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Abstract

Recent advances show that human focal segmental glomerulosclerosis (FSGS) is a primary podocytopathy caused
by podocyte-specific gene mutations including NPHS1, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4 and INF2. This review
focuses on genes discovered in the investigation of complex FSGS pathomechanisms that may have implications
for the current FSGS classification scheme. It also recounts recent recommendations for clinical management of
FSGS based on translational studies and clinical trials. The advent of next-generation sequencing promises to provide
nephrologists with rapid and novel approaches for the diagnosis and treatment of FSGS. A stratified and targeted
approach based on the underlying molecular defects is evolving.
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Review
Focal segmental glomerulosclerosis (FSGS) was first rec-
ognized in the 20th century as a histopathological pattern
of glomerular injury associated with nephrotic syndrome
(NS) [1]. It is a lesion rather than a disease with morpho-
logic variations including tip, perihilar, cellular, collapsing,
and not otherwise specified (NOS) features [2]. The most
common manifestation of FSGS is proteinuria, which may
range from subnephrotic to nephrotic levels [3]. NS,
characterized by heavy proteinuria, hypoalbuminemia
and hyperlipidemia, often leads to progressive loss of
kidney function, accounting for ~15 % of end-stage
renal disease (ESRD). The cost to health care exceeds
$3 billion in the U.S. annually [4, 5]. FSGS accounts for
7-20 % of idiopathic NS in children and 40 % in adults
and is the most common glomerular disease leading to
ESRD in African Americans (AAs) [6, 7]. Since the
original description was based only on morphology,
numerous studies were conducted to understand the
pathogenesis of FSGS. In this review we focus on recent
molecular insights into FSGS pathogenesis including re-
sults from our studies and discuss the effects on current
treatment of patients with FSGS.

Structural and functional podocyte defects in FSGS
Diverse clinicopathologic etiologies lead to FSGS (Table 1).
Primary (idiopathic) FSGS is due to defects inherent in the
podocyte structure or function. FSGS secondary to genetic
causes, circulating permeability factor(s), hemodynamic
adaptations causing glomerular hypertrophy, and direct
podocyte injury also leads to indistinguishable findings of
segmental glomerulosclerosis. To comprehend how these
heterogeneous injuries may lead to FSGS, it is important
to understand the structure and physiologic function of
the podocyte. A brief account is given below. It is clear
that numerous podocyte gene products are required to
construct the podocyte body and foot processes (FPs). For
example, nephrin (NPHS1) and podocin (NPHS2) are the
major components of the slit diaphragm (SD). CD2-
associated protein (CD2AP) and α-actinin-4 (ACTN4) link
the SD to the actin cytoskeleton of the FPs. Podocalyxin
localized on the apical membrane and α3β1 integrin on
the podocyte basolateral membrane are also required for
FP integrity. Furthermore, the podocyte synthesizes the
major glomerular basement membrane (GBM) compo-
nents. Defective extracellular matrix synthesis by the
podocyte can lead to loss of normal glomerular filtration.
Mutations in structural podocyte genes cause FSGS in
humans.
The complex structural podocyte composition is also

achieved by sophisticated metabolic and energy requi-
rements, for example, autophagy and P53-dependent
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signaling [8]. Enzymes and kinases involved in the mito-
chondrial respiratory transport chain (COQ2 [9], COQ6
[10], and aarF domain containing kinase 4 (ADCK4)
[11]) are also implicated in podocyte integrity; mutations
in COQ2 are implicated in collapsing FSGS.
Injured podocytes attempt to avoid death and regener-

ate. For example, mitotic catastrophe, a mechanism of
podocyte death, represents dividing podocytes unable to
complete the cell cycle and succeed in producing daugh-
ter podocytes [12]. A different source of potential re-
placement of injured podocytes under certain conditions
are transformation of parietal epithelial cells to visceral
podocytes [13]. Whether or not these failed attempts to
repair podocyte injury may participate in the pathogen-
esis of FSGS remains to be further studied. Here we dis-
cuss major pathogenic mechanisms that have been well
documented.

Genetic causes of FSGS
Human genetic studies in the past two decades have
demonstrated that FSGS is primarily a podocytopathy
with more than 20 mutated podocyte genes confidently
implicated in the pathogenesis of NS/FSGS [14]. These
mutated genes can be divided into the following categor-
ies: (a) SD-associated molecules, (b) podocyte cytoskeleton
related molecules, (c) podocyte transcription factors,
and (d) adhesion and extracellular matrix molecules. (a)
SD-associated molecules include nephrin, podocin [15],
CD2AP, and transient receptor potential cation channel
6 (TRPC6). Mutated NPHS1 was the first podocyte gene
identified in congenital NS (CNS) of the Finnish type
[16]. This discovery revolutionized our understanding
of the pathogenesis of NS/FSGS. CD2AP is a 70 KD
adaptor/linker protein involved in regulation of the
actin cytoskeleton and intracellular trafficking [17, 18].
CD2AP also links podocin and nephrin to the phosphoi-
nositide 3-OH kinase [19]. TRPC6 functions as a podo-
cyte calcium influx pathway and upstream regulator of
podocyte cytoskeleton [20]. (b) Podocyte cytoskeleton
related molecules include α-actinin-4 [21], inverted
formin 2 (INF2) [22], and anillin (ANLN) [23]. Their
mutations impair the integrity of the podocyte actin
cytoskeleton [23–25]. Mutated INF2 is the most common
cause of autosomal dominant (AD) FSGS. Recently,
mutations in ARHGDIA [26] and ARHGAP24 [27] and
increased expression of podocyte-specific RAP1GAP
[28] were shown to regulate small GTPases including

Table 1 Etiologic classification of FSGS

Primary (idiopathic) FSGS

Secondary FSGS

1. Genetic mutations

NPHS1

NPHS2

CD2AP

TRPC6

ACTN4

INF2

ANLN

ARHGAP24

ARHGDIA

WT-1

LMX1B

LAMB2

PAX2

COQ2, COQ6, PDSS2, ADCK4

2. Virus associated

HIV

Parvovirus B19

3. Medication

Heroin

Interferon-α

Lithium

Pamidronate/alendronate

Anabolic steroids

4. Adaptive structural-functional responses e.g., glomerular hypertrophy
or hyperfiltration

4.1 Reduced kidney mass

Oligomeganephronia

Unilateral kidney agenesis

Kidney dysplasia

Reflux nephropathy

Surgical kidney ablation

Chronic allograft nephropathy

Any advanced kidney disease with reduction in functioning nephrons

4.2 Initially normal kidney mass

Diabetes mellitus

Hypertension

Obesity

Cyanotic congenital heart disease

Sickle cell anemia

5. Malignancy (lymphoma)

6. Nonspecific pattern of FSGS caused by kidney scarring

Focal proliferative glomerulonephritis (IgA nephropathy, lupus nephritis,
pauci-immune focal necrotizing and crescentic glomerulonephritis)

Table 1 Etiologic classification of FSGS (Continued)

Hereditary nephritis (Alport syndrome)

Membranous glomerulopathy

Thrombotic microangiopathy

Modified from reference [90]
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Rac1 and RAP1, thereby dysregulating the podocyte
actin networks. In addition, podocyte endocytosis
involving dynamin, synaptojanin, and endophilin pro-
teins is important for the maintenance of the glomeru-
lar filtration barrier (GFB) via an action on actin
dynamics [29]. (c) Mutations in podocyte transcription
factors LMX1B and WT-1 cause Nail-patella syndrome
[30, 31] or Denys-Drash/Frasier syndrome [32] respect-
ively. Moreover, the WT1-R458Q mutation was re-
ported recently as the cause of nonsyndromic AD FSGS
[33]. (d) Mutations in adhesion and extracellular matrix
molecules such as integrins and laminin-β2 (LAMB2)
play an important role in the pathogenesis of FSGS.
Mutations in LAMB2 cause Pierson syndrome (OMIM
609049), which is characterized by CNS/diffuse mesan-
gial sclerosis, severe ocular abnormalities, and neurode-
velopmental impairments [34–36]. Laminin, type IV
collagen, nidogen, and sulfated proteoglycans comprise
the GBM [37], and laminins are heterotrimeric glyco-
proteins containing one α, one β, and one γ chain. The
major laminin heterotrimer in the mature GBM is
laminin α5β2γ1, or LM-521 [38]. Laminin trimerization
occurs in the endoplasmic reticulum (ER) and involves
association of the three chains along their laminin
coiled-coil domains to form the long arm [39]. Once
trimers are secreted into the extracellular space, they
polymerize to form the supramolecular laminin network
via interactions among the NH2-termini of the short
arms (LN domains) [40, 41]. Lamb2 null mice recapi-
tulate Pierson syndrome [42–47]. Although LAMB2
null mutations cause the full syndromic phenotype of
Pierson syndrome, certain LAMB2 missense mutations,
including R246Q and C321R, which are located in the
LN or LEa domain of LAMB2 respectively, cause CNS
with mild extrarenal features [48]. Using our established
cell and knockout/transgenic mouse models resembling
human NS harboring the R246Q or C321R mutation
respectively, we have shown that both R246Q and C321R
mutations cause defective secretion of laminin-521 from
podocytes to the GBM [49, 50]. Furthermore, we have
demonstrated that the misfolded C321R mutant protein
induces podocyte ER stress and proteinuria in vivo [50].
These monogenic forms of NS/FSGS also provide a win-

dow to investigate the pathogenesis of sporadic FSGS,
which is much more common and complex. For example,
genetic causes were identified in 32.3-52 % of children with
sporadic steroid-resistant NS (SRNS) [51, 52]. The precise
glomerular morphology caused by genetic mutations may
depend on the age of onset, function of the responsible
gene and gene products, and other factors which are not
entirely understood to date [53]. A summary of genetic
mutations causing FSGS is listed in Table 1.
Besides the direct disease-causing gene mutations in

FSGS, the role of genetic risk variants in FSGS has also

been investigated. A classic example is apolipoprotein L1
(APOL1) gene risk variants-associated nephropathy [54],
which is a devastating spectrum of kidney diseases in-
cluding focal global glomerulosclerosis (FGGS) that was
historically attributed to hypertension, FSGS or the col-
lapsing variant, sickle cell nephropathy, and severe lupus
nephritis in AAs. The risk variants G1 (S342G:I384M)
and G2 (del.N388/Y389) are two coding variants in the
APOL1 gene on chromosome 22q13. The mutant alleles
confer protection against trypanosomal infections in
AAs at the cost of an increased risk of kidney disease.
Although 51 % of AAs have at least one risk allele and
13 % have two parental risk alleles, only a subset of indi-
viduals with genetic risk develops kidney disease. It is
likely that the interplay between APOL1 and several
modifiable environmental factors or interactive genes
such as NPHS2, SDCCAG8, and BMP4 produces the
variable spectrum of APOL1 nephropathy [55].

Circulating factors of FSGS
Shalhoub first suggested the existence of a serum factor
that causes FSGS in 1974 [56]. Savin et al. demonstrated
that a serum protein with a molecular mass between 20
and 50 kD increases GFB permeability and induces post-
transplantation recurrent FSGS [57]. In addition, they
proposed that the FSGS factor is a cardiotrophin-like
cytokine-1 (CLC-1) [58].

Hemodynamic adaptations leading to glomerular
hypertrophy
Glomerular hypertrophy and hyperfiltration can be associ-
ated with reduced nephron mass. For example, oligomega-
nephronia, unilateral renal agenesis, renal dysplasia, reflux
nephropathy, secondary to surgical or traumatic ablation,
chronic allograft nephropathy, and other causes of neph-
ron loss lead to FSGS. In contrast, obesity, hypertension,
cholesterol atheroembolism, cyanotic congenital heart
disease, and sickle cell disease lead to glomerular hyper-
trophy and potentially FSGS without reduced nephron
mass.

Direct podocyte injury
Medications such as interferon-α, lithium, and pamidro-
nate and viruses such as HIV and parvovirus B19 can in-
duce direct podocyte dysfunction. Several of these drugs
cause a collapsing type of FSGS characterized by podocyte
proliferation and implosion of the capillary tuft [59].

Is pathogenesis reflected in the histopathology of FSGS?
FSGS is defined as segmental solidification of the glom-
erular capillary tuft with accumulation of extracellular
matrix initiated by an adhesion between the capillary tuft
and the Bowman’s capsule (synechia) (Fig. 1a). Hyalinosis
(Fig. 1b) and foam cells can also be present. The scarred
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segment can be perihilar or at the tip of the glomerulus
(tip lesion). Segmental sclerosis or hyalinosis in any part of
the glomerulus is classified as FSGS, NOS (Fig. 1c). A
unique presentation of FSGS is collapsing FSGS charac-
terized by proliferation of podocytes and implosion of
the capillary tuft (Fig. 1d). While many studies have
shown better prognosis for the tip lesion and worse for
collapsing FSGS, the true value of classifying FSGS
based on morphology has been debated, particularly
when it comes to collapsing FSGS which shows no seg-
mental solidification but implosion of the capillary
loops and podocyte proliferation instead. In addition,
the morphologic variants of FSGS fall short in distin-
guishing primary from secondary forms of FSGS. A
recent study has proposed that adult FSGS patients pre-
senting with NS, extensive FP effacement (≥80 %) on
electron microscopy (EM) examination, and no risk
factors associated with secondary FSGS are likely to
have primary FSGS. Conversely, the absence of NS in a
patient with segmental FP effacement on EM strongly
suggests a secondary FSGS [60]. However, distinction
between primary and secondary FSGS may not be clear-
cut sometimes. For example, patients with two APOL1
renal risk alleles are prone to develop hypertension and
chronic kidney disease complicated by FSGS [61]. In

such patients, is FSGS primarily due to a specific
genetic predisposition or secondary to hypertension-
induced hyperfiltration?
Barisoni et al. proposed a taxonomy for the podocyto-

pathies that classifies along two dimensions: histopath-
ology, including podocyte phenotype and glomerular
morphology (minimal change nephropathy (MCN),
FSGS, diffuse mesangial sclerosis (DMS), and collapsing
glomerulopathy (CG)), and etiology (idiopathic, genetic,
and reactive forms). Three distinct pathways of injury
and repair characterize the podocytopathies. First, in
MCN, podocyte injury is limited to FP effacement and
podocyte number remains normal. Second, a more
severe form of podocyte injury may cause podocyte
detachment and death, thereby initiating an injury
cascade that results in the segmental scar characteristic
of FSGS. Third, podocyte injury may lead to either low
rates of podocyte proliferation manifesting as DMS or
high rates of proliferation manifesting as CG. Whenever
possible, final diagnosis of the podocytopathies should
include three elements: morphologic entity, etiologic
form, and specific pathogenic mechanism [62]. This
proposal is supported by recent studies that show defin-
ing patients by the underlying disease mechanism im-
proves patient management [33, 51, 52, 55].

Fig. 1 Histopathological FSGS variants. a Adhesion of the capillary loops to Bowman’s capsule is thought of as a nidus for segmental sclerosis
and an early stage of FSGS (Trichrome). b FSGS with amorphous (hyaline) deposits (Periodic acid–Schiff). c Segmental consolidation (<50 %) of
the glomerulus is typical of FSGS NOS (Periodic acid–Schiff). d Collapsing FSGS is characterized by segmental (or global) proliferation of
podocytes and segmental (or global) implosion of the capillary loops (Jones Methenamine Silver)
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Genetic screening in clinical practice and proposed
stratification of patients with FSGS
Sanger sequencing is expensive and results can take
weeks or even months. Therefore, the following ques-
tions need to be considered before advising a genetic
testing in routine clinical practice [63].

Does the result of genetic testing affect treatment decisions?
Most studies have indicated that genetic forms of FSGS
are steroid-resistant [64, 65] and most likely will not re-
spond to immunosuppressive therapy with alkylating
agents. However, mutation analysis should not be used to
discard cyclosporine (CSA) as a therapeutic agent. Re-
cently, it has been shown that the APOL1 risk genotype
does not influence proteinuria responses to CSA or myco-
phenolate mofetil (MMF)/dexamethasone in idiopathic
FSGS patients enrolled in the National Institutes of Health
(NIH)-sponsored FSGS Clinical Trial (FSGS-CT) [66].

Does the result of genetic testing influence care beyond
glomerular disease?
Mutations in some genes including WT-1 [67, 68], mito-
chondrially encoded tRNA leucine 1 [69], LAMB2 [70],
ITGB4 [71], CD151 [72, 73], SCARB [74], LMX1b [31],
and non-muscle myosin IIa (MYH9) [75] can have extra-
renal manifestations. Thus, in syndromal forms of FSGS,
additional studies to exclude extra-renal disease may be
needed necessitating important additional management
considerations for such patients.

Does the result of genetic testing help in family planning?
Mutation analysis should be considered in all children
with CNS since mutation detection rate is almost 100 %
[76]. Even though not all CNS show FSGS on renal bi-
opsy, the majority are indeed either FSGS NOS or col-
lapsing FSGS. Genetic testing should also be performed
in children with familial and sporadic SRNS; the preva-
lence of genetic causes of SRNS could be as high as 52 %
[51]. In addition, genetic screening should be considered
in adults with a family history of FSGS. Genetic screening
is of limited value in adult patients with sporadic FSGS,
with the exception of screening for the podocin p. R229Q
in young adults since compound heterozygosity for
p.R229Q coupled with a pathogenic NPHS2 mutation is
associated with adult-onset SRNS, mostly among pa-
tients of European and South American origin. Screening
for the p.R229Q variant is recommended in these patients,
along with further NPHS2 mutation analysis in those
carrying the p.R229Q variant [77].

Does the result of genetic testing impact decisions related
to kidney transplantation?
In SRNS/FSGS, the detection of a homozygous or com-
pound heterozygous mutation will predict a low risk of

recurrence post transplantation. This knowledge should
be reassuring for patients and their parents. However,
mutated nephrin (NPHS1) is an exception to the rule.
Recurrence rate post transplantation was 37 % in CNS
patients with the genotype of Fin-major/Fin-major, which
is a 2-base pair deletion in exon 2 of NPHS1, but not in
any other genotypes. The development of high levels of
circulating anti-nephrin antibodies likely contributes to
FSGS recurrence [78].
To determine whether APOL1 genotyping should

be performed broadly in deceased kidney donors with
African ancestry, APOL1 G1 and G2 variants were geno-
typed in newly accrued DNA samples from AA deceased
donors of kidneys recovered and/or transplanted in
Alabama and North Carolina in a recent study. APOL1
genotypes and allograft outcomes in subsequent trans-
plants from 55 U.S. centers were analyzed. For all 675
kidneys transplanted from donors at both centers, kidneys
from AA deceased donors with two APOL1 nephropathy
variants reproducibly associate with higher risk for allo-
graft failure after transplantation (HR 2.26; p = 0.001) [79].
The new study validates a prior single-center report [80].
These findings warrant consideration of rapidly genotyp-
ing deceased AA kidney donors for APOL1 risk variants at
organ recovery.

What are the possible implications of whole genome (exome)
sequencing?
Next generation sequencing (NGS) is rapidly transforming
the genetic testing of FSGS [81]. It is likely that whole
exome screening will be available for the clinical diag-
nostic use in the next few years at much lower costs.
The high throughput DNA sequencing technology will
enable us to analyze multiple NS-causing podocyte
genes in one array, to clarify genotype-phenotype rela-
tionships, and to explore the role of genetic epistasis
(combinations of genetic heterozygosity in different re-
cessive genes) in the pathogenesis of FSGS. Moreover,
the advent of NGS has led to a rapid discovery of novel
genetic variants in known or novel FSGS-causing genes.
In a recent study, one patient with presumed secondary
FSGS due to congenital vesicoureteral reflux was
surprisingly revealed to have two deleterious COL4A3
mutations associated with Alport syndrome (AS) and a
concurrent novel deleterious SALL2 mutation linked to
renal malformations [82]. Likewise, in a cohort of 70
families with a diagnosis of hereditary FSGS, 10 % of
cases were identified to carry rare or novel variants in
COL4A3 or COL4A4 known to cause AS [83]. PAX2
mutations, which have been shown to lead to congenital
abnormalities of the kidney and urinary tract, may also
contribute to adult-onset AD FSGS in the absence of overt
extrarenal manifestations [84]. Thus, targeted or whole
exome sequencing integrated with clinicopathological
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information can reveal novel and rare gene mutations and
provide insights into etiologies of complex renal pheno-
types with equivocal clinical and pathologic presentations
[82]. A major challenge ahead in NGS is to determine the
actual pathogenicity of large amounts of identified mis-
sense variants due to lack of mechanism-based, high-
throughput functional assays.

Treatment of FSGS
Treatment of secondary FSGS
Attempts to treat the primary etiology of FSGS should
be the initial step. For example, FSGS secondary to obes-
ity and heroin remits after weight reduction or cessation
of heroin use [85]. Highly active antiretroviral therapy
(HAART) has been proven useful for HIV-associated ne-
phropathy [86]. There is no evidence to suggest cortico-
steroids or immunosuppressive therapy in the treatment
of secondary FSGS.

Treatment of idiopathic FSGS in adults
The potential efficacy of therapy must be considered in
relation to the natural history of the disease. The rate
of spontaneous remission among patients with NS is
unknown. A study reported that after a median follow-
up of 9.4 years, 13 out of 20 idiopathic FSGS patients
with nephrotic-range proteinuria and normal renal
function achieved spontaneous complete or partial
remissions of proteinuria (65 %). However, due to the
small number of patients in this study, we cannot draw
a definite conclusion [87]. Most studies showed that
untreated primary FSGS often followed a progressive
course to ESRD [88, 89].
For the initial treatment of FSGS, the Kidney Disease

Improving Global Outcomes (KDIGO) 2012 guideline
[90] recommended that corticosteroid and immunosup-
pressive therapy be considered only in idiopathic FSGS
associated with clinical features of the NS (1C). KDIGO
suggested prednisone be given at a daily single dose of
1 mg/kg (maximum 80 mg) or alternate-day dose of
2 mg/kg (maximum 120 mg) (2C). It also suggested that
the initial high dose of corticosteroids be given for a
minimum of 4 weeks up to a maximum of 16 weeks,
as tolerated, or until complete remission has been
achieved, whichever is earlier (2D). Calcineurin inhibi-
tors (CNIs) are considered first-line therapy for pa-
tients with relative contraindications or intolerance to
high-dose corticosteroids (e.g., uncontrolled diabetes,
psychiatric conditions, severe osteoporosis) (2D).
(Based on the KDIGO 2012 guideline, the strength of
recommendation was indicated as level 1 or level 2, and
the quality of the supporting evidence was shown as A,
B, C, or D. Level 1: “we recommend”; Level 2: “we
suggest”. The quality of evidence was stratified into
different grades: A-high, B-moderate, C-low, and D-very

low [91]). A variety of nonrandomized retrospective
studies have reported that prednisone induces 40 to
80 % rates of complete or partial remission.

Treatment of SR FSGS
For SR FSGS, the KDIGO 2012 guideline suggested
that CSA at 3–5 mg/kg/d in divided doses be given
for at least 4–6 months (2B). If there is a partial or
complete remission, continue CSA treatment for at
least 12 months, followed by a slow taper (2D). The
guideline also suggested that patients, who do not
tolerate CSA, be treated with a combination of MMF
and high-dose dexamethasone (2C) [90].
The North American Nephrotic Syndrome Study

Group including 12 clinical centers in North America
conducted a well-designed clinical trial of CSA in
SR FSGS patients [92]. In this study, all patients pre-
viously failed to achieve a remission of the protein-
uria after a minimum of eight weeks of prednisone
at ≥ 1 mg/kg/day. The major entry criteria were pro-
teinuria ≥ 3.5 g/d and creatinine clearance ≥ 42 ml/min/
1.73 m2. Patients with CG were excluded. 26 weeks of
CSA treatment plus low-dose prednisone was compared
to placebo plus prednisone. Despite relapses after CSA
was discontinued, at the end of long term follow-up of
104 weeks, there were still significantly more remitters
in the CSA-treatment group. In addition, it has been
found that CSA can directly stabilize podocyte actin
cytoskeleton [93]. There are no randomized clinical tri-
als using tacrolimus. Uncontrolled studies suggest that
tacrolimus may be an alternative in patients intolerant
of CSA [94, 95].
In a recent NIH-funded multicenter randomized

FSGS Clinical Trial (FSGS-CT), the efficacy of a 12-
month course of CSA was compared to a combination
of MMF and oral pulse dexamethasone (DEX) in chil-
dren and young adults with SR primary FSGS [96].
In the CSA arm, CSA was given at 5–6 mg/kg/day
for 12 months with a targeted 12 h trough level of
100–250 ng/ml. In the MMF + DEX arm, 25–36 mg/kg/
day of MMF were given in addition to 46 pulse doses of
DEX for 12 months. In addition, both arms were treated
with prednisone, 0.3 mg/kg, every other day for the first
6 months and angiotensin-converting enzyme inhibitor
(or angiotensin receptor blocker) for 18 months. The
primary outcome was based on achievement of partial
and complete remission during the first 52 weeks. The
main secondary outcome was sustainable remission in
proteinuria after withdrawal of immunosuppressive
agents during weeks 52–78. There was no statistical
difference in the primary outcome or the main second-
ary outcome between the two therapies. However, there
are important limitations in this study that have
hindered drawing firm conclusions [97]. Other smaller
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observational studies have suggested a possible benefit
of MMF given with or without steroids [98–101].

Alternative & Novel therapies for FSGS
Table 2 lists novel therapies based on different disease
mechanisms and most of them are still under clinical
investigation. It is worthwhile pointing out that plasma-
pheresis is successful in treating some patients with
post-transplantation recurrent FSGS [57]. However, it
has not been proven to be useful in patients with FSGS
in their native kidneys. Rituximab is a genetically engi-
neered chimeric murine/human monoclonal IgG1 anti-
body directed against the CD20 antigen expressed in
human B cells. There are conflicting results regarding
the use of rituximab in FSGS, and it has been unclear
exactly how this drug achieves success in some patients,
but not others [102, 103].
In the era of personalized medicine, identifying FSGS-

causing gene mutations and investigating their under-
lying molecular mechanisms have immense potential for
the development of highly-targeted therapy. For ex-
ample, CoQ10 supplementation can attenuate proteinuria
in SRNS patients carrying mutations in CoQ10 biosyn-
thesis pathway genes like COQ2, COQ6, and ADCK4
[10, 11, 104].
Additionally, other novel therapies suggested from

mouse studies have not yet been tried in humans. For
example, retinoid acid exerts important anti-proteinuric,
anti-fibrotic, and anti-inflammatory effects in multiple
experimental models of kidney disease, possibly through
promoting renal progenitors differentiation and podo-
cyte regeneration [105].

Conclusions
FSGS is the leading cause of ESRD due to primary glom-
erular disease in the U.S. and is increasing in incidence.
Seminal human genetic studies have illuminated podocyte

dysfunction as the major contributor to GFB failure in this
disease. Mutations in >20 podocyte genes have been impli-
cated as causal factors for Mendelian forms of FSGS.
Meanwhile, the understanding of APOL1 genetic risk
variants in conferring susceptibility to common kidney
diseases, including FSGS, chronic kidney disease, and
hypertension, is evolving. In addition, the development of
NGS has revealed that FSGS can arise from mutated genes
previously only implicated in AS and congenital urogenital
anomalies (for example, COL4A3, COL4A4, PAX2 or
SALL2) and will further accelerate the discovery of novel
podocyte genes or genetic variants linked to FSGS. The
technological breakthroughs will transform risk assess-
ment, the diagnostic pathologic schemes currently used,
and treatment of FSGS. More than ever before, there is
need for understanding the underlying molecular mecha-
nisms, evaluating genotype-phenotype correlations, and
design of clinical trials in a highly-targeted manner.
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