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Abstract

The analytical expression for the Voigt profile, along with its simplified forms for the Gaussian 

and Lorentzian dominance, is presented. The applicability of the Voigt profile in the description of 

anomalous diffusion phenomena, ubiquitous in different fields of science including protein 

folding, is discussed. It is shown that the Voigt profile is a good descriptor of the processes 

occurring in protein folding and in the native state. The usefulness of the Voigt profile in deriving 

important information of the diffusive motions in proteins from a quasielastic incoherent neutron 

scattering experiments is illustrated.
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Many mathematical functions are successfully used in describing ubiquitous physical 

phenomena across multiple disciplines of natural science. One such function is the Voigt 

profile [1], a widely-used function in astrophysical [2–4], Raman [5,6], plasma [7] and 

applied [8] spectroscopy, which is a convolution of Gaussian, G(x) = 2/ πωG′ exp − x/ωG′
2 , 

and Lorentzian, L(x) = (1/π) ωL/ x2 + ωL
2 , functions, and can be expressed in different 

forms [2–9]:

V (v, ξ) = ξ/π3/2 ∫
−∞

∞
exp −y2

ξ2 + (v − y)2dy (1a)
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V (v, ξ) = (1/π)∫
0

∞

exp −ξy − y2/4 cos(v y)dy (1b)

V (v, ξ) = (1/πξ)∫
0

∞

exp −y − (y/2ξ)2 cos(vy/ξ)dy (1c)

where ωG ωG = ln2ωG′  and ωL are Gaussian and Lorentzian half-widths at half-maximum 

(HWHM), respectively; ξ = ωL/ωG′  is the line-damping parameter and v = x/ωG′ . It can easily 

be shown from Eq. (1) that for limiting cases of ξ, the Voigt profile obtains Gaussian (ξ → 
0) and Lorentzian (ξ → ∞) form. The Voigt profiles for different ξ along with Gaussian and 

Lorentzian functions are illustrated in Fig. 1. The dynamics of the change from the Gaussian 

to Lorentzian function is clear on both panels. Unlike the Gaussian and Lorentzian 

functions, the Voigt profile cannot be expressed in compact analytical form. For many years, 

tables [10], computer algorithms [11], and analytical interpretation formulae with limited 

ranges of ξ and υ [12] were used for calculation of the Voigt profile. Combining ξ and υ 
into the complex variable z = υ + iξ, the Voigt profile can be represented as the real part of 

the complex function [13]

V (v, ξ) = Re[W (z)], W (z) = i
π∫−∞

∞ e−y2

z − ydy (2)

Also, the function W(z) is closely related to the complex complementary error function 

erfc(-iz) [14] and the Dawson function F (z) = ∫0
zey2dy

W (z) = e−z2erfc( − iz) = e−z2 1 + 2i
π∫0

z
ey2dy = e−z2 + 2i

πF (z) (3)

Both error and Dawson functions were approximated by Chebyshev polynomials [16–18].

We have derived an analytical form for V(υ, ξ) which is both exact for arbitrary values of ξ 
and υ and sufficiently simple to be very useful in the numerical extraction of lineshape 

parameters from spectral data [5,6,9]. It has the following form:

V (v, ξ) = exp −v2

π exp ξ2 cos(2ξv)[1 − coth(2πξ)]

+ 2ξ
π ∑

n = − ∞

∞ exp − 1
4n2 cosh(nv)

n2 + 4ξ2

(4)

with a rapidly converging and easily tractable series. The Gaussian and Lorentzian 

components in Eq. (4) are predominantly represented by the first term and by the sum, 
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respectively. Therefore, Eq. (4) can be reduced to simpler limiting forms of Gaussian and 

Lorentzian dominance, respectively [9]:

V (v, ξ) ≈ (1/ π)exp −v2 exp ξ2 erfc(ξ)cos(2ξv)
+ 2sin2(ξv)/ πξ 1 + 0.1379v2 + 0.0120 + 0.0434ξ2 v4 , v ≪ 1

(5a)

V (v, ξ) ≈ exp −v2 [a(ξ) + b(ξ)cos(2ξv)],
a = (πξ)−1; b = π−1/2 exp ξ2 erfc(ξ) − ( πξ)−1 , v ≪ 1, ξ ≪ 1 (5b)

V (v, ξ) ≈ 2ξ/π3/2 ∑
n = − ∞

∞
exp −(v − n/2)2 / n2 + 4ξ2 , ξ ≥ 1 (6a)

V (v, ξ) ≈ 1
π

ξ
ξ2 + v2 1 + v2

ξ2 + v2 2 , ξ ≫ 1 (6b)

These equations are valid close to the maximum (Eq. 5), intermediate range (Eq. 6a) and far 

from the maximum (Eq. 6b).

It should be noted that the analytical form with a rapidly converging and easily tractable 

series of the imaginary part of the complex function W(z) was also derived in Refs. [5,6].

The property of covering the whole spectrum of band shape variations from the Gaussian to 

the Lorentzian function makes the Voigt profile an applicable function to the description of a 

number of physical, biological and social phenomena, including protein folding processes. 

The point is that the Levy flights [19], the presence of which usually leads to anomalous 

diffusion [20,21], an observed phenomenon in protein folding [22–25], intermittent chaotic 

systems [26], bacterial motion [27], and foraging biology [28], have infinite variance (except 

the Gaussian distribution) and an analytical form is known only for a few special cases. For 

example, the symmetrical Levy stable distribution of index α (0 <α ≤ 2) and scale factor γ 
(γ > 0), which has the following form [29]

PLevy(v) = 1
π∫

0

∞

exp −γyα cos(vy)dy (7)

can be reduced to the Gaussian (α = 2) and Lorentzian (α = 1) distributions as its special 

cases. These are only two symmetrical Levy distributions that can be expressed as 

elementary functions. It is necessary, therefore, to find analytical functions which can cover 

the region 1 < α < 2. To this end, the Voigt profile might be a useful function.

In order to resolve the second discouraging mathematical property of Levy flights, the lack 

of finite variance, Mantegna and Stanley introduced the truncated Levy flight (TLF), in 
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which the arbitrarily large steps of the Levy flight are eliminated [29]. A TLF is 

characterized by probability distribution

T (v) ≡
0,
cPLevy(v),
0

v < − l
−l ≤ v ≤ l
v > l

(8)

where c and l are the normalizing constant and cutoff length, respectively. It is worth noting 

that the conditions, imposed on υ in Eq. (8) to make the variance finite, are embedded in the 

Voigt profile (1c). The reciprocal line-damping parameter 1/ξ, which varies in the range (0, 

∞) depending which distribution is dominant, can control the cutoff length. If the 

distribution is close to Gaussian then 1/ξ → ∞, and when the distribution is close to 

Lorentzian then 1/ξ → 0. In a Gaussian distribution, the range of υ/ξ can be (− ∞,∞) since 

Gaussian distribution has finite variance without any conditions. However, with increment of 

Lorentzian dominance 1/ξ gets smaller and the range of υ/ξ decreases, which is consistent 

with the idea of TLF.

Pagnini and Mainardi [30] proposed a probabilistic generalization of the Voigt profile as the 

convolution of two arbitrary symmetric Levy distributions. They introduced parametric 

integro-differential equations, classified as space-fractional diffusion equations of double 

order, for both the ordinary and the generalized Voigt profiles. Moreover, the Voigt profile 

was expressed in terms of the Mellin-Barnes integrals, Fox H-function and Meijer G-

function [31]. All three functions were introduced into physics by Schneider [32] as analytic 

representations for Levy distributions, and as solutions of fractional equations [21]. Plus, 

Fox H-functions enable to treat several phenomena including anomalous diffusion in a 

unified and elegant framework [33].

Based on these studies, it is of interest to investigate whether the Voigt profile can be useful 

for describing different important biological processes. In this Letter, along with some 

interesting aspects of the Voigt profile, we discuss its applicability to one of the most 

important biological processes - protein folding [22–25, 34]. In particular, we examine the 

dependence of the variance of the Voigt profile on the line-damping parameter ξ, and treat 

probability distribution functions (PDFs) of some global and local coordinates of protein 

folding trajectories with the Voigt profile. However, before presenting the results, we briefly 

describe the methodology used in the presented study. The data analyzed in this work were 

obtained from molecular dynamics (MD) trajectories generated with the coarse-grained 

united-residue (UNRES) force field [35, 36] and the all-atom optimized potentials for liquid 

simulations (OPLS) force field [37]. In particular, we carried out (i) forty-eight coarse-

grained MD simulations of one of the mutants, L26D (PDB ID: 2N4R) [38], of the Formin 

binding protein 28 (FBP28) WW domain (PDB ID: 1E0L) [39] at two different temperatures 

(305K, 315K) (24 MD trajectories, with ~1.4 μs UNRES time, at each temperature); and (ii) 

five all-atom MD simulations of α/β model protein VA3 (PDB ID: 1ED0), each of a 

duration of 80 ns, at 300 K in explicit water [40]. All coarse-grained MD simulations start 

with the same initial fully-extended structure of L26D but with different velocities, whereas 

all-atom MD simulations start with the same initial structure of VA3, taken from the NMR 

model 1 [41], but with different velocities.
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Because of the obvious dependence of the variance of the Voigt profile on the line-damping 

parameter ξ, we have studied a variance of the Voigt profile, which has the following form:

V ar(ξ) = ∫
−∞

∞

v2V (v, ξ)dv = 1
πexp ξ2 [1 − coth(2πξ)] ∫

−∞

∞

v2exp −v2 cos(2ξv

)dv + 2ξ
π3/2 ∫

−∞

∞

v2exp −v2 ∑
n = − ∞

∞ exp −0.25n2 cosh(nv)
n2 + 4ξ2 dv

(9)

By integrating (9) we obtain

V ar(ξ) = 1
2[1 − coth(2πξ)] 1 − 2ξ2 + ξ

π ∑
n = 0

∞ n2 + 2
n2 + 4ξ2 (10)

where the series on the right-hand side is divergent, consequently the variance of the Voigt 

profile is undefined. However, since the Voigt profile can be presented in simpler forms for 

Gaussian and Lorentzian dominance, it is worthwhile to study the variance for these 

approximations.

It is clear from the Voigt profiles with Lorentzian dominance (Eq. (6a) contains the sum, the 

variance of which is a divergent series, and the first term of Eq. (6b) has Lorentzian function 

form) that the variance of these approximations is undefined. Using the integrals of 

elementary functions [42], we have obtained variance of the Voigt profiles of Gaussian 

dominance, Eqs. (5a) and (5b), respectively:

V ar(ξ) = (1/2) 1 − 2ξ2 erfc(ξ) +
1 − exp −ξ2

πξ 0.6259 + 0.0814ξ2

+ exp −ξ2 / π 1.5486ξ + 0.2605ξ3 − 0.3136ξ5 + 0.0434ξ7
(11a)

V ar(ξ) = (1/2) 1 − 2ξ2 erfc(ξ) + 1
2 πξ 1 − 1 − 2ξ2 exp −ξ2

(11b)

Figure 2 shows the variance as a function of ξ calculated from Eqs. (11a) and (11b). Since 

Eq. (5b) is a good approximation of the Voigt profile for ξ << 1, the variance of this 

approximation is correct only for small ξ, and it coincides with the variance of the more 

general approximation, Eq. (5a), in the region of small ξ. The persistence of variance for 

small ξ indicates that the Voigt profile is almost purely Gaussian. There are two reasons for 

the small increase and then decrease of variance (solid line in Fig. 2) in the region 0.01 < ξ < 

3.0. First, Eq. (5a) is an approximation of Eq. (4), and it is accurate in the region of small 

υ[9]. Second, the region 0.01 < ξ < 3.0 is a transition region from the Gaussian to the 

Lorentzian function, consequently variance cannot be a constant value. For ξ > 3 variance 

increases, because the Voigt profile is becoming a Lorentzian function, and when ξ → ∞ 
variance will be undefined. The reason of relatively slow increase is the approximation 

mentioned above. The decrease of variance (dash line), defined by Eq. (11b), in the region of 

large ξ is caused by the incorrectness of Eq. (5b) in this region of ξ.
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Starting from the famous experiments of Anfinsen et al. [34], the question of how proteins 

reach their biologically active ensembles of conformations still remains to be answered. The 

selection of a correct model for protein folding kinetics and the coordinates along which the 

intrinsic folding pathways can be identified in order to interpret experimental data still 

remains challenging. The common choices for reaction coordinates are root-mean-square-

deviation (RMSD) with respect to the native structure, radius of gyration (Rg), number of 

native contacts, and other order parameters. Here, we examine the PDFs of radius of 

gyration of folding trajectories of L26D mutant of the FBP28 WW domain, generated with 

the coarse-grained UNRES force field, by the Voigt profile. There are ten and eleven folding 

trajectories at 305K and 315K, respectively. Depending on how fast the protein folds, the 

PDF of Rg can be either unimodal or bimodal (Fig. 3A–B). By fitting PDFs of Rg (the 

modes corresponding to native states in bimodal PDFs) of the folding trajectories, we found 

that the faster a protein folds, i.e. the longer it remains in the native state, the smaller the 

value of the line-damping parameter ξ becomes, indicating the increase of Gaussian 

dominance in the PDF of Rg (Fig. 3C). By fitting PDFs of Rg for the modes corresponding 

to unfolded states in bimodal PDFs, we found the same behavior for the line-damping 

parameter ξ, i.e. the longer the proteins stays in the unfolded state, the smaller the value of 

the line-damping parameter ξ becomes (Fig. 3D). Moreover, the Lorentzian contribution in 

both cases increases with the temperature (Fig. 3C–D). These findings can be explained as 

follows: the first, that the PDFs of Rg of protein can be described by the Voigt profile, is not 

surprising given that the PDF of Rg of a flexible polymer may be written in terms of the 

Chebyshev polynomial [43] which, as was mentioned above, itself is related to the Voigt 

profile [16–18]; the second, in fast-folding trajectories, the system spends a short time in the 

unfolded state, and makes long jumps to proceed over the transition-state barrier to the 

native state, which consequently increases the Lorentzian contribution in the PDFs of Rg of 

the unfolded state. With the increase of temperature the number of long jumps increases, 

which is reflected in the shape of PDFs of Rg by the increase of the Lorentzian contribution.

In the next example, we successfully apply the Voigt profile to PDFs of local coordinates. In 

particular, in our recent study [40] on the example of the α/β model protein VA3, we 

investigated the rotational correlation functions of the backbone N-H bonds and of the 

dihedral angles γ in order to understand how the main chain in the native state of a protein 

fluctuates on different time scales. The orientation of the backbone of a protein around a 

residue n at any time t can be characterized by a unit vector un(t) representing the orientation 

of a local probe of the protein dynamics in a frame attached to the molecule. One of the 

probes, un(t), of the backbone dynamics, considered in our previous study [40], represents 

the orientation of the main chain measured by a coarse-grained dihedral angle γn built on 

four consecutive Cα atoms [44]. The probability that the vector u (see Fig. S1 in ref. [40]) is 

rotated by an angle Δγ after a time t > 0 is represented by the quantity F(Δγ, t)dγ For a free-

diffusion equation on a circle with diffusion coefficient D(t), we found that the PDF F(Δγ, t) 
is a series of Chebyshev polynomials (see Eq. S17 in ref. [40]). The analytical solutions 

F(Δγ, t) agreed quite well with the PDFs computed by MD for different residues (see Fig. 

S8 (a-c) in ref. [40]); however, there are some discrepancies in the PDFs for the γ angles 

with multiple-minima free-energy profiles (FEPs) (see Fig. S8 (b, c) in ref. [40]). Because of 

the correlation between the Chebyshev polynomials and Voigt profiles, here, we apply the 
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Voigt profile to the PDF F(Δγ, t) illustrated in Fig. S8 of ref. [40]. Figure 4 shows a perfect 

fit of the Voigt profile (green line) with the PDFs computed by MD (black line) for all three 

γ angles with the line-damping parameters: ξ = 0.011 (A), 0.661 (B), 0.833 (C). As was 

expected, the line-damping parameters, ξ, for PDF F(Δγ, t) of the γ angle with a typical 

harmonic FEP illustrates a strong Gaussian dominance (panel A), whereas in the other two γ 
angles with multiple-minima FEPs ξ becomes greater indicating an increase of the 

Lorentzian contribution (panels B, C). In Fig. 4, for the comparison, we keep curves 

calculated by Eqs. S17 (red line) and S30 (blue line) of ref. [40].

Another field in which the Voigt profile can be successfully applied is quasielastic 

incoherent neutron scattering [45], one of the commonly-used experimental techniques to 

understand the molecular motion involved in protein folding. In the quasielastic incoherent 

approximation, the theoretical scattering function describing the internal motion in the 

protein can be expressed by [46,47]

Stℎeor(Q, ω) = exp −Q2 u2 /3 A0(Q)δ(ω) + ∑
i = 1

n
Ai(Q)L ω, Γi (12)

where Q is the neutron momentum transfer, < u2 > is the mean square amplitude of 

vibrations, A0(Q)δ(ω) is the elastic term with an infinitely high spectrometer energy 

resolution δ(ω), and the quasielastic component Ai(Q)L(ω,Γi), which measures the mobility 

of the protons within protein, is the sum of Lorentzian functions. However, the 

experimentally measured scattering function is that of Eq. (12) convoluted with the 

instrumental (spectrometer) Gaussian type resolution function, consequently the overall 

quasielastic incoherent scattering function is a convolution of these two functions, i.e. the 

Voigt profile. In order to correctly define the diffusive motions in proteins, the proper 

determination of the Gaussian and Lorentzian contributions in experimentally measured 

scattering function is required. This can easily be achieved by fitting the experimental data 

with the Voigt profile [5,6].

As an example, we fitted quasielastic neutron-scattering spectra of lysozyme in deuterated 

glycerol for different temperatures (300K, 330K, 370K and 400K) [48] by the Voigt profile, 

and obtained the line-damping parameter ξ as a function of temperature. It turns out that, if 

we fit the entire quasielastic neutron-scattering spectra (see Figs. 3 and 4 in Ref. [48]), the 

line-damping parameter ξ increases with the increase of temperature (Fig. 5), which 

indicates an increment of Lorentzian contribution. In other words, the line-damping 

parameter ξ is a good descriptor of the substantial rising of the quasielastic intensity due to 

the increase of temperature. If we fit quasielastic neutron-scattering spectra with the Voigt 

profile focusing on a perfect fit of only the high energy region, then the obtained value of the 

line-damping parameter ξ is very small, indicating Gaussian dominance in the Voigt profile. 

This finding is in harmony with the previous study [48], in which the authors fitted the same 

spectra by the Gaussian and Lorentzian functions, and found that the Gaussian function 

gives quite a good fit in the high energy region ( > 1 meV), whereas the Lorentzian function 

fits the region near the elastic peak better (see Fig. 4 in Ref. [48]).
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Finally, as it was mentioned above, the Voigt profile is related to the probability integral, and 

it is a real part of the complex function W(υ, ξ) [Eq. (2)]. Studying experimental results of 

resonance Raman and absorption spectra [5,6], we found that when the broadening 

parameters are not small, inclusion of the imaginary part of W(υ, ξ), the analytical forms of 

which are available in Refs. [5,6], in the expression along with the Voigt profile is important 

[5,6].

In our opinion, the ideas discussed in this work might be important for different fields of 

science. It is inevitable that in most physical systems the power-law tail of the Levy flight is 

truncated at a characteristic scale that often is the system size [49]. For example, most 

biological systems are bounded/limited (cell trajectories are limited by the cell cycle and 

environmental conditions), resulting in the truncation of the power law tail, which introduces 

a characteristic scale to the movement pattern [50]. Therefore, the Voigt profile, which 

inherently includes the conditions imposed on Levy flight for truncation, might be a useful 

function for investigating these processes. Moreover, we illustrated that the Voigt profile can 

be a good descriptor of the processes occurring in protein folding and in native state. 

Therefore, applications of the Voigt profile on different biological processes are planned in 

the nearest future.
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Fig. 1. 
(A) Gaussian (solid line) and Lorentzian (dash-dot line) functions along with the Voigt 

profiles for different line-damping parameters ξ [dash-dot-dot line (ξ = 0.1), long-dash line 

(ξ = 1.0)]; (B) The same functions as in (A) plus the Voigt profile for ξ = 0.001 (short-dash 

line) only ordinate is in log scale
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Fig. 2. 
Variance as a function of ξ calculated by Eq. (11a) (solid line), and Eq. (11b) (dash line)
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Fig. 3. 
The probability distribution function of Rg for fast-folding (A) and slow-folding (B) 

trajectories of L26D with representative structures at the peaks. Dependence of the line-

damping parameter ξ on time that protein remains in the native (C) and unfolded (D) 

states.The triangles and circles correspond to trajectories at 305K and 315K, respectively
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Fig. 4. 
The probability distribution functions F(Δγn; t) for γ11 (A), γ35 (B), and γ39 (C) of VA3 

computed for the MD trajectory (black lines), and evaluated by the Chebyshev polynomials 

(Eq. S17 in ref. [40]) (red lines), by the Gaussian function (Eq. S30 in ref. [40]) (blue lines), 

and by the Voigt profile (green lines)
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Fig. 5. 
The line-damping parameter ξ, obtained from fitting quasielastic neutron-scattering spectra 

of lysozyme in deuterated glycerol, as a function of temperature
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