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The amount of oxygen given to preterm infants within the first few minutes of birth is

one of the most contentious issues in modern neonatology. Just two decades ago, pure

oxygen (FiO2 1.0) was standard of care and oximetry monitoring was not routine. Due to

concerns about oxidative stress and injury, clinicians rapidly adopted the practice of using

less oxygen for the respiratory support of all infants, regardless of gestational maturity

and pulmonary function. There is now evidence that initial starting fractional inspired

oxygen may not be the only factor involved in providing optimum oxygenation and that

the amount of oxygen given to babies within the first 10min of life is a crucial factor

in determining outcomes, including death and neurodevelopmental injury. In addition,

evolving practice, such as non-invasive respiratory support and delayed cord clamping,

need to be taken into consideration when considering oxygen delivery to preterm infants.

This review will discuss evidence to date and address the major knowledge gaps that

need to be answered in this pivotal aspect of neonatal practice.
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INTRODUCTION

The optimum amount of oxygen required for the respiratory support of newborn infants is one
of the most contentious issues in current neonatal practice. The adverse effects of hypoxia are
well-known and for centuries, pure oxygen was used without question (1). As recently as the 1960s,
oxygen was considered “only to be good” and clinicians were advised to “use (it) liberally” (2),
especially with knowledge that birth-related neurological injury could be related to hypoxia (3). The
development of the Apgar Score in the 1950s encouraged oxygen treatment (4), even when Apgar
herself showed that there was little relationship between birth oxygenation and later intelligence (5).

However, in the 1990s, the Resair study raised the possibility that room air (FiO2 0.21) could be
used instead of pure oxygen for newborn resuscitation (1). This study was conducted in India (6)
where access to oxygen was limited and birth asphyxia rates were high. This study showed that air
could be used as safely as oxygen to initiate the resuscitation of hypoxic full-term infants.

Over the next 15 years, an increasing number of studies (7–13) showed that air resuscitation
was possible and that using air considerably reduced oxidative stress and injury to major organs
such as the heart and kidneys (9). In 2005, a meta-analysis of >1,300 infants by Tan et al. provided
compelling evidence that air resuscitation could decrease the risk of death in hypoxic infants by
about 30% when compared to oxygen resuscitation (typical Odds Ratio (OR) 0.69, 95% Confidence
Intervals (CI): 0.54–0.88; 14).
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Thereafter, expert committee recommendations changed
significantly. In 1998, pure oxygen was recommended as a
supplement to infant ventilation support at birth (14). In 2006,
guidelines suggested for the first time that air could be used for
term infant resuscitation if oxygen was not available (15). In
2010, guidelines were once again revised to suggest that FiO2

be manipulated to target preductal SpO2 readings derived from
healthy, full term infants (16–18). These recommendations have
not changed to date (19).

Extremely preterm infants may not be hypoxic but still
require respiratory support at birth. Many need supplemental
oxygen to prevent hypoxia (20). The respiratory needs of preterm
infants were acknowledged by international guidelines, which,
over the years, varied from no specific recommendation (15),
to “initiation of resuscitation with 30 or 90% oxygen and
titration to oxygen saturation” (16), to recommending against
use of high supplementary oxygen concentrations (65–100%) and
advocating for the use of lower oxygen concentrations (21–30%)
for infants below 35 weeks gestation (19).

However, whether lower oxygen strategies are best for preterm
infants, considering the risk of pulmonary immaturity, is
unknown. This review will therefore present current evidence
to date for the use of oxygen in the delivery room respiratory
support of preterm infants and discuss strategies to address
knowledge gaps around contemporary practice. Specifically, it
will delineate the historical context behind the shift in practice
from higher to lower oxygen, evidence for short and long-term
outcomes with lower oxygen resuscitation strategies and then the
integration of evidence with current practice, including for more
mature (e.g., >32 weeks gestation) preterm infants.

METHODS

This is an objective review of current literature and
includes consideration of human and animal studies as
well as clinical practice guidelines (CPGs).

The History of Oxygen in Newborn Infant
Resuscitation
For millennia, some newborn infants were acknowledged to need
assistance to complete the necessary transition from intra to
independent extra-uterine life. Chest expansion was the crucial
step in this process and was usually accomplished with mouth to
mouth by the accoucher (1). Oxygen was added after its discovery
by Scheele and Priestley in the eighteenth century by the French
anatomist, Francois Chaussier, who, in 1781, was the first to use
oxygen to revive “apparently dead” newborn infants (1). Over the
next two centuries, oxygen became an indispensable step in the
newborn resuscitation process and was given in a wide variety of
ways, including via the trachea, into the umbilical veins and even
into the stomach [gastric mucosa was purported to have excellent
oxygen absorbing properties (1)].

The role of oxygen for newborn resuscitation was firmly
entrenched when hypoxia was linked to neurological injury in the
1940s (20). In 1957, the Apgar score was devised to systematically
evaluate newborn resuscitation (4). One of the components of

the Apgar score was “color.” Infants who were entirely “pink”
received the maximum score of 2, those with blue extremities
(acrocyanosis) received a score of 1 and those who were either
white or blue, received a score of 0. Most infants became “pinker”
with oxygen therapy, resulting in higher color and total scores.
There was no apparent relationship between oxygenation at birth
and later intellectual development (5) but despite this, the use of
oxygen in the delivery room remained unquestioned for decades.

Evolution of Oxygen Administration in the
Delivery Room: When Less Became More
Whether a few minutes of exposure to pure oxygen at birth was
safe was initially questioned by animal and bench studies (21). In
the hypoxic milieu, high energy compounds such as adenosine
triphosphate (ATP) are metabolized into hypoxanthine which in
turn, is converted by the enzyme xanthine oxidase into xanthine
and uric acid. Oxygen is a precursor for this reaction which
produces reactive oxygen species (ROS), such as superoxide
dismutase and hydrogen peroxide as by-products. The addition
of oxygen, e.g., during resuscitation, increases the production of
ROS, which, if unmitigated by anti-oxidant protection, eventually
causes cellular damage and death (22).

In 1993, Ramji and his colleagues demonstrated that hypoxic
full-term infants could be resuscitated with air instead of oxygen.
This study was conducted in India, where access to oxygen was
limited and costly. The Resair study randomized 84 asphyxiated
babies to resuscitation at birth with either air or oxygen. Six
infants in the air arm were given oxygen when they failed to
respond (by increasing heart rate) within 90 s of life but was
no difference in mortality rates or severity and incidence of
encephalopathy between the two arms. An infant in the air arm
was excluded because of lack of response to resuscitation efforts
and was considered a still birth. The authors concluded that air
was as safe as oxygen for hypoxic infant resuscitation (6).

Subsequent RCTs, totalling more than 1,500 infants, were then
conducted over the next 15 years to examine this question (6–
13). These studies led to a series of meta-analyses, with the latest
conducted in 2018 (23–30), all of which concluded that air was
unequivocally superior to oxygen in reducing the risk of death
from birth asphyxia. The latest, conducted in 2018 by Welsford
et al., noted that no new evidence had been acquired since 2007
and that the data from which the recommendations were based
were low quality for the very important outcomes of mortality
(Risk ratio [RR]= 0.73; 95% confidence interval [CI]: 0.57–0.94)
and hypoxic ischemic encephalopathy (HIE, 5 RCTs; n = 1,315;
RR = 0.89; 95% CI: 0.68–1.18). Furthermore, only one study has
published on longer-term, i.e., post hospital discharge, outcomes.
Saugstad et al. examined 213 of the 323 eligible infants enrolled
in the Resair 2 study and found no difference between the air and
oxygen groups in rates of cerebral palsy and neurodevelopmental
delay (31).

When Less Becomes a “Bit More:” the
Implications of Transitional SpO2 Data
SpO2 is peripheral capillary oxygen saturation, the fraction of
oxygen saturated hemoglobin relative to total (saturated and
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unsaturated) hemoglobin in blood. SpO2 is measured non-
invasively by pulse oximetry, which, though not always identical
to arterial oxygen saturations (SaO2), provides a safe, convenient,
and inexpensive way of assessing oxygenation within the clinical
environment. Normal adult pulse oximetry values range from 95
to 100% but in newborn infants, observational prospective cohort
studies show that pre-ductal SpO2 in healthy term infants may
take up to 14min to minutes to reach ≥90% (17, 18, 32–34) and
could be as low as 81% by 5min in otherwise healthy infants
delivered by cesarean section (34).

The implications of SpO2 targeting on infants with lung
pathology are uncertain. None of the studies of HIE infants
acquired SpO2 data in response to air resuscitation. Apgar
measured oxygen content in 1,787 cord and heel blood
samples from 404 infants between birth and 3 days of
age. These infants were heterogenous, ranging from healthy
infants to those with respiratory distress (n = 6), seizures
(n = 7), and congenital problems, including “mongolism,”
microcephaly and muscular dystrophy. There was no apparent
relationship between blood oxygen content and IQ in 275
children that returned for developmental testing up to 4 years
of age (5).

Nevertheless, recommendations to titrate FiO2 in response
to SpO2 were made in 2010 (16), primarily from information
derived from preterm infants below 30 weeks gestation. In this
cohort, exposure to high (>80%) levels of oxygen at birth leads
to rapid increase of SpO2, above 90%, by a few minutes of age
(35, 36). In contrast, using air alone led to rapid decline of SpO2

(37), necessitating supplemental oxygen in almost all infants by
5min of age to prevent hypoxia (36, 37) while adjusting FiO2

by graded increments emulated SpO2 trajectories of healthy term
infants (38, 39).

The Impact of a Few Minutes of
Oxygenation on the Preterm Infant: the
Important Outcomes
The preterm infant responds very differently to oxidative
stress from the term infant. Despite lung protective and
maturing therapies such as antenatal steroids (40) and exogenous
surfactant (41), the preterm infant is exquisitely sensitive
to oxidative stress as antioxidant defenses are not acquired
sufficiently from the mother or produced de-novo until the 3rd
trimester (42). The detrimental effects of chronic exposure to
high concentrations of oxygen have been known for decades
(43, 44) but the effects of hypoxia are equally serious. In an
individual patient meta-analysis of five RCTs conducted between
2005 and 2014, enrolling 4,965 infants below 28 weeks gestation),
Askie et al. found that nursing infants in lower SpO2 target ranges
(85–89%) decreased the risk of retinopathy of prematurity (ROP)
but increased the risk of death and necrotizing enterocolitis
[NEC, (45)]. Nevertheless, the impact of just a few minutes of
hyper or hypoxia in the preterm infant at birth is uncertain.
The short period after birth is often overshadowed by the many
events that occur after the infant is admitted into the NICU
and a direct relationship between birth resuscitation and later
outcomes is unclear.

Can Preterm Infants Be “Resuscitated”
With Less Than Pure Oxygen?
In 1989, Svenningsen et al. described the outcomes of 65 Swedish
infants below 900 g (22–31 weeks) gestation born between 1984
and 1986. These infants were resuscitated with standard Swedish
policy by ventilation with either “air or 30–40% oxygen by 1–
5min if the infant was not breathing and crying within the first
minute after birth.” In this cohort, 52% of the infants survived
at 28 days and 48% were alive at 1 year. The ontogeny of this
policy is unclear but represents the feasibility of lower oxygen
respiratory support in a high risk group of extremely preterm
infants (46).

Based on this study, Lundstrom et al. randomly assigned
a group of preterm infants (median gestation 29 weeks) in
Denmark between 1991 and 1992 to resuscitation at birth with
either air (FiO2 0.21, n = 34) or FiO2 0.8 (n = 38). This
was the first RCT to describe both oxygen blending and SpO2

targeting in either term or preterm infants. In the air group,
FiO2 was increased by steps of 0.1 steps if the “heart rate failed
to normalize” within 1min of age. FiO2 in the 0.8 group was
not altered. Oximetry was determined in only 12 infants from
each group because of equipment availability (35). Infants who
were given FiO2 0.8 had higher SpO2 readings (>90% by 3min)
compared to a control group of 12 healthy term infants while
infants given air had SpO2 that approximated those of the term
infants, reaching >90% only after 7–8min of life. No infant
died in the delivery room but those who were given FiO2 0.8
had significantly lower cerebral blood flow, that was correlated
with reduced survival in animal studies (47). No other outcomes,
including neurodevelopmental outcomes, were described.

The Evidence for Using Less Oxygen in
Preterm Infants
To date, 11 RCTs (35, 37–39, 48–54) and four cohort studies
(36, 55–57) have been conducted to determine the association
between lower and higher oxygen strategies at delivery and
preterm (<32 weeks) infant outcomes (see Table 1). All of these
studies were conducted over a prolonged period of time (>10
years), with enrolment spanning between 1991 (35) and 2014
(54). As a consequence, the methodologies used by these studies
were vastly different, especially for SpO2 targeting. Studies that
recruited after publication of the 2010 guidelines (16) adjusted
FiO2 to target SpO2 recommended by these guidelines (51–53).
Older studies targeted SpO2 levels that were derived from best
available evidence at the time of inception (35, 37–39, 48–50, 54).
It is important to note that none of the RCTs were large enough
to demonstrate any difference in the major outcomes of death
and/or disability. Recruitment for the largest study, the To2rpido
study (54), was curtailed at 15% of the target sample due to loss
of equipoise against the 100% oxygen arm.

The cohort studies (36, 55–57), nevertheless, suggest that
the skills needed for oxygen blending and SpO2 titration may
improve with time, possibly with better outcomes for the infants.
These studies compared outcomes after changes to institutional
and national delivery oxygen policies. Dawson et al. (36)
compared the outcomes of 106 infants below 30 weeks gestation
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TABLE 1 | Randomized controlled trials and cohort studies examining the use of lower and higher oxygen strategies in preterm infants.

FiO2 N Gestation

(weeks)

Death# BPD** PDA# NEC# ROP** IVH#

RANDOMIZED CONTROLLED TRIALS

Lundstrøm 1995, Enrolled 1991–1992, Denmark (35)

Low 0.21 34 29 (25–32) 2 (6) 5/32 4 (12) 2 (6) 1 (3) 2 (6)

High 0.8 35 29 (24–32) 6 (17) 2/29 7 (20) 1 (3) 2 (6) 3 (9)

Harling 2005, Enrolment years not available, FiO2 not changed during resuscitation,

no SpO2 monitoring, UK (48)

Low 0.5 26 27 (23–31) 4 9/22 4 2 0 NR

High 1.0 26 28 (24–31) 5 7/22 2 0 0 NR

Wang 2008, Enrolment 2005–2007, California, USA (37)

Low 0.21 18 28.1 ± 2.2 1 (6) 7 (39) 4 (22) 1 (8) 1 (5) 1 (11)

High 1.0 23 27.6 ± 2.1 1 (4) 3 (13) 7 (38) 1 (9) 0 0

Escrig 2008* Enrolment 2005–2007, death data collected at 28 days, Spain (39)

Low 0.3 19 26.4 ± 1.9 4 (21) 4 (27) 10 (53) 0 1 (7) 2 (11)

High 0.9 23 26.1 ± 1.5 3 (13) 7 (35) 11 (48) 1 (4) 2 (10) 4 (17)

Vento 2009* Enrolment 2007–2008, death data collected at 28 days, Spain (38)

Low 0.3 37 26.1 ± 1.5 4 (11) 6 (18) 19 (51) 2 (5) 4 (12) 7 (19)

High 0.9 41 26.3 ± 1.3 3 (7) 13 (47) 27 (66) 1 (2) 6 (16) 5 (12)

Rabi 2011* Enrolment between 2005 and 2007, Canada (41)

Low 0.21 34 29 (28–30)∧ 1 18/33 NR NR NR NR

High 1.0 38 28 (28, 29)∧ 1 22/37 NR NR NR NR

Armanian 2012, Enrolment 2009–2010, 29–34 weeks, Iran (49)

Low 0.3 16 32 0 NR NR NR NR NR

High 1.0 16 30.8 0 NR NR NR NR NR

Kapadia 2013, Enrolment between 2010 and 2011, USA (51)

Low 0.21 44 30 ± 3 2 (4) 3 (7) 6 (14) 1 (2) 1 (2) 1 (2)

High 0.3 44 30 ± 3 3 (7) 11 (25) 10 (23) 6 (14) 4 (9) 1 (2)

Aguar 2013* Enrolment between 2010 and 2012, Spain (52)

Low 0.3 34 27.1 ± 1.6 4 (12) 10 (33) 23 (68) 2 (6) 4 (13) 11 (32)

High 0.6 26 26.7 ± 1.5 7 (27) 6 (32) 15 (58) 1 (4) 1 (5) 8 (31)

Rook 2013* Enrolment between 2008 and 2012, Spain, Netherlands (53)

Low 0.3 99 28.5

(27.1–30.3)∧
6 (6) 23 (24) 35 (35) 4 (4) 6 (6) 8 (8)

High 0.65 94 29.2

(26.3–30.4)∧
10 (11) 14 (17) 28 (30) 3 (3) 5 (5) 10 (11)

Oei 2015 Enrolment between 2009 and 2014, Australia, Malaysia, Qatar (54)

Low 0.21 144 28 ± 2 14 (10) 34 (24) 36 (25) 5 (4) 4 (3) 2 (1)

High 1.0 143 28 ± 2 6 (4) 40 (28) 41 (29) 1 (1) 8 (6) 6 (4)

COHORT STUDIES

Dawson Enrolment 2006–2007, Australia (36)

Low 0.21 105 27 ±1.6 12 (11) NR NR NR NR NR

High 1.0 20 27 ± 1.6 3 (15) NR NR NR NR NR

Rabi Enrolment 2004–2009 population based, Canada (55)

Low 0.21–0.4 1244 26 (25,27)∧∧ 251 (21) 512 (51) 525 (80) 132 (11) 166 (22) 288 (26)

High 1.0 1082 26 (25,27)∧∧ 192 (18) 458 (51) 630 (90) 96 (9) 165 (24) 215 (23)

Soraisham Enrolment 2010–2011 Population based, Canada (56)

Low 0.21 445 26.3 ± 1.4 68 181 (47) 248 (56) 43 (10) 51 (16) 59 (13)

Intermediate 0.22–0.99 483 26.3 ± 1.3 72 179 (43) 259 (54) 45 (9) 36 (12) 50 (10)

High 1.0 581 25.8 ± 1.5 124 258 (55)∧ 365 (63)∧ 52 (9) 77 (19) 88 (15)

Kapadia 2013, 2017 Enrolment 2009–2012, institutional, USA (57)

Low 0.21 89 26 ± 1 17 (19) 14 (19)∧ 27 (30%) 7 (8%) 4 (4%) 10 (11%)

High 1.0 110 26 ± 1 21 (19) 36 (40) 46 (42%) 7 (6%) 14 (13%) 21 (19%)

Death is defined as death before hospital discharge; NR, not reported; BPD, bronchopulmonary dysplasia—need for oxygen/respiratory support at 36 weeks corrected gestation; PDA,

patent ductus arteriosus—need for medical and/or surgical treatment; NEC, necrotising enterocolitis, >Bell stage 3; ROP, retinopathy of prematurity, >grade 2 and/or plus disease; IVH,

intraventricular hemorrhage, >grade 2 **percentage calculated for survivors, #percentage calculated for all infants.
∧Data expressed as mean ± standard deviation, n (%), median (range).
∧∧Median (interquartile range).
∧p < 0.05.
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who were resuscitated with air after a change to institutional
policy in 2006, to 20 historical cohorts that were resuscitated
with 100% oxygen. This noted that 92% of air infants required
supplemental oxygen by 5min of age and that oxygen titration
resulted in similar SpO2 course to “normal” term and preterm
infants. Kapadia et al. compared the outcomes of 110 infants
below 28 weeks gestation that were resuscitated with 100%
oxygen titrated to target SpO2 85–94% to 89 infants resuscitated
with initial 21% oxygen, titrated to meet recommended guideline
SpO2 after a change in institutional policy in 2011. No difference
in mortality was noted but low oxygen infants had decreased
risk of BPD (aOR 0.4, 95% confidence intervals: 0.2–0.9) and
higher motor scores on the Bayley Scales of Infants and Toddler
Assessment (57).

In Canada, Rabi et al. noted a higher risk of severe
neurological injury or death (aOR 1.36. 95% CI: 1.11–1.66) in
preterm infants born between 2004 and 2009 after a change in
national resuscitation policy from using 100% oxygen to lower
oxygen strategies (55). In a later cohort born between 2010 and
2011, Soraisham et al. (56) showed decreased risk of death and/or
disability for infants receiving room air (n= 445) or intermediate
(22–99%, n = 483) oxygen compared to those resuscitated with
100% oxygen (n= 581).

Starting FiO2 for Preterm Infants: the Loss
of Equipoise for Higher Oxygen Strategies
In a survey of 630 clinicians from 25 countries in 2015, almost
all (>80%) would initiate resuscitation for preterm infants below
29 weeks gestation with FiO2 below 0.4. The most commonly
used starting FiO2 was 0.3–0.4. Almost none would use FiO2

above 0.6 and only four respondents would use pure oxygen as
they were limited by equipment availability (58). The lack of
equipoise toward the use of high initial FiO2 is demonstrated by
the difficulty in recruitment for the To2rpido study (54) which
compared air to FiO2 1.0 for resuscitation of infants below 32
weeks gestation.

The RCTs have examined various levels of initial FiO2, ranging
from FiO2 0.21–0.3 for low arms and FiO2 0.6–1.0 for high
arms. All of these studies titrated FiO2 to different target SpO2

levels and none compared oxygen titration to the previous gold
standard of care: pure oxygen. Importantly, none have examined
the FiO2 levels used most commonly by clinicians: 0.31–0.4 (58)
and there are no studies examining impact of initial FiO2 on
non-asphyxiated infants between 32 and 36 weeks gestation.

Importantly, none of the studies were powered sufficiently
to examine either survival alone or survival without
neurodevelopmental injury. To amalgamate existing data,
three meta-analyses have now been conducted. Lui et al.
identified 10 studies that randomized 914 infants to initial with
FiO2 < 0.4 or ≥0.4. Subgroup analyses were conducted for
different FiO2 strata (0.21 vs. ≥ 0.4 to < 0.6; 0.21 vs. ≥ 0.6 to
1.0; and ≥ 0.3 to < 0.4 vs. ≥ 0.6 to 1.0 and found no difference
in the primary outcomes of death and or disability between
lower and higher oxygen strategies (59). Welsford et al. included
cohort (n = 4) as well as RCTs (n = 10), totalling 5,697 patients

≤ 35 weeks gestation and again, found no difference in the
risk of short-term mortality (n = 968, risk ratio (RR) 0.83, 95%
confidence interval (CI) 0.50–1.37), long term mortality and
neurodevelopmental outcomes (60). Oei et al. (61) examined
individual patient data for infants <29 weeks gestation from 8
studies (n= 504, 37–39, 50–54) and again, found no difference in
the risk of hospital death, bronchopulmonary dysplasia (BPD),
severe intraventricular hemorrhage (IVH), or retinopathy of
prematurity (ROP). See Table 2 for a summary of meta-analyses.

SpO2 Targeting: the Other Part of the
Oxygen Question and Can It Be Achieved?
The lack of difference noted with initial FiO2 may be due to
the way in which oxygen is titrated during stabilization. In Oei’s
meta-analysis, blinded studies, where oxygen was titrated by the
research team without clinician input, had lower mortality rates
in lower oxygen arms [RR 0.46, 95% Ci 0.23–0.92, p = 0.03;
(61)]. The Canadian population studies (55, 56) noted a change in
outcomes between two time periods in infants resuscitated with
lower oxygen strategies and the necessary skills to titrate oxygen
in response to SpO2 changes undoubtedly require experience
(64). In experienced hands, SpO2 readings can be obtained
even in very small infants by 2min of age (65) but frequent
manipulations may be necessary to achieve target SpO2 levels.
SpO2 targeting is technically difficult, even within the nursery.
Lim et al. analyzed 4,034 h of data from 45 infants in a neonatal
intensive care unit (median gestation 30 weeks, IQR 27–32)
and found that hyperoxia was directly related to the number
of patients managed by the nurse. Infants were within target
SpO2 ranges only 31% of the time (median, IQR 19–39%) and
experienced a median of 25 FiO2 adjustments (range 16–41) each
day (66).

Within the delivery room, SpO2 targeting could even be more
technically challenging. In an observational study of 78 infants
(median 27 weeks gestation), Goos et al. noted large deviations
above [median (IQR)] of 4.4% SpO2 (1.4–6.5), and below target
(8.2% (2.8–16.0) SpO2 in the delivery room. After the first 10min,
SpO2 levels were, respectively, above and below the limit for 11%
(0–27) and 8% (0–23) of the time (67). In bench tests, Dekker
et al. noted that the median (IQR) time required to achieved
necessary FiO2 was 34.2 (21.8–69.1) s. During stabilization of
preterm infants (median gestation 29 weeks), almost half (49%)
of titrations were adjusted prior to achieving desired FiO2 levels
(68). In a prospective observational study of 27 preterm infants
(mean 28 weeks gestation, 962 g birthweight), White et al. found
that infants spent almost two-thirds of the first 10min of life with
SpO2 outside target ranges [below by 28%, within by 35% and
above by 37% of the time, (69)].

“Normal” SpO2 for the Preterm Infant and
Its Implications
Uncertainty regarding “normal SpO2” for a preterm infant
requiring stabilization and respiratory support in the delivery
room is illustrated by the results of a survey of 45 international
CPGs. Of these, 36 had gestation specific recommendations,
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TABLE 2 | Summary of meta-analyses for the use of oxygen in the delivery room stabilization of preterm infants.

Studies

n

Infants

n

Type Comparator Gestation

(weeks)

Death-short term BPD IVH NEC ROP Disability at 2

years

Oei et al. (61) 8 RCT 504 IPD FiO2 ≤ 0.3

vs. ≥ 0.6

<29 0.99 (0.52–1.91) 0.88 (0.68–1.14) 0.81 (0.52–1.27) 1.61 (0.77–3.36) 0.82

(0.46–1.46)

NR

Lui et al. (59) 10 914 Pooled FiO2 </≥ 0.4 <32 1.05 (0.68–1.63) 0.91 (0.72–1.14) 0.93 (0.51–1.71) 0.98 (0.51–1.87) 0.57

(0.24–1.36)

0.82 (0.49–1.35)

2 studies,

n = 208

Oei et al.# (62) 8 706 IPD SpO2 <80%

vs. >85%

<29 2.1 (1.1–3.9)∧ 1.2 (0.8–1.8) 4.7 (2.1–10.2)∧ NR 1.6

(0.8–3.1)

NR

Welsford et al.

(60)

10 RCT

4 cohorts

5,697** Pooled FiO2 “lower”

vs. “higher”*

<35 0.83 (050–1.37)

N = 968

(0.71–1.40)

N = 843

0.96 (0.61–1.51)

N = 795

1.34 (0.62–2.84)

N = 847

0.73

(0.42–1.27)

N = 806

1.14 (0.78–1.67)

N = 389

<28 0.92 (0.43–1.94)

N = 467

0.90 (0.64–1.28)

N = 467

0.84 (0.50–1.40)

N = 441

1.62 (0.66–3.99)

N = 441

0.75

(0.43–1.33)

N = 441

1.08 (0.58–2.03)

1 study, N = 69

Oei et al.# (63) 3 RCT 543

eligible

IPD FiO2 ≤ 0.3

vs. ≥ 0.6

N = 539

<32 NR NR NR NR NR Cognitive score

<85: 0.8

(0.4–1.5)

Any disability:

1.0 (0.8–1.3)

SpO2 <80%

vs. ≥80%

N = 473

3 < 32 NR NR NR NR NR Cognitive score

<85:

0.4 (0.2–0.8)∧

Any disability:

0.6 (0.5–0.8)∧

IPD, Individual Patient Data; BPD, bronchopulmonary dysplasia; IVH, Intraventricular hemorrhage, grades >3; NEC, necrotizing enterocolitis; ROP, retinopathy of prematurity; *exact FiO2 undefined, **outcomes reported for RCTs only,
∧p < 0.05.

Data expressed as Risk Ratio (95% Confidence Intervals) except for # (Odds Ratio, 95% Confidence Intervals).
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five did not provide SpO2 recommendations and 5-min SpO2

targets differed by up to 20% (70–90%). The most common
recommendation was to adjust FiO2 to target 5-min SpO2 of
80–85% (70).

However, the consequences of reaching, not reaching or
exceeding recommended SpO2 levels are unknown, not only for
the preterm infants but also for term infants. The existing RCTs
were designed to assess initial FiO2 only rather than specific SpO2

targets, which varied considerably from study to study. In an
individual patient data analysis of 768 infants below 32 weeks
gestation randomized to either lower (FiO2 ≤ 0.3) or higher
(FiO2 ≥ 0.6) initial oxygen at delivery, infants that did not reach
a minimum of SpO2 80% by 5min were more likely to have
lower heart rates (mean difference −8.37 bpm, 95% CI −15.73
to −1.01), develop severe (grade III/IV) IVH (OR 2.4, 95% CI:
1.01–4.11) and to die. The risk of death increased with time taken
to reach a minimum SpO2 of 80% and infants were less likely to
reach SpO2 80% by 5min if respiratory support was initiated with
less oxygen [FiO2 0.3 vs. 0.6, OR 2.63, 95% CI: 1.21–5.74; (62)].

The relevance of SpO2 on preterm infant outcomes needs
further evaluation. In a recent secondary analysis of 284 infants
<32 weeks gestation that were enrolled in several delivery room
trials, Katheria et al. showed that infants who did not reach a
minimum SpO2 80% by 5min (n = 100, mean gestation 27.4
weeks) were more likely to die (16 vs. 4%), develop severe IVH
(24 vs. 10%), have lower heart rates, require higher mean airway
pressures and were given more oxygen compared to infants with
higher SpO2 (71).

The Association Between SpO2 at Birth
and Cerebral Oxygenation
There is now emerging evidence that longer-term outcomes may
be impacted by SpO2 at birth. Both hypoxia and hyperoxia

causes rapid cellular injury and compromise. In the early 1990s,
Lundstrom et al. noted decreased cerebral blood flow in preterm
infants resuscitated with higher initial FiO2 (0.8) compared to air
but as noted before, the implications of this finding were unclear
as all infants survived delivery room resuscitation (35). The
advent of newer technologies, such as Near Infrared Spectroscopy
(NIRS) show that regional cerebral oxygen saturations (rcSO2)
are exquisitely sensitive to changes in FiO2 even in the first
few minutes of life (72). Kenosi et al. measured rcSO2 in
47 preterm infants (mean gestation 29.4 weeks) who were all
initially given FiO2 0.3. These infants were then divided into
two groups according to their subsequent FiO2 needs (≤ or
≥0.3). Those needing ≥ FiO2 0.3 showed evidence of increased
cerebral hypoxia (rsSO2 < 55%) but no difference in the degree of
cerebral hyperoxia, suggesting that infants with SpO2 may need
more rapid upward FiO2 titration to prevent cerebral hypoxia
(73). The COSGOD III study aims to recruit 726 infants <32
weeks gestation to determine if cerebral NIRS measurements
can influence the risk of survival and cerebral injury (74).
Using rcSO2 measurements as well as SpO2 may serve to
further inform on optimum oxygen needs for the transitioning
preterm infant.

The Impact of Oxygenation at Birth and
Long-Term Outcomes
No study has compared the current practice of using oxygen
titration strategies to the previous standard treatment of
using only FiO2 1.0. The follow-up cohorts from 2 RCTs:
Boronat et al., who examined 206 children below 32 weeks
gestation randomized to initial FiO2 0.3 or 0.6 (75) and
Thamin et al., who examined 238 infants below 32 weeks
gestation randomized to resuscitation with either FiO2 1.0
or 0.21 (76), found no difference in the major outcomes of

FIGURE 1 | Current evidence and knowledge gaps for the use of oxygen in preterm newborn resuscitation.
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death or disability with different initial FiO2. However, meta-
analysis of these two studies with individual patient data
found significantly lower mean cognitive scores in males ≥

29 weeks gestation initially given FiO2 ≤ 0.3 compared to
those given FiO2 ≥ 0.6. In addition, infants with 5-min SpO2

≥ 80% were significantly less like to be disabled/deceased
(OR 0.43, 95% CI: 0.27–0.67) or in survivors, be disabled
[OR: 0.57 (0.36–0.89)], compared to those with 5min SpO2 <

80% (63).

The Way Forward: Individualization May Be
the Key
Perhaps the amount of oxygenation needed by preterm infants
needs to be individualized. The To2rpido study, for example,
showed that mortality rates of infants ≥29 weeks gestation were
not influenced by initial FiO2, in contrast to infants below
29 weeks who were more likely die if exposed initially to
air (54). More mature infants were more likely to overshoot
recommended SpO2 targets despite FiO2 adjustment if supported
was started with higher levels of oxygen (54). The consequences
of “overshooting” SpO2 targets still remain unclear. In the
meta-analysis of long-term outcomes of RCTs, mature female
infants (≥29 weeks gestation) who had respiratory support
initiated with higher FiO2 levels (≥0.6) had higher cognitive
scores than all other infants, especially male infants >29
weeks gestation who were given lower initial FiO2 (≤0.3)
(63). Indeed, this could reflect better lung maturity in females.
Observations from 102 infants (median gestation 29 weeks)
found significantly higher SpO2 in females in the first 10min
compared to males (77), suggesting that males and very
preterm infants may need more oxygen after birth, either by
starting on a higher initial FiO2 or with more rapid oxygen
titration strategies.

The Major Knowledge Gaps for Delivery
Room Oxygenation of the Preterm Infant
Currently, optimum oxygenation during the first 10min
of life in preterm infants is unknown but data show
that oxygen levels, even within the few first minutes,
have enormous potential to influence death and longer-
term outcomes. However, there are significant deficits
to current knowledge that need to be address before
contemporary practice can be considered safe (see
Figure 1).

For example, research must be conducted to address the needs
of more mature preterm infants (32–36 weeks gestation) that are
the largest global population of preterm infants (>80%). This
group of infants are at significant risk of neurodevelopmental

issues when compared to full-term infants even though most
are considered physically healthy (78). Whether delivery room
oxygen strategies have the potential to change their long-
term outcomes needs to be determined. Furthermore, the
feasibility of oxygen titration strategies in under-resourced
countries, which also carry the global burden of prematurity,
is unknown. Equipment needed to blend and monitor oxygen
use is expensive and clinicians in these countries may be
restricted to using either only air or pure oxygen if these are
unavailable (79).

Finally, the implications of evolving resuscitation practices on
the oxygen needs of the preterm infant need to be evaluated.
The clinical trials have so far, not addressed the impact of
delivery room practices such as delayed cord clamping (80),
less invasive surfactant administration (81), and increasing use
of non-invasive respiratory support. Animal and physiological
studies of human infants show that these practices may have
considerable impact on oxygenation status. For example, glottic
opening is enhanced higher (e.g., FiO2 1.0) oxygen exposure
than air, which may then impact on the respiratory status of
unintubated infants (82).

CONCLUSIONS AND CLINICAL SUMMARY

In conclusion, current recommendations for the use of oxygen
during delivery room stabilization of preterm infants at birth
are determined primarily from data that are amalgamated
from term infants and older resuscitation strategies. These
significant knowledge gaps are acknowledged by expert
committees. Even though great importance is placed on initial
FiO2 and the need to avoid hyperoxia, further evaluation
of other aspects of oxygen handling, e.g., SpO2 targeting is
needed. Individualization of oxygen strategies also appears
necessary, with some infants e.g., males and very preterm
infants, requiring more oxygen to prevent hypoxia than
females, and older preterm infants. The implications of
current recommendations (oxygen targeting) for lower
resource countries without access to blending and monitoring
equipment, also need to be considered. Further evidence for
best practice is needed from large scale, RCTs to determine
not only the short-term but also the long-term implications of
this practice (83).
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