
1 3

Environmental Science and Pollution Research (2022) 29:22012–22030
https://doi.org/10.1007/s11356-021-17321-9

RESEARCH ARTICLE

Bioinformatics approach to identify common gene signatures 
of patients with coronavirus 2019 and lung adenocarcinoma

Xiao Liang1 · Yali Chen1 · Yuchao Fan2 

Received: 8 September 2021 / Accepted: 28 October 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Coronavirus disease 2019 (COVID-19) continues as a global pandemic. Patients with lung cancer infected with COVID-
19 may develop severe disease or die. Treating such patients severely burdens overwhelmed healthcare systems. Here, we 
identified potential pathological mechanisms shared between patients with COVID-19 and lung adenocarcinoma (LUAD). 
Co-expressed, differentially expressed genes (DEGs) in patients with COVID-19 and LUAD were identified and used to con-
struct a protein–protein interaction (PPI) network and to perform enrichment analysis. We used the NetworkAnalyst platform 
to establish a co-regulatory of the co-expressed DEGs, and we used Spearman’s correlation to evaluate the significance of 
associations of hub genes with immune infiltration and immune checkpoints. Analysis of three datasets identified 112 shared 
DEGs, which were used to construct a protein-PPI network. Subsequent enrichment analysis revealed co-expressed genes 
related to biological process (BP), molecular function (MF), and cellular component (CC) as well as to pathways, specific 
organs, cells, and diseases. Ten co-expressed hub genes were employed to construct a gene-miRNA, transcription factor (TF)-
gene, and TF-miRNA network. Hub genes were significantly associated with immune infiltration and immune checkpoints. 
Finally, methylation level of hub genes in LUAD was obtained via UALCAN database. The present multi-dimensional study 
reveals commonality in specific gene expression by patients with COVID-19 and LUAD. These findings provide insights 
into developing strategies for optimising the management and treatment of patients with LUAD with COVID-19.

Keywords COVID-19 · SARS-CoV-2 · Lung adenocarcinoma · Differentially expressed genes · Bioinformatics · Gene 
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Introduction

Coronavirus disease 2019 (COVID-19) caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
spread rapidly worldwide since its outbreak in 2019. On 
11 March 2020, the World Health Organization declared 
COVID-19 as a pandemic (Chan et  al. 2020), requir-
ing collaboration among healthcare systems across the 

globe. Although approximately 80% of COVID-19 cases 
present as asymptomatic or mildly symptomatic, typically 
present as fever, cough, shortness of breath, gastrointestinal, 
musculoskeletal and neurological symptoms, severe and crit-
ically severe symptoms are experienced by approximately 
15% and 5% of patients, respectively (Wu and McGoogan 
2020). Severe cases rapidly progress to pneumonia and 
acute respiratory distress syndrome and may degenerate 
into a cytokine storm and multi-organ dysfunction, requiring 
intensive care and multi-dimensional life support, including 
oxygen therapy (Yang et al. 2020a). The high infection rate, 
which is associated with significant morbidity and mortality 
(Bakhribah et al. 2020), explains the devastation inflicted 
by COVID-19 that has overwhelmed healthcare systems 
worldwide.

Certain subgroups of patients are more susceptible to 
COVID-19. For example, people with reduced sperm qual-
ity are susceptible to infections, which may be due to envi-
ronmental pollution in specific areas that are damaging to 
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humans (Montano et al. 2021a, b). Cancer patients are par-
ticularly susceptible to COVID-19 because of their advanced 
age, immunosuppression, smoking, and frequent visits to 
healthcare facilities (Addeo and Friedlaender 2020). Fur-
ther, patients with cancer with COVID-19 are more suscep-
tible to rapid clinical deterioration (Bakouny et al. 2020). 
The mortality rates of patients with cancer with COVID-19 
range between 25 and 30% (Saini et al. 2020; Zhang et al. 
2021), and patients with cancer who have recently under-
gone chemotherapy or surgery are at higher risk of serious 
complications and death (Liang et al. 2020).

Patients with lung cancer are no exception, because they 
are more likely to develop severe illness or die after con-
tracting COVID-19 through inherently associated pulmonary 
fragility and clinical or treatment-related risk factors (Pas-
saro et al. 2021). Moreover, Liang et al. (Liang et al. 2020) 
found that lung cancer is the most common cancer among 
patients infected with COVID-19 (Liang et al. 2020), and 
the retrospective study by Yu et al. (Yu et al. 2020a) found 
that patients with non-small cell lung cancer (NSCLC) were 
the most likely among 1524 patients to contract COVID-19. 
Moreover, Dai et al. (Dai et al. 2020) found that compared 
with patients without cancer, those with lung cancer experi-
ence higher mortality, ICU admissions, and increased risk of 
developing critical symptoms and require invasive respira-
tory support. These factors pose a major challenge to effec-
tive management of patients with lung cancer, particularly 
during an epidemic.

The correlations between lung cancer and COVID-19 
documented above suggest shared biological mechanisms 
(Bakouny et al. 2020). For example, certain types of anti-
tumour hormone treatments may be effective for treating 
patients with COVID-19 (Stopsack et al. 2020). Therefore, 
the potential biological mechanisms and clinical interactions 
between COVID-19 and lung adenocarcinoma (LUAD) must 
be identified.

Protein–protein interactions (PPIs) between host and 
virus play a major role in viral infections and disease devel-
opment. Viral infections interfere with human regulatory 
networks, leading to dysfunction of specific cellular pro-
cesses. Bioinformatics analysis of gene expression identi-
fies genes that contribute to pathogenesis, such as those 
of patients with COVID-19, as well as the components of 
specific pathways and their regulatory molecules. This infor-
mation is typically acquired through analyses of differential 
expression and functional gene and pathway enrichment 
(Stopsack et al. 2020).

Bioinformatics studies of COVID-19 and cancer focus 
on the expression in cancers of key factors such as angio-
tensin-converting enzyme 2 (ACE2), transmembrane serine 
protease 2 (TMPRSS2), and neuropilin-1 (Chai et al. 2020; 
Ahmadi et al. 2021; Hoang et al. 2021; Hu et al. 2021a), 
although few studies report a common genetic signature of 

COVID-19 and cancer, particularly of patients with LUAD, 
as well as potential underlying biological processes. Under-
standing the common genetic features between these two 
diseases and the underlying biological processes can help 
to explore the pathophysiological processes in patients with 
both diseases, improve the medical management of these 
patients, and allow the search for appropriate treatment 
modalities and medclines. Therefore, to fill these knowledge 
gaps, here we conducted bioinformatics analyses to identify 
genetic signatures common between patients with COVID-
19 and LUAD. Our findings reported here on the regulatory 
networks and biological processes mediated by these genes 
illuminate the connections between the two diseases.

Materials and methods

Datasets

We employed the datasets as follows: COVID-19 genom-
ics data were obtained from the Comparative Toxicog-
enomics Database (CTD) (http:// ctdba se. org) and Dataset 
GSE147507 of the Gene Expression Omnibus database of 
the National Center for Biotechnology Information (NCBI) 
(Barrett et al. 2013). Dataset GSE147507 provides informa-
tion on the transcriptional responses of lung epithelial and 
alveolar cells of patients with COVID-19. The genes col-
lected from the CTD are associated with COVID-19 or its 
descendants. We obtained mRNA expression data for LUAD 
and clinical data of 594 samples from TCGA data (https:// 
cance rgeno me. nih. gov).

Identification of DEGs and genes co‑expressed 
between patients with COVID‑19 and LUAD

First, we analysed and screened for molecules that were sig-
nificantly expressed in lung tissue of COVID-19 patients 
(GSE147507) as well as LUAD (TCGA) patients and nor-
mal lungs. These molecules may underlie the molecular 
occurrence of both diseases. This was done by comparing 
gene expression in the lungs of COVID-19 patients with 
gene expression in the lungs of normal subjects within the 
GSE147507 dataset, using the same approach for LUAD 
patients. This step was accomplished through an unpaired 
Student t-test via ‘DESeq2’ analysis implemented in the R 
environment (Love et al. 2014). Thresholds were defined as 
adjusted p < 0.05 and log-fold change >|1|. The co-expressed 
genes among the CTD and DEGs of GSE147507 and LUAD 
data were identified using software included in the R envi-
ronment. Data were visualised using the ‘ggplot2’ package 
in R.
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Protein–protein interaction (PPI) network analysis 
of co‑expressed genes

To collect and integrate PPIs into a network of co-expressed 
genes, we searched the STRING database (https:// string- 
db. org/) (Szklarczyk et al. 2019), and relevant data were 
imported into Cytoscape (v3.8.2) for visualisation and sub-
sequent analysis. The cytoHubba plugins of Cytoscape were 
used to identify key modules; and the top 10 nodes, ranked 
using MCC of cytoHubba, are presented as hub genes. 
GeneMANIA (http:// www. genem ania. org) (Warde-Farley 
et al. 2010) uses extensive genomics and proteomics data 
to discover functionally similar genes. The GeneMANIA 
databases are further used to generate hypotheses about 
gene function, analyse gene lists, and prioritise genes for 
functional analysis as well as to construct PPI networks and 
predict gene functions.

Enrichment analysis of co‑expressed genes

The ‘clusterProfiler’ (Yu et al. 2012) and ‘org.Hs.eg.db’ 
packages of R were used to conduct Gene Ontology (GO) 
function analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis of co-
expressed genes. The cut-off threshold for GO and KEGG 
pathway enrichment analyses was p < 0.01. Further, we 
utilised Metascape tools (Zhou et al. 2019a) to identify 
MCODE components and completed enrichment analyses 
using integrated data of the biological information data-
bases including STRING (Szklarczyk et al. 2019), BioGrid 
(Stark et al. 2006), OmniPath (Türei et al. 2016), InWeb_IM 
(Li et al. 2017), COVID (https:// metas cape. org/ COVID), 
DisGeNET (Piñero et  al. 2017), and PaGenBase (Pan 
et al. 2013). The entirety of genes expressed by the human 
genome was used as the enrichment background. Terms with 
p < 0.01, minimum count = 3, and enrichment factor > 1.5 
were collected and grouped according to their membership 
similarities.

Construction of a gene‑miRNA, TF‑gene 
interactions, and TF‑miRNA co‑regulatory network 
of hub genes

We predicted the correlations between hub genes and 
miRNA expression by constructing gene-miRNA interac-
tions from TarBase v8.0 (Sethupathy et al. 2006). TF-gene 
interaction was built with the identified hub genes to evalu-
ate the effect of TFs on functional pathways and the gene 
expression levels that encode their components (Taz et al. 
2021). The network presents the TF-gene interaction via the 
ENCODE (https:// www. encod eproj ect. org/) database. Fur-
ther, we investigated miRNAs and regulatory TFs that mod-
ulate the expression of hub genes at the post-transcriptional 

and transcriptional levels. Thus, a TF-miRNA co-regulatory 
network was established from the RegNetwork repository 
(Liu et al. 2015). These networks were built as minimum 
forms on the NetworkAnalyst platform (Zhou et al. 2019b) 
that generate comprehensive visual analyses of gene expres-
sion profiling data.

Correlation between the expression of hub genes 
and immune infiltration in LUAD

We used the ‘gene set variation analysis’ package (Hänzel-
mann et al. 2013) to evaluate the correlation between the 
expression of hub genes and tumour-infiltrating immune 
cells in patients with LUAD. The immune cell subsets 
(n = 24) included in the analysis were as follows: T cells, 
activated dendritic cells (aDCs), B cells, CD8 T cells, cyto-
toxic cells, DCs, eosinophils, immature DCs (iDCs), mac-
rophages, mast cells, neutrophils, natural killer (NK) CD56 
bright cells, NK CD56 dim cells, NK cells, plasmacytoid 
DCs (pDCs), T helper (Th) cells, central memory (Tcm) T 
cells, effector memory T (Tems) cells, T follicular helper 
(Tfh) cells, gamma delta T (Tgd) cells, Th1 cells, Th17 cells, 
Th2 cells, and regulatory T (Treg) cells. The associations of 
expression of hub genes were evaluated as well. Spearman’s 
correlation was used to evaluate the correlation of gene 
expression, and p < 0.05 indicates a significant difference.

Promoter methylation level of hub genes in LUAD

The methylation level of hub genes in LUAD and corre-
sponding adjacent tissues were obtained from TCGA and 
present via the UALCAN database (http:// ualcan. path. uab. 
edu/ analy sis. html). Student’s t-test was used to evaluate the 
significance of differences. Statistically significant was con-
sidered p < 0.05.

Results

Identification of DEGs co‑expressed by patients 
with COVID‑19 and LUAD

The design of our study is presented in Fig. 1. We identified 
816 DEGs in the GSE147507 dataset between patients with 
COVID-19 and normal people, including 396 upregulated 
genes and 420 downregulated genes (Fig. 2A). Analysis of 
TCGA LUAD data revealed 13,874 DEGs, among which 
10,635 were upregulated and 3,239 were downregulated 
(Fig. 2B). We identified 7703 genes among the CTD entries, 
which are associated with COVID-19 or its descendants. 
Venn analysis identified 112 genes in the CTD and DEGs in 
GSE147507 co-expressed by patients with COVID-19 and 
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LUAD (Fig. 2C). These genes are listed in Supplemental 
Table 1 and were further analysed.

PPI network analyses of co‑expressed genes

PPI network analysis was conducted to identify potential 
interactions of the products of co-expressed genes. The 
PPI network with interaction nodes and edges was visual-
ised using Cytoscape (Fig. 3A). The top 10 ranking hub 
genes were as follows: IL1B, CCL2, FOS, JUN, HBEGF, 
PDGFB, PGF, SPI1, MMP1, and CD34 (Fig. 3B) (Supple-
mental Table 2). The PPI network identified the functions of 
the co-expressed genes, which are primarily related to cell 
chemotaxis, leukocyte chemotaxis, negative regulation of 
viral process, response to type I interferon, cellular response 
to type I interferon, response to virus, and myeloid leukocyte 
migration (Fig. 3C).

Enrichment analysis of co‑expressed genes 
between COVID‑19 and LUAD

We first used the R environment to predict the functions of 
genes co-expressed by patients with COVID-19 and LUAD. 
The products of co-expressed genes were significantly asso-
ciated with the functional categories as follows: biological 

process (BP), molecular function (MF), and cellular compo-
nent (CC) (Fig. 4A). The BP GO terms included leukocyte 
migration, cell chemotaxis, leukocyte chemotaxis, myeloid 
leukocyte migration, and response to organophosphorus. 
Most genes in CC ontology are associated with cytoplasmic 
vesicle lumen, vesicle lumen, tertiary granule membrane, 
and tertiary and specific granules. Further, receptor ligand 
activity, oxygen binding, haeme binding, antioxidant activ-
ity, and chemokine activity represented most MF ontology 
terms. Moreover, KEGG pathway analysis showed that the 
co-expressed genes most closely correlated with those of 
the IL-17 signalling pathway, MAPK signalling pathway, 
osteoclast differentiation, fluid shear stress, atherosclerosis, 
and Kaposi sarcoma-associated herpesvirus infection (Sup-
plemental Table 3).

The co-expressed genes were subjected to pathway and 
process enrichment analysis using the databases as follows: 
KEGG pathway, GO Biological Processes, Reactome Gene 
Sets, Canonical Pathways, DisGeNET, PaGenBase, Wiki 
Pathways, and COVID. The top 20 clusters of co-expressed 
genes and their representative enriched terms are shown in 
Fig. 4B and listed in Supplemental Table 4. Five MCODE 
components were identified. Each component was indepen-
dently subjected to pathway and process enrichment analy-
sis, and the three highest scores with significant p values 

Fig. 1  Overall flow chart of this 
study
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items are shown in Fig. 5A, and co-expressed enriched 
genes were identified in the COVID (Fig. 5B), PaGenBase 
(Fig. 5C), and DisGeNET (Fig. 5D) ontology categories. 
The top few enriched clusters (one term per cluster) are 
listed in Supplemental Tables 5, 6, and 7.

Gene‑miRNA, TF‑gene interactions and TF‑miRNA 
co‑regulatory network of hub genes 
and determination of regulatory signatures

TarBase v8.0 was employed to predict specific miRNAs tar-
geting hub genes and to identify gene-miRNA interactions. 
This analysis identified 16 miRNAs predicted to interact 
with 10 hub genes, and the gene-miRNA interaction net-
work comprised 60 edges (Fig. 6A). These miRNAs poten-
tially regulate the expression of hub genes. When we used 
NetworkAnalyst to predict regulatory interactions of 11 TF-
genes with hub genes, we found that the network included 
21 nodes and 33 edges (Fig. 6B). We next used Networ-
kAnalyst to construct a TF-miRNA regulatory network to 
identify significant differences at the transcriptional and 
post-transcriptional levels. The TF-miRNA co-regulatory 
network comprised 18 nodes and 37 edges, and one miRNA 

and seven TF-genes were predicted to interact with the hub 
genes (Fig. 6C).

Correlation between hub genes and immune 
infiltration in LUAD

Figure 7A illustrates the correlation between the expression 
of hub genes with immune infiltration, and Spearman’s cor-
relation of each gene with subsets of immune cells is pre-
sented in Table 1. We further evaluated the association of the 
expression of hub genes mainly with markers of infiltrating 
lymphocytes (Fig. 7B, Table 2) and immune checkpoints 
(Fig. 7C, Table 3). The results showed that hub genes were 
positively correlated with most immune cells, immune cell 
markers, and immune checkpoints, although the correlations 
were mostly weak or moderate. IL1B, CCL2, HBEGF, and 
SPI1 were positively correlated with most immune cells. 
CD34 was positively correlated with immune cells except 
Th2 and T helper. IL1B, CCL2, HBEGF, and SPI1 were 
positively correlated with most immune cell markers and 
immune checkpoints. Among them, SPI1 had the strongest 
correlation among all hub genes Figs. 8 and 9 (Supplemental 
Figs. 1, 2, and 3)

Fig. 2  Mutual genes among of 
CTD and DEGs of GSE147507 
and LUAD. A DEGs of 
COVID-19 from GSE147507. B 
DEGs of LUAD from TCGA. C 
Common genes among of CTD 
and DEGs of GSE147507 and 
LUAD
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Methylation Level of hub genes in LUAD

We compared the hub genes’ methylation levels of LUAD 
with normal tissue. The methylation level of HBEGF 
(p < 0.001) and PDGFB (p < 0.001) was significantly 
higher in LUAD compared with normal tissue. But IL1B 
(p < 0.001), CCL2 (p < 0.001), and MMP1 (p < 0.001) in 
LUAD showed significantly lower methylation level com-
pared with normal tissues. No differences were shown on 
FOS, JUN, PGF, and SPI1.

Discussion

COVID-19 damages numerous organs and systems in the 
human body, particularly the respiratory system. Patients 
with LUAD are therefore at high risk of contracting 
COVID-19. The combination of COVID-19 infection and 
LUAD predicts a higher mortality rate and more severe 

clinical outcomes. The shared symptoms of the two dis-
eases urgently require the identification of their common 
molecular genetic regulatory mechanisms.

To this end, here we conducted a comprehensive bioin-
formatics investigation to better understand how COVID-
19 and LUAD affect the lung epithelium and alveolar tis-
sues. First, we identified 112 shared genes with similar 
expression patterns extracted from three databases. Sub-
sequently, the common genes were used to construct PPI 
networks, and the ensuing enrichment analysis revealed 
significant associations with the BP, CC, and MF path-
ways as well as with closely related research areas, specific 
organs, cells, and diseases. Ten hub genes representing the 
co-expressed genes were identified and used to construct 
gene-miRNA, TF-gene interactions, and TF-miRNA co-
regulatory networks. Also, we analysed the association of 
hub genes with immune infiltration and immune check-
points. Finally, methylation level of hub genes in LUAD 
was compared with normal tissues.

Fig. 3  PPI network of mutual 
genes. A The PPI network of 
mutual genes built via STRING 
and present by Cytoscape. B 
The top 10 hub genes ranked by 
MCC of cytoHubba. C The PPI 
network of mutual genes built 
via GeneMANIA
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The identification of co-expressed genes involved deter-
mining the intersection of COVID-19 and LUAD TCGA 
datasets as well as with COVID-19 expression data of the 
CTD database. This analysis identified co-expressed genes 
closely associated with COVID-19. Further, we considered 
the hub genes CCL2 and IL1B as phenotypic and mecha-
nistic markers according to the direct data for COVID-19 
in the CTD database. Moreover, we identified CCL2 as a 
potential biomarker of the severity of COVID-19 and the 
associated increased risk of mortality (Abers et al. 2021).

These hub genes are significantly associated with 
COVID-19 and play important roles in the tumorigenesis 
of LUAD. IL1B plays a crucial role in mediating acute and 
chronic inflammation and is associated with lung carcino-
genesis (Li et al. 2015). IL1B antagonists reduce the require-
ment for administering oxygen to patients with COVID-1 as 
well as reducing fever, length of stay in the ICU, and mor-
tality (Della-Torre et al. 2020; Cavalli et al. 2021). Further, 
CCL2 expression is elevated in the lungs of patients with 
NSCLC and promotes the growth of tumours (Hartwig et al. 

Fig. 4  Functional enrich-
ment of mutual genes between 
COVID-19 and LUAD. A GO 
and KEGG pathway enrichment 
analyses for mutual genes via R 
software. B Functional enrich-
ment analysis for mutual genes 
via Metascape
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2017). Moreover, patients with COVID-19 with LUAD, who 
express higher levels of CCL2, progress more rapidly and 
have a worse prognosis (Geraghty et al. 2020).

The transcription factors FOS and JUN to regulate gene 
expression through dimeric oncogenic complexes (Rorke 
et al. 2010; Kampen et al. 2019). The expression of several 
members of the JUN/FOS family, which are upregulated in 
tumour cells compared with their cells of origin (Latil et al. 
2017), is involved in multiple cellular processes such as cell 
cycle progression, inhibition of apoptosis, and promoting 
tumorigenesis (Wang et al. 2019). Elevated activity of the 
JUN pathway in fibroblasts suggests its involvement in pul-
monary fibrosis (Cui et al. 2020), which a serious compli-
cation of COVID-19 (Jiang et al. 2021) and is also closely 
related to the development of lung cancer (Arenberg et al. 
2010).

Airway epithelial reprogramming or the epithelial-
mesenchymal transformation (EMT) contributes to the 
remodelling changes in lung fibrosis (Eapen et al. 2019), 
one of the main respiratory signs of COVID-19. HBEGF 
is a key driver of the EMT and influences the outcomes 
of treatment of lung cancer (Stawowczyk et  al. 2017; 
Wu et al. 2021). The phenotypes of endothelial and lung 
cancer cells are influenced by the induction of paracrine 
signalling through interactions of the VEGF and PDGFB 
pathways (Wu et  al. 2021). And the co-expression of 
these signalling ligands strongly correlates with lymph 
node metastasis and poor survival of patients with NSCLC 
(Donnem et al. 2010).

PGF is involved in LUAD cell metastasis (Chiang 
2009), and SPI1 is a tumour-induced gene related to the 
peripheral immune system (Kossenkov et al. 2011), which 
induces upregulation of lncRNA SNHG6 to promote 
NSCLC (Gao and Ye 2020). High levels of MMP-1 expres-
sion are significantly associated with poor prognosis of 
patients with LUAD, as well as with smoking history and 
the aggressive mucinous adenocarcinoma subtype (Saito 
et al. 2018). Moreover, MMP-1 promotes the proliferation, 
migration, and invasion of NSCLC cells (Wang et al. 2020; 
Li et al. 2021). CD34, which is involved in diverse cellular 
processes including cell adhesion, signal transduction, and 
maintenance of progenitor cell phenotypes, is expressed 
by stem cells, including cancer stem cells (Kapoor et al. 
2020). CD34 expression by cancer-associated fibroblasts 

predicts the prognosis of patients with stages I–III NSCLC 
(Schulze et al. 2020). Thus, these hub genes are closely 
related to COVID-19 and contribute to tumour formation 
and the development of LUAD. Together, these findings 
suggest the genetic basis for high risk and poor prognosis 
of patients with LUAD with COVID-19.

Here, we performed enrichment analysis of 112 genes co-
expressed by patients with COVID-19 and LUAD, to gain 
insight into the biological mechanisms of pathogenesis of 
each disease. For example, leukocyte migration and cell 
chemotaxis were the top 2 GO terms. In pulmonary inflam-
matory diseases and neoplasms, pathogenesis and progres-
sion are associated with the persistent presence of leukocyte 
migration that is required for the induction, maintenance, 
and regulation of the immune response (Kameritsch and 
Renkawitz 2020). Airway cell dysfunction and persistent 
leukocyte migration increase injury to the host and impair 
the host’s ability to respond to microbial infection (Belcham-
ber et al. 2021). Thus, COVID-19 involves the blood–brain 
barrier via leukocyte migration, and this neuro-invasion 
leads to numerous neurological complications such as loss 
of consciousness, amnesia, headache, or other disorders such 
as stroke, impaired consciousness, seizures, and encepha-
lopathy (Zubair et al. 2020). Dysregulated inflammatory 
cell chemotaxis releases pro-inflammatory cytokines in the 
lung, leading to structural damage and impaired lung func-
tion (Domingo et al. 2018), and therefore plays a key role 
in cancer-related inflammation and cancer progression (Do 
et al. 2020).

The co-expressed genes were subjected to KEGG path-
way analysis to investigate patients’ responses to COVID-
19 and LUAD. The top two KEGG pathways were IL-17 
signalling and MAPK signalling. SARS-CoV-2 infection 
initiates an IL-17 transcriptional response in different 
cells of several organs, activating the IL-17 signalling 
pathway with greater intensity than other respiratory 
viruses (Hasan et al. 2021). This mechanism may explain 
why severe SARS-CoV-2 infection leads to the cytokine 
storm syndrome (Wu and Yang 2020; Lin et al. 2021). 
Viral infection activates the MAPK signalling pathway, 
which plays an important role in viral replication and 
facilitates viral infection (Cheng et al. 2020). Further, 
this pathway is activated in a wide spectrum of cancers, 
including LUAD. Activation of the MAPK pathway in 
patients with COVID-19 promotes viral replication and 
expression of pro-inflammatory cytokines, which leads to 
inflammation, thrombosis, and vasoconstriction (Burton 
et al. 2021). Uncontrolled activation of the MAPK path-
way causes an extreme inflammatory response in patients 
with COVID-19 (Grimes and Grimes 2020). In contrast, 
the MAPK pathway regulates cell survival, and its activa-
tion promotes tumour cell survival and proliferation as 
well as tumour cell migration and invasion to promote 

Fig. 5  PPI enrichment and association analysis of mutual genes 
between COVID-19 and LUAD. A The MCODE networks identified 
for individual gene lists. Each MCODE component has performed 
pathway and process enrichment analysis independently, and the three 
best-scoring terms by p-value have been showed as the functional 
description of the corresponding components, shown in the tables 
underneath corresponding network plots. B Summary of enrichment 
analysis in COVID. C Summary of enrichment analysis in PaGen-
Base. D Summary of enrichment analysis in DisGeNET

◂
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tumour progression and induce drug resistance in tumour 
cells (Koul et al. 2013).

The present KEGG analysis strongly suggests that com-
mon, important pathways participate in the development of 
COVID-19 and LUAD. For example, MCODE enrichment 
analysis revealed that co-expressed genes were strongly 
associated with haemostasis, platelet degranulation, 
response to elevated platelet cytosolic Ca2 + , platelet acti-
vation, signalling, and aggregation. SARS-CoV-2 induces 

platelet activation and endothelial dysfunction through acti-
vation of the complement pathway (Vinayagam and Sattu 
2020; Zhang et al. 2020). The main manifestations of these 
events are thrombocytopenia, increased platelet destruction, 
reduced number of circulating platelets, elevated D-dimer 
levels, prolonged prothrombin time, and disseminated intra-
vascular coagulation (Giannis et al. 2020).

Platelet activation is a pivotal cause of thrombosis, and 
the enhancement of platelet activation by SARS-CoV-2 

Fig. 6  Network for Gene-miRNA interaction, TF-gene interaction, 
and TF-miRNA co-regulatory of common hub genes. A Network for 
gene-miRNA interaction. The blue rectangle nodes present miRNAs 
and hub genes connect with miRNAs as circle nodes. The shade of 
colour represents degree. The network consists of 26 nodes and 60 
edges. B Network for TF-gene interaction. The circle nodes represent 

the common genes and diamond nodes represent TF-genes. The net-
work consists of 21 nodes and 33 edges. C The green diamond nodes 
indicate TF-genes, and the blue rectangle node presents miRNA. The 
rest of nodes represent the hub genes. The network consists of 18 
nodes and 37 edges. The shade of colour represents degree
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is mediated by components of the MAPK pathway acting 
downstream of ACE2 (Zhang et al. 2020). These events 
predispose patients with COVID-19 to thrombosis, may 
lead to coagulation in different tissues, and cause serious 
complications such as stroke, liver injury, heart attack, acute 
kidney injury, pulmonary embolism, and multi-organ fail-
ure (Iba et al. 2020). Moreover, PaGenBase and DisGeNET 
enrichment results show that these co-expressed genes are 
closely associated with specific tissues or cells such as lung, 
spleen, trachea, blood, liver, dorsal root ganglion, cardiac 
myocytes, and bronchial epithelial cells and are closely 
associated with inflammation, cerebral infarction, vascular 
inflammations, lung disease, myocardial ischaemia, and 
acute myocardial infarction. These pathologies correspond 
to the symptoms of patients with severe COVID-19, which 
causes catastrophic damage to all major organ system (Syn-
owiec et al. 2021). We believe therefore that it is reason-
able to conclude that the co-expressed genes identified here 
contribute to the greater likelihood of adverse outcomes of 
patients with LUAD.

Here, we identified 16 n miRNAs in the gene-miRNA 
network. miRBNA regulates diverse oncological processes, 
including proliferation, cell survival, apoptosis, tumour 
metastasis, and growth. Among these miRNAs, 12 (Wang 
et al. 2017; Dong et al. 2018; Wu et al. 2019; Jin et al. 2020; 

Li et al. 2020; Mokhlesi and Talkhabi 2020; Yu et al. 2020b; 
Zhou et al. 2020; Wei et al. 2021) are involved in the onco-
genesis of NSCLC, and four (Chuang et al. 2015; Gao et al. 
2019; Deng et al. 2021; Xu et al. 2021) contribute to the 
pathogenesis of other cancers. Eleven TF-genes are included 
in TF-gene interaction network. TFs regulate gene expres-
sion by recognising and utilising specific DNA sequences, 
which forms the basis of gene expression regulatory net-
works (Lambert et al. 2018) and plays a dominant role in 
biological processes shared by development and cancer 
(Huilgol et al. 2019). TFs are expressed at higher levels in 
cancer tissues compared with normal tissues, and specifi-
cally expressed TFs may serve tumour markers. Most TFs 
influence the survival of patients with one or more cancers 
(Hu et al. 2021b). The TF-miRNA co-regulatory network 
includes only one miRNA related to hypertension and coro-
nary artery disease (Miao et al. 2019).

We explored the association between hub genes with 
immune infiltration and immune checkpoints in patients with 
LUAD. Immunosuppression caused by anti-cancer therapy 
increases the risk of COVID-19 infection and increases the 
susceptibility of cancer patients to severe COVID-19 (Seth 
et al. 2020). Cancers lead to inflammation and the formation 
of a tumour-associated immune microenvironment (Meng 
et  al. 2020), which may interact with the inflammatory 

Fig. 7  Associations of hub 
genes expression and immune 
infiltration level in patients with 
LUAD. A Correlation of hub 
genes expression with immune 
infiltration level of 24 immune 
cell types in patients with 
LUAD by Spearman’s analysis. 
B Correlation between hub 
genes and relate gene markers 
of immune cells in LUAD. C 
Correlation between hub genes 
and immune checkpoints in 
LUAD
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responses to COVID-19 (Amere Subbarao 2021). Such over-
lapping outcomes may affect the treatment of patients with 
LUAD with comorbid COVID-19 for inflammation-related 
complications caused by COVID-19 or anti-tumour therapy 
(Yang et al. 2020b; Mohamed Khosroshahi et al. 2021). A 
better understanding of the pathophysiological mechanisms 

of immunity is required to optimise strategies for treating 
patients with LUAD with COVID-19.

Our present results strongly suggest that differential 
expression of IL1B, CCL2, and SPI1 was significantly 
associated with immune infiltration and immune check-
points in patients with LUAD. For example, the cytokines 

Fig. 8  Promoter methylation level of hub genes in LUAD and normal tissue. A IL1B, B CCL2, C FOS, D JUN, E HBEGF, F FDGFB, G PGF, 
H SPI1, I MMP1, J CD34
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Table 1  Associations of hub genes expression and immune infiltration level in patients with LUAD

Abbreviations: LUAD lung adenocarcinoma

Immune cell IL1B CCL2 FOS JUN HBEGF
r P r P r P r P r P

aDC 0.372  < 0.001 0.393  < 0.001  − 0.021 0.634 0.060 0.165 0.212  < 0.001
B cells 0.113 0.009 0.188  < 0.001 0.033 0.452  − 0.020 0.651  − 0.052 0.229
CD8 T cells 0.018 0.674 0.058 0.182 0.269  < 0.001 0.176  < 0.001 0.184  < 0.001
Cytotoxic cells 0.263  < 0.001 0.255  < 0.001 0.087 0.044 0.031 0.474 0.154  < 0.001
DC 0.275  < 0.001 0.410  < 0.001 0.157  < 0.001 0.187  < 0.001 0.426  < 0.001
Eosinophils 0.247  < 0.001 0.259  < 0.001 0.282  < 0.001 0.243  < 0.001 0.422  < 0.001
iDC 0.354  < 0.001 0.435  < 0.001 0.211  < 0.001 0.239  < 0.001 0.395  < 0.001
Macrophages 0.491  < 0.001 0.562  < 0.001 0.089 0.040 0.149  < 0.001 0.454  < 0.001
Mast cells 0.069 0.112 0.227  < 0.001 0.355  < 0.001 0.226  < 0.001 0.312  < 0.001
Neutrophils 0.495  < 0.001 0.419  < 0.001 0.192  < 0.001 0.077 0.076 0.403  < 0.001
NK CD56 bright cells  − 0.062 0.154  − 0.018 0.674 0.241  < 0.001 0.189  < 0.001 0.058 0.181
NK CD56 dim cells 0.285  < 0.001 0.240  < 0.001  − 0.058 0.179  − 0.033 0.440 0.144  < 0.001
NK cells 0.121 0.005 0.288  < 0.001 0.155  < 0.001 0.413  < 0.001 0.305  < 0.001
pDC 0.202  < 0.001 0.278  < 0.001 0.188  < 0.001 0.163  < 0.001 0.317  < 0.001
T cells 0.265  < 0.001 0.294  < 0.001 0.066 0.126 0.014 0.753 0.132 0.002
T helper cells 0.230  < 0.001 0.138 0.001  − 0.023 0.591  − 0.104 0.016 0.084 0.053
Tcm 0.064 0.137  − 0.030 0.491 0.084 0.053  − 0.038 0.385 0.058 0.178
Tem 0.206  < 0.001 0.113 0.009 0.086 0.046 0.011 0.800 0.186  < 0.001
TFH 0.081 0.061 0.194  < 0.001 0.175  < 0.001 0.244  < 0.001 0.054 0.211
Tgd 0.098 0.024 0.128 0.003 -0.083 0.054  − 0.147  < 0.001  − 0.003 0.940
Th1 cells 0.453  < 0.001 0.543  < 0.001 0.116 0.007 0.167  < 0.001 0.426  < 0.001
Th17 cells 0.037 0.395 0.031 0.471 0.201  < 0.001 0.055 0.201 0.055 0.202
Th2 cells 0.197  < 0.001 0.141 0.001  − 0.329  < 0.001  − 0.258  < 0.001  − 0.019 0.654
TReg 0.314  < 0.001 0.356  < 0.001  − 0.076 0.080 0.113 0.009 0.143  < 0.001

PDGFB PGF SPI1 MMP1 CD34
r P r P r P r P r P

aDC 0.121 0.005 0.109 0.012 0.585  < 0.001 0.107 0.013 0.08 0.065
B cells  − 0.02 0.646 0.158  < 0.001 0.279  < 0.001 0.052 0.231 0.138 0.001
CD8 T cells 0.114 0.009  − 0.002 0.955 0.358  < 0.001 0.012 0.783 0.24  < 0.001
Cytotoxic cells 0.105 0.015 0.087 0.043 0.521  < 0.001 0.066 0.126 0.137 0.001
DC 0.182  < 0.001 0.127 0.003 0.668  < 0.001 0.075 0.084 0.359  < 0.001
Eosinophils 0.172  < 0.001 0.011 0.808 0.473  < 0.001  − 0.018 0.67 0.404  < 0.001
iDC 0.187  < 0.001 0.176  < 0.001 0.770  < 0.001 0.077 0.075 0.397  < 0.001
Macrophages 0.194  < 0.001 0.205  < 0.001 0.763  < 0.001 0.186  < 0.001 0.304  < 0.001
Mast cells 0.205  < 0.001 0.022 0.614 0.409  < 0.001  − 0.03 0.487 0.551  < 0.001
Neutrophils 0.346  < 0.001 0.225  < 0.001 0.525  < 0.001 0.255  < 0.001 0.363  < 0.001
NK CD56 bright cells 0.169  < 0.001 0.078 0.071 0.126 0.003  − 0.038 0.377 0.148  < 0.001
NK CD56 dim cells 0.275  < 0.001 0.245  < 0.001 0.385  < 0.001 0.23  < 0.001 0.143  < 0.001
NK cells 0.444  < 0.001 0.347  < 0.001 0.426  < 0.001 0.128 0.003 0.506  < 0.001
pDC 0.292  < 0.001 0.200  < 0.001 0.552  < 0.001 0.065 0.131 0.458  < 0.001
T cells 0.008 0.861 0.048 0.269 0.496  < 0.001 0.05 0.246 0.147  < 0.001
T helper cells  − 0.065 0.135  − 0.105 0.016 0.145  < 0.001  − 0.07 0.106  − 0.028 0.512
Tcm  − 0.005 0.902  − 0.165  < 0.001 0.012 0.783  − 0.127 0.003 0.089 0.039
Tem 0.191  < 0.001 0.061 0.162 0.284  < 0.001 0.002 0.962 0.217  < 0.001
TFH  − 0.002 0.956 0.154  < 0.001 0.373  < 0.001  − 0.082 0.059 0.269  < 0.001
Tgd 0.287  < 0.001 0.093 0.031 0.080 0.063 0.119 0.006 0.08 0.066
Th1 cells 0.209  < 0.001 0.195  < 0.001 0.621  < 0.001 0.221  < 0.001 0.246  < 0.001
Th17 cells  − 0.021 0.635  − 0.094 0.029 0.200  < 0.001  − 0.002 0.965 0.175  < 0.001
Th2 cells 0.079 0.07 0.251  < 0.001  − 0.036 0.406 0.279  < 0.001  − 0.245  < 0.001
TReg 0.154  < 0.001 0.253  < 0.001 0.626  < 0.001 0.173  < 0.001 0.141 0.001
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Table 2  Correlation analysis between hub genes and relate gene markers of immune cells in LUAD

Immune cell Marker IL1B CCL2 FOS JUN HBEGF
r P r P r P r P r P

CD8 + T cell CD8A 0.272  < 0.001 0.248  < 0.001  − 0.014 0.745 0.002 0.969 0.124 0.004
CD8B 0.238  < 0.001 0.230  < 0.001  − 0.038 0.374  − 0.030 0.485 0.028 0.511

Monocyte CD115 (CSF1R) 0.576  < 0.001 0.530  < 0.001 0.062 0.152 0.261  < 0.001 0.381  < 0.001
CD14 0.609  < 0.001 0.593  < 0.001  − 0.008 0.854 0.158  < 0.001 0.346  < 0.001
CD86 0.602  < 0.001 0.582  < 0.001  − 0.015 0.736 0.087 0.045 0.399  < 0.001

TAM CCL2 0.675  < 0.001 1.000  < 0.001 0.128 0.003 0.205  < 0.001 0.465  < 0.001
CD68 0.365  < 0.001 0.389  < 0.001 0.109 0.012 0.164  < 0.001 0.351  < 0.001
IL10 0.551  < 0.001 0.551  < 0.001 0.123 0.004 0.011 0.793 0.338  < 0.001

M1 macrophage NOS2 0.163  < 0.001 0.135 0.002 0.141 0.001 0.156  < 0.001 0.275  < 0.001
IRF5 0.379  < 0.001 0.376  < 0.001 0.010 0.826 0.255  < 0.001 0.252  < 0.001
PTGS2 0.096 0.027 0.130 0.003 0.203  < 0.001 0.124 0.004 0.195  < 0.001

M2 macrophage CD163 0.498  < 0.001 0.472  < 0.001 0.055 0.201 0.090 0.038 0.410  < 0.001
VSIG4 0.514  < 0.001 0.509  < 0.001 0.051 0.235 0.098 0.024 0.414  < 0.001
MS4A4A 0.449  < 0.001 0.497  < 0.001 0.056 0.195 0.048 0.272 0.413  < 0.001

Neutrophils CEACAM8 0.084 0.051 0.102 0.018 0.216  < 0.001 0.134 0.002 0.194  < 0.001
CD11b (ITGAM) 0.535  < 0.001 0.521  < 0.001 0.104 0.016 0.275  < 0.001 0.462  < 0.001
CCR7 0.197  < 0.001 0.280  < 0.001 0.147  < 0.001 0.185  < 0.001 0.227  < 0.001

Dendritic cell HLA-DPB1 0.308  < 0.001 0.381  < 0.001 0.177  < 0.001 0.268  < 0.001 0.272  < 0.001
HLA-DQB1 0.312  < 0.001 0.378  < 0.001 0.099 0.023 0.277  < 0.001 0.226  < 0.001
HLA-DRA 0.384  < 0.001 0.451  < 0.001 0.115 0.008 0.205  < 0.001 0.272  < 0.001
HLA-DPA1 0.352  < 0.001 0.415  < 0.001 0.145  < 0.001 0.249  < 0.001 0.284  < 0.001
BDCA-1 (CD1C) 0.201  < 0.001 0.277  < 0.001 0.259  < 0.001 0.297  < 0.001 0.309  < 0.001
BDCA-4 (NRP-1) 0.227  < 0.001 0.226  < 0.001 0.139 0.001 0.165  < 0.001 0.299  < 0.001
CD11C (ITGAX) 0.514  < 0.001 0.454  < 0.001 0.120 0.005 0.239  < 0.001 0.385  < 0.001

Th1 T-bet (TBX21) 0.279  < 0.001 0.271  < 0.001 0.065 0.133 0.150  < 0.001 0.189  < 0.001
STAT4 0.289  < 0.001 0.351  < 0.001 0.076 0.077 0.118 0.006 0.231  < 0.001
STAT1 0.357  < 0.001 0.311  < 0.001  − 0.125 0.004  − 0.015 0.734 0.141 0.001
IFN-γ (IFNG) 0.378  < 0.001 0.257  < 0.001  − 0.112 0.010  − 0.162  < 0.001 0.015 0.737
TNF-α (TNF) 0.559  < 0.001 0.401  < 0.001 0.014 0.738 0.115 0.008 0.109 0.012

Th2 GATA3 0.262  < 0.001 0.352  < 0.001 0.059 0.173 0.190  < 0.001 0.243  < 0.001
STAT6 0.060 0.164 0.026 0.543 0.292  < 0.001 0.279  < 0.001 0.207  < 0.001
STAT5A 0.439  < 0.001 0.425  < 0.001 0.140 0.001 0.312  < 0.001 0.345  < 0.001
IL13 0.182  < 0.001 0.255  < 0.001 0.123 0.004 0.071 0.099 0.196  < 0.001

Tfh BCL6  − 0.002 0.955 0.016 0.715 0.268  < 0.001 0.302  < 0.001 0.136 0.002
IL21 0.328  < 0.001 0.282  < 0.001  − 0.067 0.122  − 0.066 0.129 0.078 0.072

Th17 STAT3 0.088 0.042 0.120 0.005 0.193  < 0.001 0.230  < 0.001 0.138 0.001
IL17A 0.165  < 0.001 0.143  < 0.001 0.045 0.297  − 0.035 0.418 0.053 0.220

Treg FOXP3 0.376  < 0.001 0.403  < 0.001  − 0.021 0.634 0.197  < 0.001 0.218  < 0.001
CCR8 0.393  < 0.001 0.359  < 0.001  − 0.018 0.670 0.080 0.066 0.271  < 0.001
STAT5B 0.140 0.001 0.167  < 0.001 0.194  < 0.001 0.262  < 0.001 0.191  < 0.001
TGFB1 (TGFB1) 0.286  < 0.001 0.375  < 0.001 0.123 0.004 0.370  < 0.001 0.329  < 0.001

PDGFB PGF SPI1 MMP1 CD34
CD8 + T cell CD8A 0.071 0.101 0.028 0.514 0.406  < 0.001 0.106 0.015 0.060 0.169

CD8B 0.019 0.653 0.089 0.041 0.345  < 0.001 0.074 0.086 0.022 0.619
Monocyte CD115 (CSF1R) 0.281  < 0.001 0.236  < 0.001 0.865  < 0.001 0.145  < 0.001 0.333  < 0.001

CD14 0.257  < 0.001 0.312  < 0.001 0.819  < 0.001 0.213  < 0.001 0.203  < 0.001
CD86 0.165  < 0.001 0.222  < 0.001 0.776  < 0.001 0.186  < 0.001 0.185  < 0.001
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IL1B and CCL2 are released by activated immune cells in 
patients with COVID-19, which contributes to the induc-
tion of the catastrophic cytokine storm (Mohamed Khos-
roshahi et al. 2021). Specifically, the expression levels 
of IL1B, CCL2, and SPI1 correlated with those of the 
immune checkpoint TIM-3; and SPI1, in particular, is 
closely associated with TIM-3. TIM-3 induces depletion 
of T lymphocytes and serves as a surface marker of T cell 
depletion (Zhu et al. 2005). Compared with hospitalised 
patients with COVID-19 who do not require admission 
to the ICU, those admitted to the ICU show decreased 

lymphocyte numbers and an increase in TIM-3 expression 
(Diao et al. 2020). Further, the cytokine storm is involved 
in the depletion of T lymphocytes, and high expression 
levels of TIM-3 in patients with COVID-19 are associ-
ated with higher expression levels of pro-inflammatory 
cytokines (Moon 2020). Therefore, treatment targeting 
immune alterations caused by the products of hub genes 
may provide new insights for the management of patients 
LUAD with COVID-19.

DNA methylation can cause changes in chromatin structure 
and DNA stability. Thus, it could control the expression of 

Table 2  (continued)

TAM CCL2 0.259  < 0.001 0.295  < 0.001 0.528  < 0.001 0.229  < 0.001 0.252  < 0.001

CD68 0.282  < 0.001 0.123 0.004 0.665  < 0.001 0.087 0.043 0.256  < 0.001

IL10 0.180  < 0.001 0.143  < 0.001 0.522  < 0.001 0.114 0.009 0.204  < 0.001
M1 macrophage NOS2 0.557  < 0.001 0.306  < 0.001 0.231  < 0.001 0.121 0.005 0.499  < 0.001

IRF5 0.234  < 0.001 0.126 0.004 0.667  < 0.001 0.079 0.066 0.139 0.001
PTGS2 0.166  < 0.001 0.161  < 0.001  − 0.150  < 0.001 0.212  < 0.001 0.092 0.033

M2 macrophage CD163 0.268  < 0.001 0.137 0.001 0.652  < 0.001 0.163  < 0.001 0.256  < 0.001
VSIG4 0.193  < 0.001 0.139 0.001 0.776  < 0.001 0.115 0.008 0.210  < 0.001
MS4A4A 0.185  < 0.001 0.149  < 0.001 0.725  < 0.001 0.132 0.002 0.270  < 0.001

Neutrophils CEACAM8  − 0.084 0.052  − 0.130 0.003 0.230  < 0.001  − 0.214  < 0.001 0.229  < 0.001
CD11b (ITGAM) 0.208  < 0.001 0.157  < 0.001 0.817  < 0.001 0.112 0.009 0.283  < 0.001
CCR7 0.131 0.002 0.107 0.013 0.512  < 0.001  − 0.030 0.494 0.293  < 0.001

Dendritic cell HLA-DPB1 0.025 0.571 0.055 0.203 0.747  < 0.001  − 0.049 0.255 0.268  < 0.001
HLA-DQB1 0.045 0.298 0.067 0.120 0.652  < 0.001  − 0.027 0.535 0.211  < 0.001
HLA-DRA  − 0.013 0.772 0.068 0.115 0.736  < 0.001 0.012 0.779 0.200  < 0.001
HLA-DPA1 0.017 0.701 0.043 0.315 0.719  < 0.001  − 0.023 0.594 0.238  < 0.001
BDCA-1 (CD1C)  − 0.022 0.611  − 0.009 0.832 0.551  < 0.001  − 0.057 0.186 0.308  < 0.001
BDCA-4 (NRP-1) 0.145  < 0.001 0.099 0.022 0.208  < 0.001 0.057 0.186 0.220  < 0.001
CD11C (ITGAX) 0.233  < 0.001 0.163  < 0.001 0.769  < 0.001 0.083 0.056 0.240  < 0.001

Th1 T-bet (TBX21) 0.163  < 0.001 0.050 0.244 0.505  < 0.001 0.037 0.388 0.176  < 0.001
STAT4 0.039 0.364 0.039 0.369 0.401  < 0.001 0.050 0.248 0.102 0.018
STAT1 0.168  < 0.001 0.068 0.119 0.314  < 0.001 0.201  < 0.001  − 0.028 0.516
IFN-γ (IFNG) 0.006 0.887 0.002 0.966 0.276  < 0.001 0.144  < 0.001  − 0.127 0.003
TNF-α (TNF) 0.161  < 0.001 0.178  < 0.001 0.510  < 0.001 0.133 0.002 0.126 0.004

Th2 GATA3 0.239  < 0.001 0.200  < 0.001 0.454  < 0.001 0.083 0.055 0.193  < 0.001
STAT6 0.111 0.011  − 0.175  < 0.001 0.262  < 0.001  − 0.070 0.106 0.257  < 0.001
STAT5A 0.299  < 0.001 0.182  < 0.001 0.706  < 0.001 0.157  < 0.001 0.351  < 0.001
IL13 0.005 0.899  − 0.009 0.834 0.206  < 0.001 0.034 0.438 0.080 0.064

Tfh BCL6 0.079 0.070  − 0.046 0.285 0.074 0.089  − 0.035 0.422 0.186  < 0.001
IL21 0.038 0.384 0.096 0.026 0.302  < 0.001 0.094 0.029  − 0.014 0.753

Th17 STAT3 0.159  < 0.001 0.001 0.983 0.043 0.321 0.053 0.222 0.329  < 0.001
IL17A 0.011 0.797 0.030 0.495 0.158  < 0.001 0.085 0.049 0.034 0.435

Treg FOXP3 0.228  < 0.001 0.278  < 0.001 0.663  < 0.001 0.155  < 0.001 0.239  < 0.001
CCR8 0.139 0.001 0.160  < 0.001 0.505  < 0.001 0.118 0.006 0.192  < 0.001
STAT5B 0.267  < 0.001 0.126 0.004 0.273  < 0.001  − 0.063 0.146 0.422  < 0.001
TGFB1 (TGFB1) 0.371  < 0.001 0.306  < 0.001 0.605  < 0.001 0.147  < 0.001 0.390  < 0.001
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genes in the organism. Abnormal methylation of genes is an 
important factor in the development of cancer (Mangelinck 
and Mann 2021). DNA methylation is also involved in the 
regulation of respiratory health. Studies (Lepeule et al. 2012) 
have shown that hypomethylation of the carnitine o-acetyl-
transferase gene promoter, Toll-like receptor-2, and coagula-
tion factor-3 is associated with poor lung function. In con-
trast, hypomethylation of IFN -γ and IL-6 was associated with 
improved lung function. We found higher methylation levels of 
HBEGF and PDGFB in LUAD than in normal tissues, whereas 
IL1B, CCL2, and MMP1 had lower methylation levels in 
LUAD, implying that abnormal methylation of these genes 
may be involved in the regulation of LUAD and COVID-19. 
Aberrant methylation due to IL1B-induced inflammation was 
shown to be strongly associated with the risk of gastric cancer 
(Maeda et al. 2017), suggesting that these hub genes may also 
be involved in tumorigenesis by interfering with methylation.

Conclusions

The present bioinformatics study identified genes co-
expressed in patients with COVID-19 and LUAD as 
well as the associated signal transduction pathways and 

pathophysiological mechanisms. We further identified co-
expressed hub genes, used them to construct regulatory 
networks, and investigated their contribution to immune 
alterations and DNA methylation. Thus, the present study 
provides new multi-dimensional insights that will contribute 
to efforts to optimise the treatment of patients with LUAD 
with COVID-19.
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Table 3  Correlation analysis between significant hub genes and immune checkpoints in LUAD

Immune checkpoints IL1B CCL2 FOS JUN HBEGF
r P r P r P r P r P

PD-1 (PDCD1) 0.307  < 0.001 0.286  < 0.001  − 0.020 0.647 0.161  < 0.001 0.130 0.003
PD-L1 (CD274) 0.516  < 0.001 0.461  < 0.001  − 0.033 0.441 0.140 0.001 0.392  < 0.001
PDL2 (PDCD1LG2) 0.524  < 0.001 0.498  < 0.001  − 0.099 0.023  − 0.009 0.842 0.304  < 0.001
CTLA4 0.337  < 0.001 0.301  < 0.001 0.043 0.317 0.097 0.025 0.237  < 0.001
LAG3 0.304  < 0.001 0.286  < 0.001  − 0.066 0.127 0.092 0.034 0.048 0.270
TIM-3 (HAVCR2) 0.582  < 0.001 0.555  < 0.001  − 0.008 0.849 0.091 0.035 0.401  < 0.001
GZMB 0.356  < 0.001 0.275  < 0.001  − 0.137 0.001 -0.105 0.015 0.102 0.018
TIGIT 0.324  < 0.001 0.321  < 0.001  − 0.005 0.901 0.068 0.114 0.197  < 0.001
BTLA 0.252  < 0.001 0.245  < 0.001 0.083 0.054 0.026 0.549 0.135 0.002
CD96 0.277  < 0.001 0.254  < 0.001 0.117 0.007 0.064 0.138 0.176  < 0.001

PDGFB PGF SPI1 MMP1 CD34
PD-1 (PDCD1) 0.185  < 0.001 0.174  < 0.001 0.564  < 0.001 0.107 0.014 0.084 0.053
PD-L1 (CD274) 0.16  < 0.001 0.097 0.024 0.543  < 0.001 0.183  < 0.001 0.03 0.482
PDL2 (PDCD1LG2) 0.185  < 0.001 0.194  < 0.001 0.588  < 0.001 0.217  < 0.001 0.113 0.009
CTLA4 0.075 0.085 0.110 0.011 0.479  < 0.001 0.094 0.029 0.055 0.207
LAG3 0.141 0.001 0.186  < 0.001 0.460  < 0.001 0.096 0.026 0.036 0.407
TIM-3 (HAVCR2) 0.18  < 0.001 0.196  < 0.001 0.818  < 0.001 0.217  < 0.001 0.154  < 0.001
GZMB 0.166  < 0.001 0.182  < 0.001 0.343  < 0.001 0.248  < 0.001  − 0.058 0.181
TIGIT 0.112 0.01 0.109 0.012 0.472  < 0.001 0.108 0.013 0.115 0.008
BTLA 0 0.997  − 0.006 0.895 0.396  < 0.001 0.01 0.815 0.179  < 0.001
CD96  − 0.019 0.667  − 0.019 0.656 0.429  < 0.001 0.119 0.006 0.13 0.003
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