10 times,
×0.01 with ×100, and ×0.001 with ×1000), downregulations
generally result in the oscillation with higher magnitudes
than upregulations (results not shown). These results mean
that, in the model of TNF-𝛼/NF-𝜅B pathway, downregula-
tions and upregulations of reactions generally influence NF-
𝜅B activation with different levels regardless of the change
scales. A potential explanation for this phenomenon is that
downregulation tends to disturb negative feedback loops that
are closely correlated to NF-𝜅B activation in the network,
which coordinates several components in response to the
change. In this way, downregulations are more sensitive to
changes and therefore lead to more serious changes. As a
consequence, the NF-𝜅B concentration goes up and down
from its initial value intensely and continuously to generate
strong oscillation.

In Figure 9(a), Rxn9 is IKK inactivation reaction; thus the
upregulation of Rxn9 causes the amount of active IKK (i.e.,
IKKa) to decrease. Therefore, less IKKa acts in the reaction
to release NF-𝜅B (Figure 2) from a complex molecule. It is
reasonable that the profile with upregulated Rxn9 (Figure 10)
tends to have a lower amount of NF-𝜅B. In Figure 9(b), Rxn16
is IKKa|I𝜅B𝛼 degradation, which is a reaction that has direct
impact on the negative feedback loop and production of NF-
𝜅B, so the profilewith downregulatedRxn16 shows significant
oscillation.

As shown in Figure 9(c), the upregulation of cytoplasmic
I𝜅B𝛼|NF-𝜅B complex can lead to a tremendous change in
the magnitude and shape of NF-𝜅B profiles. Cytoplasmic
I𝜅B𝛼|NF-𝜅B complex is the only source of nuclear NF-𝜅B (as
shown in Figure 2), so its amount change certainly will lead to
a direct change of NF-𝜅B level. The sustained oscillation pro-
file in Figure 9(d) is due to the inhibition of TRADD.TRADD
is involved in the early steps of the activation of TNF-𝛼
signaling (as shown in Figure 2). Hence, it is expected that
downregulating the concentration of TRADD has adverse
effect on the TNF-𝛼 signaling and NF-𝜅B activation.
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Figure 9:The patterns shown inNF-𝜅B profiles upon the down/upregulation of single reactions/preexisting proteins: (a) upregulation of each
reaction rate constant by 100 times, (b) downregulation of each reaction rate constant by 0.0001 times, (c) upregulation of each preexisting
molecule by 10 times, and (d) downregulation of each preexisting molecule by 0.01 times. The red curves represent representative abnormal
patterns studied in this work, while the green curves are obtained for the normal condition. The magenta curve in (d) is a representative
medium level change profile that is used to generate clinical data for Table 10.

3.2.2. Detection of Malfunctioning Reactions from the Clinical
Data. With the same method as shown in Section 3.1.1, we
generated artificial clinical data by adding white noise with
the standard deviation 𝜎 = 0.2. Table 5 presents the reactions
based upon the comparison of factors 𝑆, 𝑅, and 𝐴 of NF-
𝜅B profiles shown in 𝑌clinical and 𝑌model that were obtained
by upregulating single reaction rate constants. Since 𝑆 factor
simply concerns the average difference between pairwise
points from the data and model-predicted profiles, 𝑆 may
miss some important characteristics of oscillation curve.
The factors 𝑅 and 𝐴 were used here to address this issue.
Only the most comparable five reactions with the represen-
tative reaction data are shown in Table 5 due to the space
constraint.

Table 5: The top five reactions whose upregulation may cause
the abnormal profiles shown in Figure 9(a) (Rxn9 is IKK inacti-
vation reaction caused by A20; Rxn33 is decomposition of TNF-
𝛼|TNFR1 complex to free TNF-𝛼 and TNFR1; Rxn12 is IKKa,
IKKn, and IKKi degradation; Rxn46 is composition of TNF-
𝛼|TNFR1|TRADD|TRAF2|RIP-1 and FADD to a complex; Rxn17 is
IKK|I𝜅B𝛼|NF-𝜅B decomposition with NF-𝜅B releasing).

Number Reaction index 𝑆 𝑅 𝐴

1 9 0.99 0.0014 0.97
2 33 0.82 0.0015 1.0
3 12 0.69 0.00089 0.68
4 46 0.56 0.00032 0.24
5 17 0.38 0.0010 0.73
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Figure 10: Selected profiles of NF-𝜅B upon the upregulation of
single reactions in TNF-𝛼/NF-𝜅B signaling pathway.

The upregulation of Rxn9 or Rxn33 (i.e., the reaction
for the decomposition of TNF-𝛼|TNFR1 complex to free
TNF-𝛼 and TNFR1) shows both high values of 𝑆 and similar
values of 𝑅 and 𝐴 factors. By contrast, the upregulation of
other reactions results in small 𝑆 values and very different
values of 𝑅 and 𝐴 factor. It is challenging to distinguish
Rxn9 and Rxn33 by visual inspection, as the profiles related
to them are very similar. On the other hand, our approach
was able to separate these two similar profiles by the 𝑆, 𝑅,
and 𝐴 factors. Since the artificial clinical data was derived
by manipulating the reaction rate constant of Rxn9, it is
testified in this case that the developed approach is able to
correctly detect malfunctioning reactions from the data. To
conclude from this observation highly similar profiles must
have high 𝑆 values, whereas high 𝑆 values do not necessarily
ensure the similarity in oscillation shapes, because oscillation
cases are much more complicated than steady-state cases, in
which the pairwise comparison of 𝑆 may leave behind some
important features of profiles in a certain period of time.
𝑅 and 𝐴 factor were thus defined as supplemental criteria
for describing oscillation features, which suits for this case.
Overall, 𝑆 can be used for a rough judgment about similarity
in the first place, while adding 𝑅 and 𝐴 to consideration
is capable of improving the accuracy of the malfunctioning
reaction detection. Therefore, the winning reaction must be
selected by higher 𝑆 first and then be identified or confirmed
according to reasonable 𝑅 and 𝐴 values that correspond to
correct oscillation features.

The analysis result of downregulating single reactions is
shown in Table 6. Rxn16 is expected to be the most possible
malfunctioning reaction as it is the reaction manipulated
to make the artificial clinical data. The result is consistent
with the expectation. Both the graph (Figure 11) and the
table (Table 6) demonstrated that Rxn16 stood out as the top

Table 6: Ranking of the possibility of the reactions whose down-
regulation causes the abnormal profiles shown in Figure 9(b)
(Rxn16 is IKKa|I𝜅B𝛼 degradation; Rxn45 is release of IKK from
IKK|I𝜅B𝛼|NF-𝜅B complex; Rxn14 is IKKa and I𝜅B𝛼 association;
Rxn9 is IKK inactivation reaction caused by A20; and Rxn10 is IKK
spontaneous inactivation).

Number Reaction index 𝑆 𝑅 𝐴

1 16 0.98 0.0051 3.8
2 45 0.61 0.0012 0.68
3 14 0.57 0.0012 0.55
4 9 0.50 0.0018 0.25
5 10 0.46 0.0016 0.25
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Figure 11: Selected profiles of NF-𝜅B upon the downregulation of
single reactions in TNF-𝛼/NF-𝜅B signaling pathway.

malfunctioning reaction in this case. Besides, it can be seen
that the difference of 𝑆between the reactions shown inTable 6
ismoderate, whereas the differences of𝑅 and𝐴 between these
reactions can be remarkable. In particular, the𝑅 and𝐴 factors
directly reflect the shape of every profile and thus make it
clearer to distinguish any two profiles.This example supports
the superiority of the 𝑅 and𝐴 factor in the similarity analysis
of oscillation profiles.

3.2.3. Detection of Abnormal Preexisting Molecule Concentra-
tions from the Clinical Data. The results of detection of mal-
functioning preexisting molecules are shown in Tables 7 and
8. An enhanced initial condition of cytoplasmic I𝜅B𝛼|NF-
𝜅B is ranked as the top driving force for the abnormal NF-
𝜅B profile shown in the artificial data (i.e., the red profile
shown in Figure 9(c) with the addition of Gaussian white
noise). Since the clinical data was generated by increasing
the initial amount of cytoplasmic I𝜅B𝛼|NF-𝜅B, the developed
approach is able to pinpoint the malfunctioning preexisting
molecules from clinical data. While 𝑆 has demonstrated
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Figure 12: The profiles of nuclear STAT3 and SOCS3 upon the upregulation of Rxn10 with the added noise of the standard deviation 𝜎 equal
to 80% of the mean sampled value.

Table 7: Rank of the possibility of preexisting molecules whose
upregulation causes the abnormal profiles shown in Figure 9(c).

Number Molecule index 𝑆 𝑅 𝐴

1 Cytoplasmic I𝜅B𝛼|NF-𝜅B 0.98 0.048 30
2 TNFR1 0.46 0.00 0.00
3 Free nuclear NF-𝜅B 0.25 0.0011 0.49
4 Free cytoplasmic I𝜅B𝛼 0.24 0.0014 0.50
5 Nuclear I𝜅B𝛼|NF-𝜅B 0.24 0.0013 0.45

Table 8: Rank of the possibility of preexisting molecules whose
downregulation causes the abnormal profiles shown in Figure 9(d).

Number Molecule index 𝑆 𝑅 𝐴

1 TRADD 0.98 0.0014 0.94
2 TRAF2 0.67 0.00062 0.34
3 RIP-1 0.60 0.00048 0.25
4 Cytoplasmic A20 0.50 0.0013 0.47
5 Nuclear I𝜅B𝛼|NF-𝜅B 0.50 0.0013 0.46

a noticeable difference between cytoplasmic I𝜅B𝛼|NF-𝜅B and
other molecules, the 𝑅 and 𝐴 factors can provide additional
information to indicate more differences between profiles.

The result for the artificial clinical data in which the
concentration of TRADD was downregulated is shown in
Table 8, which shows that all profiles other than the one for
TRADD have small 𝑆 values. This indicates that TRADD
can be easily distinguished among all other possibilities for
the malfunctioning concentration of preexisting molecules.
Even if TRAF2 and RIP-1 have relative big 𝑆 values, their 𝑅

and 𝐴 values are much smaller than those for TRADD. For
cytoplasmic A20 and nuclear IkBa|NF-𝜅B, 𝑆 and 𝐴 are very
small; however, their 𝑅 values are close to that of TRADD.
This case study indicates that the𝑅 factormay not distinguish
two profiles inwhich the two𝛼 angles (Figure 3) are of similar
value. For this scenario, either 𝑆 or 𝐴 or both can be used to
distinguish those profiles.

4. Discussion

4.1. The Impact of the Added Noise in the Clinical Data on the
Detection for Malfunctioning Reactions/Preexisting Molecules.
The results shown in Tables 7 and 8 were obtained from
the clinical data in which Gaussian white noise was added
with a standard deviation (represented by 𝜎) equal to 20%
of the mean value sampled at each time point from the
simulation. When the noise in the data overwhelms the true
concentration signal, the profiles shown in the clinical data
may not be closely correlative to the model predictions for
the four abnormal clinical conditions. In other words, a low
similarity value may be obtained for the true malfunctioning
reactions/preexisting molecules.

In order to further evaluate how the noise level in
the clinical data influences the accuracy of the developed
approach for detecting malfunctioning reactions/preexisting
molecules, the developed approach was applied to the clinical
data generated for reaction upregulation (e.g., Figure 6(a)) in
IL-6 signaling pathway with four different standard devia-
tions, that is, 𝜎 equal to 20%, 40%, 60%, and 80% of the mean
sampled value. Due to the space limitation, only the data for
𝜎 equal to 80% of the mean sampled values are shown in
Figure 12. The comparison between the data in Figures 6(a)
and 12 shows that the noise level in Figure 12 is significantly
higher.
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Table 9: Rank of the possibility of the reactions whose upregulation causes the abnormal profiles with different noise levels.

Rank 20% 40% 60% 80%
Reaction index 𝑆 Reaction index 𝑆 Reaction index 𝑆 Reaction index 𝑆

1 10 0.98 10 0.92 10 0.85 10 0.80
2 45 0.83 45 0.80 45 0.74 45 0.68
3 46 0.58 46 0.56 46 0.51 46 0.48
4 47 0.57 47 0.56 47 0.51 47 0.48
5 41 0.55 41 0.54 41 0.49 41 0.46
6 35 0.12 35 0.12 35 0.11 35 0.10
7 40 0.11 40 0.10 112 0.086 12 0.079
8 43 0.11 43 0.10 43 0.083 9 0.064
9 12 0.10 12 0.093 40 0.083 43 0.062
10 9 0.079 9 0.075 9 0.070 40 0.062

Table 9 shows the ranking result for the clinical data
with different noise levels. It seems that a higher level of
noise reduces the similarity values. However, the positions
of top-ranked malfunctioning reactions were not changed
even though more noise was added to the clinical data. This
indicates that the developed similarity analysis approach is
noise-robust. Similar results were obtained for the other three
abnormal clinical conditions and in TNF-𝛼/NF-𝜅B pathway.
Due to the space limitation, these results are not shown here.

4.2. Potential Multiple Solutions for the Malfunctioning Reac-
tions/Preexisting Molecules. As shown in Table 1 and Figure 7,
the upregulation of Rxn10 and Rxn45 shows similar value
in the similarity analysis. In addition, Table 2 shows that
the downregulation of Rxn44, which is the reverse reaction
of Rxn45, leads to similar influence on the nuclear STAT3
dimer and SOCS3 profiles as the upregulation of Rxn45
and Rxn10. If large noise exists in the clinical data, it is
possible that these malfunctioning reactions return the same
similarity values so that multiple solutions exist. Moreover,
the results of different reactions with different regulation
levels may return similar results, and the current approach
is not able to show the level of regulations. It would be
beneficial to distinguish profiles with different regulation
levels. In order to achieve this,more variables as themeasured
outputs should be added, and the scope of the regulation
levels should be narrowed down. Due to the complexity of
the followingwork, it is not included in this work. In addition,
the malfunction of multiple reactions/preexisting molecules
may result in similar change in the profiles of STAT3N∗-
STAT3N∗ and SOCS3. Due to the space limitation, this work
does not study the influence from multiple malfunctioning
reactions/preexisting molecules on the cell behavior. The
unique solution problem is an interesting topic for further
investigation.

One way to address the multiple solution issue is adding
more system outputs in the similarity analysis. In this work,
only nuclear STAT3 and SOCS3 were monitored and used
for the fault detection. Adding other molecules can improve
the accuracy of fault detection, as these malfunctioning
reactions/molecules that lead to the same change in the

Table 10: Rank of the possibility of preexisting molecules whose
downregulation causes the abnormal profiles (magenta colored
curve shown in Figure 9(d)). TNF-𝛼/NF-𝜅B pathway is used for this
example.

Number Molecule index 𝑆 𝑅 𝐴

1 TRAF2 0.98 0.00062 0.34
2 RIP-1 0.97 0.00048 0.25
3 IKKn 0.93 0.00078 0.29
4 Free nuclear NF-𝜅B 0.89 0.00095 0.35
5 Free cytoplasmic NF-𝜅B 0.89 0.0013 0.45

profiles of nuclear STAT3 and SOCS3 may result in differ-
ent change in other signaling molecules. Since monitoring
additional signaling molecules is more expensive, it is thus
necessary to determine the optimal number of systemoutputs
for measuring. This is another interesting topic for further
investigation.

In TNF-𝛼/NF-𝜅B pathway, Table 5 and Figure 11 show
the similarity of Rxn9 and Rxn33 in the scenario of 100-fold
upregulation. Our approach is still able to separate them. As
discussed previously, different reactions show different pat-
terns in response to different malfunction levels. Although
Rxn9 and Rxn33 seem very similar in the first 15 hours of NF-
𝜅B, they gradually show different dynamics in a longer term
(Figure 13). Using the profiles for a longer time period is a
feasible way to distinguish similar profiles.

4.3. The Degree of Difference between the Clinical Data and
Normal Profile. In previous discussion, clinical data are cor-
responding to themost different abnormal profiles. However,
sometimes there is a variety of clinical data dealing with
not necessarily the most different cases. In order to test
our approach on these cases, abnormal cases with medium
degree of difference are selected to generate clinical data.
Then noise with the standard deviation 𝜎 equal to 20% of
the mean sampled value was added. The same procedure
for calculating 𝑆, 𝑅, and 𝐴 was utilized. Table 10 shows an
example of investigating the ability of our approach to detect
the malfunctioning molecule by downregulating molecules
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Figure 13:The profiles of NF-𝜅B upon the upregulation of Rxn9 and
Rxn33 within 100 hours.

by a factor of 0.01. It is reasonable to see that detecting the
malfunctioning reactions for the case with medium degree of
difference is challenging.Theminor differences among 𝑆 val-
ues make it hard to distinguish the possible malfunctioning
molecules. However,𝑅 and𝐴 turned out to be reliable criteria
in this case, and based on them, the correct malfunctioning
molecule can still be identified.

4.4. The Impact of Data Density on the Detection for Malfunc-
tioning Reactions/PreexistingMolecules. Considering that the
clinical data density is possibly rather rare on the time scale
compared to the data we used in our approach (six points
per hour), the same approach with a lower data density (one
point per hour) is investigated here. The results are shown in
Table 11 and Figure 14. With this lower data density, although
profile features do have some variations, it is still possible
for the profiles generated to show clear patterns, and the
malfunctioning reactions/molecules can still be identified
correctly. This example proved that within a certain range of
data density, our approach is still feasible.

4.5. Limitation and Future Work

4.5.1. Multiple Malfunctioning Reaction/Molecule Case. The
regulation of a single reaction/molecule means the change of
the signaling pathway is originated from a single point. This
regulation may further lead to change in the downstream
reactions in a signal transduction cascade, as signaling reac-
tions highly interact. The developed approach in this paper
aims to determine which reactions/molecules are crucial in
the signaling pathway of interest to cause abnormal dynamics
of the target signal molecule. Only if the effect of single
reaction/molecule malfunction is well studied can multiple
reaction/molecule malfunction situation be analyzed thor-
oughly. Existing study shows that a large number of human

Table 11: The top five reactions whose upregulation by a factor of
100 may cause the abnormal profiles. Data density is changed to one
point per hour.

Number Reaction index 𝑆 𝑅 𝐴

1 9 0.98 0.00054 0.34
2 12 0.82 0.00082 0.51
3 33 0.72 0.0011 0.74
4 46 0.46 0.000061 0.040
5 17 0.32 0.00037 0.26
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Figure 14: Selected profiles of NF-𝜅B upon the upregulation of
single reactions in TNF-𝛼/NF-𝜅B signaling pathway. Standard devi-
ation 𝜎 of noise in clinical data is equal to 20% of the sampled value.

diseases are associated with the malfunction of a single
reaction/molecule. For example, the cognate receptor of TNF,
that is, TNFR1, plays a critical role in the control of CNS
demyelination and inflammation [26]. Reference [27] lists 13
example human diseases that are associated with the mal-
function of a single gene in NF-𝜅B signaling. The emergence
of double malfunctioning reactions/molecules in TNF𝛼/NF-
𝜅B signaling pathway was studied in this work. The results
are not shown here due to the space limitation. Preliminary
simulation results indicate that the crucial reaction/molecule
that generates a significant malfunctioning pattern generally
dominates the final malfunctioning dynamics when it is
pairedwith another noncrucial reaction/molecule.Therefore,
it can be assumed that it is possible that only a few crucial
reactions/molecules have apparent influence in a multiple
reaction/molecule malfunction situation. Besides, the com-
binations of different malfunctioning reactions/molecules
may return similar results, thus requiring more variables as
measured outputs to further distinguish them. Since a large
number of combinations would increase the simulation work



18 BioMed Research International

heavily, an efficient way is needed to solve this problem. This
interesting problem will be further investigated in the future.

4.5.2. Uncertain Noise in Cell Signaling. In any study where
clinical data simulation is involved, data noise is the essential
part of the study. In this first-trial work, Gaussian white
noise was added to the output of the model with nominal
parameters and initial values representing a normal person.
Only noise from experimental measurement was considered
in this work. There may be some difference in the cell
behaviors from cell to cell in the human body and among
different population of patients due to stochastic properties of
signaling pathways and genetic reasons. In order to consider
the noise coming from these factors, adding white noise to
themodel parameters or initial values of considered variables
is a potential way to reflect the cell-to-cell and patient-
to-patient differences. However, since there are more than
100 parameters and initial variable values in our models,
the sampling of outputs and the comparison of output
distributions to identity the malfunctioning reactions will
be challenging at this time. This is the major reason for
only considering measurement noise in this work. To narrow
down the uncertainties in the model, the signaling model
should be refined from the real data for a specific community
of people to narrow down the individual differences.

4.5.3. Stochasticity in the Cell Signaling. The kinetics of
individual cells may be affected by stochastic processes in
signaling pathways, such as the stochastic gene switching and
stochastic receptors activation shown in Lipniacki et al., 2007
[28]. In our approach, we try to use different values of a reac-
tion rate constant to represent the stochastic property shown
in a single reaction. We ignore the stochastic properties in
the reactions other than the target reaction for malfunction
simulation.While including the stochastic properties of other
reactions may improve the accuracy of the prediction, the
stochastic simulation is computationally intensive for large
biological models and it also leads to a distribution of each
output value over time (i.e., for multiple cells). Approaches to
perform stochastic simulation, distinguish the distributions
showing the outputs, and then identify the malfunctioning
reactions require further investigation.

5. Conclusion

This work demonstrates the first kinetic-model-based
approach to detect the malfunctioning reactions/preexisting
molecules in a biological network from the artificial clinical
data. Four abnormal clinical conditions in two popular
signaling pathways involved in acute phase response (i.e.,
IL-6 and TNF-𝛼/NF-𝜅B signaling pathways), including
the up/downregulation of single reaction rates and the up/
downregulation of single preexisting molecules, were inves-
tigated. The simulation results showed that the developed
approach was able to successfully detect the malfunction-
ing reactions/preexisting molecules from the clinical data
with a high level of noise. In addition to being robust to
noise, the developed approach was able to return a unique
solution for fault detection from the clinical data for two

signaling molecules (i.e., nuclear STAT3 and SOCS3) in IL-6
signaling pathway and one molecule (i.e., NF-𝜅B) for the
TNF-𝛼/NF-𝜅B pathway. Although the developed approach
was applied to the artificial clinical data, significant noise
was added to the data to validate our approach. In addition
to these two pathways studied in this work, the developed
approach can be applied to other biochemical systems if
experimentally validated models are available for them.
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