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ABSTRACT Mycobacterium abscessus complex (MABC) is a group of emerging,
highly antimicrobial-resistant non-tuberculous mycobacteria. Specific MABC clones
are spreading globally in patients with cystic fibrosis (CF); however, associated
genomic epidemiology is lacking in East Asia, with very few patients with CF. Here,
we investigated MABC populations derived from non-CF patients in Japan and
Taiwan. Analysis of whole-genome sequencing data of 220 MABC isolates revealed
that 112, 105, and 3 were M. abscessus subsp. abscessus (ABS), M. abscessus subsp.
massiliense (MAS), and M. abscessus subsp. bolletii (BOL), respectively. Moreover,
.50% of ABS and .70% of MAS were related to four predominant clones in the
region. Known mutations conferring macrolide resistance were rare (1.4%) and were
not enriched in the predominant clones. Conversely, the macrolide-susceptible erm
(41) T28C mutation was significantly enriched in one predominant ABS clone. The
most predominant ABS clone was genetically related to the previously described
dominant circulating clone (DCC)1 in patients with CF, whereas no isolates were
related to DCC2; isolates related to DCC3 were not necessarily predominant in our
sample set. We found that the erm(41) T28C mutants spread globally, and some of
them reacquired the functional erm(41) gene through both point mutation and
recombination. This study revealed predominant MABC clones in Japan and Taiwan
and their relationship with the globally superadding clones in the patient commu-
nity with CF. Our study provides insights into the genetic characteristics of globally
dominant and area-specific strains isolated from patients with or without CF and
differences between globally spread and regionally specific strains.

IMPORTANCE Members of Mycobacterium abscessus complex (MABC) are frequently
isolated from patients. Studies have reported that predominant clones of MABC
(known as dominant circulating clones; DCCs) are distributed worldwide and trans-
mitted from humans to humans in patients with cystic fibrosis (CF). However, associ-
ated genomic epidemiology has not yet been conducted in East Asia, including
Japan and Taiwan, where there are only a few patients with CF. Using whole-

Editor Florence Claude Doucet-Populaire,
University Paris-Saclay, AP-HP Hospital Antoine
Béclère, Service de Microbiologie, Institute for
Integrative Biology of the Cell (I2BC), CEA, CNRS

Copyright © 2022 Yoshida et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Mitsunori Yoshida,
m-yoshida@niid.go.jp, or Po-Ren Hsueh,
hsporen@gmail.com.

The authors declare no conflict of interest.

Received 24 February 2022
Accepted 18 March 2022
Published 21 April 2022

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.00571-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0003-4061-6910
https://orcid.org/0000-0002-7718-0594
https://orcid.org/0000-0002-8239-9275
https://orcid.org/0000-0003-0240-8352
https://orcid.org/0000-0002-3818-5288
https://orcid.org/0000-0001-5587-5662
https://orcid.org/0000-0002-9378-6801
https://orcid.org/0000-0003-0717-7450
https://orcid.org/0000-0002-3178-2645
https://orcid.org/0000-0002-3132-0715
https://orcid.org/0000-0002-7502-9225
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.00571-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.00571-22&domain=pdf&date_stamp=2022-4-21


genome sequencing data derived from non-CF patients in Japan and Taiwan, we
revealed prevalent clones and the incidence of macrolide resistance-associated muta-
tions in the MABC population in this region. We also clarified the associations
between these predominant clones and DCCs in the global CF patient community.
Our results would assist further studies in elucidating the genetic characteristics of
strains isolated from patients with or without CF, the differences between globally
spread and regionally specific strains, and the adaptive evolution of MABC within
the host.

KEYWORDS non-tuberculous mycobacteria,Mycobacterium abscessus, non-cystic
fibrosis, molecular epidemiology

The Mycobacterium abscessus complex (MABC) comprises frequently isolated non-tu-
berculous mycobacteria (NTM) in patients with or without host risk factors such as

cystic fibrosis (CF), bronchiectasis, and other immunocompromised statuses (1–3). The
occurrence of pulmonary MABC infection has been investigated, particularly among
patients with CF, primarily throughout Europe and America (1, 4, 5), and has also been
reported among non-CF patients in some Asian countries (6–10).

The MABC is a triad of rapidly growing NTM comprising M. abscessus subsp. absces-
sus (ABS), M. abscessus subsp. bolletii (BOL), and M. abscessus subsp. massiliense (MAS)
(11). The clinical differences among the subspecies in terms of incidence, manifesta-
tion, and prognosis are gradually being elucidated, and they reflect the clinical impor-
tance of subspecies differences (12–14). Epidemiological studies on MABC isolates
have been conducted at different scales, investigating outbreaks within a single hospi-
tal (15, 16), nationwide (17, 18), or with intercontinental spread (19–21). Using whole-
genome sequencing (WGS) data of geographically diverse MABC isolated from patients
with CF, Bryant et al. revealed that most isolates form dense clusters with low genetic
diversity, and three dominant circulating clones (DCCs) were identified, namely, 2 ABS
clones (DCC1 and DCC2) and 1 MAS clone (DCC3) (19). Subsequent epidemiological
studies using WGS at CF centers in other cohorts confirmed the presence of ABS and
MAS clones, widely distributed among the patients studied (17, 18, 22). However, the
application of these findings to MABC isolated from non-CF patients and DCC preva-
lence in East Asian countries, including Japan and Taiwan, where only a few patients
are diagnosed with CF, remains unclear (23, 24).

Each subspecies exhibits different susceptibility to macrolides, which are key anti-
biotics in MABC infection treatment. Of the three subspecies of MABC, nearly all
MASs are susceptible to macrolides owing to the presence of the truncated unfunc-
tional erythromycin ribosomal methylase (erm)(41) gene (25, 26). The remaining two
subspecies contain the functional erm(41) gene, which induces macrolide resistance
via methylation of the target; however, they become macrolide-susceptible when
erm(41) loses function through T to C substitution at position 28 (27, 28). In addition
to intrinsic macrolide resistance, MABC can acquire mutational macrolide resistance
through substitutions in the rrl gene encoding the 23S rRNA (29, 30). As these
mutations likely affect long-term treatment and promote poor outcomes of MABC
infection compared to other NTM diseases (31), detailed epidemiological analyses
of macrolide resistance-associated mutations are required. However, the incidence of
these mutations in MABC populations derived from non-CF untreated patients in
East Asian countries and the relationship between these mutations and the predomi-
nant clones are poorly understood.

In this study, we sequenced the genome of 220 MABC clinical isolates obtained
from non-CF patients before treatment in four hospitals in three East Asian locations
(Tokyo, Okinawa, and Taiwan) covering subtropical to temperate climate zones over 7
years. Using the data set, we examined subspecies distribution, macrolide resistance-
associated mutation incidence, and prevalent clones and their genetic features to
determine the epidemiological distribution of MABC in Japan and Taiwan.
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RESULTS
Distribution of MABC subspecies in non-CF patients in Japan and Taiwan. We

first identified subspecies of 220 MABC clinical isolates based on WGS data to examine
the subspecies distribution in Japan and Taiwan. Of the 220 isolates, 112 (50.9%), 105
(47.7%), and 3 (1.4%) were identified as ABS, MAS, and BOL, respectively (Fig. 1). This
was confirmed by calculating the species and subspecies boundaries of the MABC clini-
cal isolates using the average nucleotide identity (ANI) values among the MABC iso-
lates (Fig. S1). The minimum ANI among MABC isolates was 96.4%, all ANI values within
the three subspecies were above 98% (minimum: 98.1%), and all ANI values between
subspecies were below 98% (maximum: 97.6%) (Fig. S1), which are consistent with pre-
vious results (14). We detected no significant difference in the composition of MABC
subspecies among Tokyo, Okinawa, and Taiwan (Fig. 1).

Prevalent clones of ABS and MAS in non-CF patients in Japan and Taiwan (East
Asia, EA). To further investigate the genetic relatedness of isolates from individual
patients in Japan and Taiwan, we analyzed the phylogeny of ABS and MAS separately
(Fig. 2, Fig. 3). Among the 112 ABS isolates, we identified six clusters (ABS-EA1 to ABS-
EA6, shown in Fig. 2), including 85 isolates (75.9%). Of these isolates, 37 (33.0%) and 25
(22.3%) from the three locations belonged to the most prominent clusters (ABS-EA1
and ABS-EA2, respectively) (Fig. 2). The other three ABS-EA clusters (ABS-EA3, ABS-EA5,
and ABS-EA6) consisted of isolates from two different sites (Tokyo/Okinawa, Tokyo/
Taipei, or Taipei/Okinawa). We identified five clusters of 105 MAS isolates, including 87
isolates (82.9%) (MAS-EA1 to MAS-EA5, shown in Fig. 3). Of these clustered isolates, 51
(48.6%) and 20 (19.0%) from the three locations belonged to the first (MAS-EA1) and
second (MAS-EA2) most predominant clusters (Fig. 3), respectively, whereas the other
three clusters (MAS-EA3, MAS-EA4, and MAS-EA5) consisted of isolates from two loca-
tions. We also examined the population differences between ABS and MAS in this
region. The genome-wide nucleotide diversity of MAS was significantly higher than
that of ABS (Fig. S2A, P , 5.1e-06), and the total number of genes within MAS isolates
was larger than that of the ABS isolates (Fig. S2B); pairwise genetic distances between
isolates in each MAS-EA cluster (ranged from 8 to 142 SNPs) were significantly lower
those in each cluster of ABS-EA cluster (ranged from 4 to 1444 SNPs) (Fig. S2C).

Mutations associated with macrolide resistance of ABS/MAS in non-CF patients
in Japan and Taiwan. We determined the incidence of genetic mutations associated
with macrolide resistance. None of the ABS isolates harbored mutations in the rrl hot
spot (2269–2271 bp in the rrl gene of ATCC19977) (Fig. 2). Among the 112 ABS, 24
(21.4%) carried the macrolide-susceptible erm(41) T28C sequence variant. Notably, all
erm(41) T28C sequences belonged to ABS-EA2 and exhibited significant enrichment in
this clade (Fig. 2, P , 2.2e-16). Three of the 105 MAS (2.9%) had mutations in the hot
spot on rrl, all of which belonged to MAS-EA1; however, they were not significantly
enriched (Fig. 3, P = 0.24). Nearly all MAS (103 isolates) had truncation of erm(41) with-
out substitution in the hot spot of rrl. However, two MAS (TWN-024 and TWN-041)
exceptionally displayed a full-length erm(41), with a simultaneous T28C mutation. A
total of 102 MAS isolates (97.1%) were predicted to be susceptible to macrolides.
Together with the fact that no BOL (n = 3) displayed substitutions in the rrl hot spot or
T28C mutation in erm(41) (data not shown), 126/220 MABC isolates (57.3%, 24 ABS and
102 MAS) were predicted to be susceptible to macrolides due to dysfunctional erm(41),
whereas 91 isolates (41.4%, 88 ABS and 3 BOL) may induce macrolide resistance, and
the remaining three isolates (1.4%) carried mutations that have been reported to con-
fer macrolide resistance.

Association between ABS prevalent in non-CF patients in Japan and Taiwan
and previously described DCCs in global CF patients. To analyze the associations
between prevalent ABS clones in East Asian countries and previously described DCCs,
publicly available data of 349 ABS from individual CF patients (Table S1) (19) were com-
bined with our data set. In the global ABS population, we identified 16 clusters (ABS-
GL1 to ABS-GL16 shown in Fig. 4), of which 10 (ABS-GL1, 3, 4, 5, 7, 8, 11, 14, 15, and 16)
consisted of isolates from both CF and non-CF patients in more than two regions
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(Fig. 4). Two clusters (ABS-GL10 and ABS-GL13) exclusively consisted of isolates from
non-CF patients in East Asia, and three clusters (ABS-GL6, ABS-GL9, and ABS-GL12) con-
sisted of isolates from CF patients in the US or Europe. In ABS-GL1, all ABS-EA1 isolates,
which is the most predominant ABS clone in Japan and Taiwan (Fig. 2), were clustered

FIG 1 Phylogeny of 220 clinical isolates of MABC in Japan and Taiwan. Core-genome alignment of 220
isolates and 3 reference strains (ABS ATCC19977, MAS JCM15300, and BOL BD) of MABC was generated.
A complete genome sequence of ATCC19977 was used as a reference. An alignment containing 235,540
recombination-free variable positions was used with RAxML to construct a maximum likelihood tree with
300 bootstrap replicates. Bootstrap values for the major nodes are shown. Scale bar indicates the mean
number of nucleotide substitutions per site (SNPs/Site) on the respective branch. The red, green, and
blue boxes indicate the location where each clinical isolate was obtained, and a gray box indicates the
reference strain (ATCC19977). Pie charts indicate the ratio of the three subspecies of isolates identified
in all (n = 220), Tokyo (Japan, n = 92), Okinawa (Japan, n = 25), and Taipei (Taiwan, n = 103),
respectively.
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FIG 2 Clustering analysis of ABS in Japan and Taiwan and mutations associated with inducible or acquired macrolide resistance. A core-genome
alignment of 112 ABS clinical isolates and a reference strain ATCC19977 was generated (=3,963,788 bp, covering 78.2% of the reference genome).
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with isolates that were identified as DCC1 (=Absc1) within the global CF patient com-
munity (19) (Fig. 4). Although all ABS identified as DCC2 (=Absc2) (19) were exclusively
clustered in ABS-GL2, no isolate from non-CF patients in Japan and Taiwan belonged
to this cluster (Fig. 4). In ABS-GL3, all ABS-EA2 isolates were clustered with multiple
Absc clusters derived from CF patients in several regions, and 97 out of 114 isolates
(85.1%) harbored erm(41) T28C mutation (Fig. 4).

Reacquisition of functional erm(41) gene in ABS-GL3 isolates. Although ABS-GL3
isolates exclusively displayed the erm(41) T28C mutation, it appeared that isolates of
several sub-clades within this cluster reversed to the wild-type T28 genotype in erm
(41) (Fig. 5A, Fig. S3). To explore the mode of reacquisition of the T28 genotype, we
examined the mutation pattern of erm(41) in all ABS clinical isolates (Fig. S3). We found
that the ancestral form of erm(41) in clinical isolates belonging to ABS-GL3 carries the
T159C, A238G, and A330C sequence variants in addition to T28C (Fig. 5A, Fig. S3).
However, isolates belonging to the four sub-clades and one isolate (TWN-080) that
reversed the T28 genotype showed distinctly different mutation patterns (red circles in
Fig. 5A). In these isolates, fragments harboring the wild-type erm(41) T28 genotype
were inserted via recombination around erm(41) (red and blue shaded boxes in
Fig. 5A, Fig. 5B). It was also observed that ABS-GL3 isolates showed phylogenetically
high recombination potential than other clinical isolates (Fig. S3). In contrast, erm(41)
from an isolate (RVI31, blue circles in Fig. 5A) displayed the same mutation pattern as
the ancestral type, with the exception of wild-type T28, and no recombination event
was detected in this genomic region of RVI31 (Fig. 5A and B).

Association between MAS prevalent in non-CF patients in Japan and Taiwan
and previously described DCCs in global CF patients. In addition to ABS isolates, we
assembled publicly available WGS data for 127 MAS clinical isolates from patients with
CF from seven countries (listed in Table S1) (15, 19, 32) and combined them with our
data set. We identified 11 clusters (MAS-GL1 to MAS-GL11 shown in Fig. 6), of which
eight (MAS-GL1, 2, 3, 4, 6, 8, 9, and 11) could be considered as globally dispersed
clones in both CF and non-CF patients. In contrast, MAS-GL7 and MAS-GL10 consisted
of isolates from non-CF patients in East Asia, and MAS-5 consisted of isolates from CF
patients in western countries, respectively. MAS-GL1 contained all MAS-EA1 isolates,
which is the most predominant MAS clone in Japan and Taiwan (Fig. 3), and previously
described DCC3 (=Mass1) and Mass3 from CF patients (19) (Fig. 6, Fig. 7A). MAS-GL2
contained all MAS-EA2 isolates, and it is identified as a globally spreading clone Mass5
(19). Although TWN-024 and TWN-041 carrying full-length erm(41) were clustered with
DEN526 (from Denmark) and UNC618 (from the USA) in MAS-GL8, the latter two iso-
lates showed truncation of erm(41), similar to all other MAS isolates (Fig. 6). One isolate
(JRH124 from the UK) did not belong to any MAS-GL cluster and sporadically displayed
full-length erm(41) without T28C substitution (Fig. 6).

MAS isolates from non-CF patients in Japan and Taiwan that are genetically
related to MAS from patients during previous outbreaks at CF centers. Notably,
MAS-GL1 contained isolates from patients during outbreaks in two CF centers (15, 32)
(magenta boxes in Fig. 6). In our sample set, half of the MAS isolates belonged to MAS-
GL1 (MAS-EA1). These observations prompted us to investigate MAS-GL1 phylogeny
further. We identified three sub-clusters within MAS-GL1 (MAS-GL1.1 to MAS-GL1.3,
Fig. 7A) and found that DCC3 (Mass1) isolates and isolates from patients during previ-
ous outbreaks belonged exclusively to MAS_GL1.2 or MAS-GL1.3 (Fig. 7A). In MAS clini-
cal isolates from non-CF patients in Japan and Taiwan, 21 out of 105 (20%) belonged
to MAS_GL1.2 or MAS-GL1.3, whereas 30 (28.6%) belonged to MAS-GL1.1 (Fig. 3). To

FIG 2 Legend (Continued)
The alignment containing 76,114 recombination-free variable positions within the core genome was used to construct a maximum likelihood tree
with 300 bootstrap replicates. Bootstrap values . 98% for the major nodes are shown. Six monophyletic clusters (ABS-EA1 to ABS-EA6) identified
using TreeGubbins are shown. The pie chart indicates the proportion of the identified clusters, and the two dominant clusters (ABS-EA1 and ABS-
EA2) are depicted in red and green, respectively. The location where each clinical isolate was isolated is indicated, as shown in Fig. 1. The presence
(black) and absence (white) of macrolide resistance-associated mutations are indicated. Scale bar; the mean number of nucleotide substitutions per
site (SNPs/Site) on the respective branch.
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genetically characterize the MAS isolates that belonged to MAS_GL1.2 or MAS-GL1.3,
we identified four genes that were significantly associated with these clades (P , 2.7e-
52 after Bonferroni correction, Fisher's exact test, Table S2). These genes included two
resolvases, both of which may be unfunctional due to frameshift, a DGQHR domain-
containing hypothetical protein, and a site-specific DNA-adenine methyltransferase
DpnIIA (Fig. 7B). The most recent common ancestor of MAS-GL1 retained the DpnIIA
gene, and a descendant lineage leading to DCC3 also retained this gene. Meanwhile,
another descendant lineage leading to Mass3 was determined to have lost this gene.

DISCUSSION

Herein, we investigated the epidemiological distribution of pulmonary MABC infec-
tion in Japan and Taiwan based on WGS data from a set of clinical isolates obtained
from non-CF pulmonary MABC patients. This is the first WGS-based epidemiological
study focusing on MABC clinical isolates from non-CF patients in East Asia, expanding
the previous findings reported for patients with CF in Western countries (15–17, 19,
33). Half of our sample set consisted of ABS, whereas the other half was MAS and a
small number of BOL. No geographical differences were noted in the subspecies com-
position of the three locations examined, consistent with the findings of previous epi-
demiological studies on non-CF patients conducted using conventional methods in
Japan and other East Asian cohorts (10, 34, 35). While the incidence of BOL was very
low in our cohort, BOL reportedly accounts for 10%–20% of MABC in European cohorts
of patients with CF (22, 36). Although the composition of the three subspecies is diffi-
cult to compare directly as it primarily depends on the clinical and environmental set-
tings of each institution, these observations may signify differences in the geographic
distribution of BOL and/or the susceptibility to BOL between CF and non-CF patients.

As macrolides are crucial in pulmonary MABC infection treatment, we revealed the
incidence of macrolide resistance-associated mutations in our sample set. Although all
our clinical isolates were derived from untreated patients, 1.4% of the isolates were
expected to acquire macrolide resistance through mutations in rrl, and these mutations
did not enrich any dominant clones of MABC in Japan and Taiwan. Our analysis sug-
gested that at least 57% of MABC clinical isolates were susceptible to macrolides owing
to the loss of function of erm(41), suggesting that macrolide-containing regimens are
effective in treating more than half of MABC infections in our cohort. Notably, over
20% of ABS carried the macrolide-susceptible erm(41) T28C mutation, and this muta-
tion was significantly enriched in one of four dominant clones of MABC in this area.
Although it remains unknown whether the ABS erm(41) T28C sequevar is present in
similar proportions elsewhere, these results emphasize the clinical importance of accu-
rate genotyping of rrl and erm(41) before MABC treatment initiation, as recommended
by recent treatment guidelines for pulmonary MABC infection (13).

There were several clusters of isolates from non-CF patients in both Japan and Taiwan,
but the number of isolates in each cluster differed. In ABS isolates, 33% and 22% of isolates
belonged to the most prominent and second-largest clusters (ABS-EA1 and ABS-EA2),
respectively, representing dominant clones in Japan and Taiwan. Remarkably, the erm(41)
T28C mutation exclusively accumulated in the ABS-EA2 cluster. These results indicate that
the ABS erm(41) T28C sequevar can be considered a significant clade in Japan and Taiwan.
As for MAS, this trend was more pronounced, with more than 70% of MAS isolates belong-
ing to two large clusters (MAS-EA1 and MAS-EA2). These results suggest that specific
clones of ABS and MAS are intensively isolated from non-CF patients in Japan and Taiwan.

FIG 3 Legend (Continued)
The alignment containing 48,718 recombination-free variable positions located within the core-genome was used to construct a maximum
likelihood tree with 300 bootstrap replicates. Bootstrap values . 98% for the major nodes are shown. Five monophyletic clusters (MAS-EA1 to MAS-
EA5) identified using TreeGubbins are shown. The pie chart indicates the proportion of identified clusters, and the two dominant clusters (MAS-EA1
and MAS-EA2) are depicted in blue and orange, respectively. The location where each clinical isolate was isolated and the presence (black) and
absence (white) of macrolide resistanceassociated mutations are the same as those in Fig. 2. Scale bar; the mean number of nucleotide substitutions
per site (SNPs/Site) on the respective branch.
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We observed that MAS has higher nucleotide diversity and a larger gene repertoire but
shows lower genetic distances among isolates belonging to the identified clusters. These
results suggest that MAS is a more genetically diverse population than ABS, and certain
homologous clones may adapt to preferentially infect the respiratory system.

Bryant et al. reported that 2 ABS clones (DCC1 and DCC2) and 1 MAS clone (DCC3) are
dominantly spreading worldwide (19). Hence, we analyzed the prevalence of these domi-
nant clones in non-CF patients in East Asian regions. Our results indicated that clinical iso-
lates related to DCC1 clones are also common in Japan and Taiwan. However, no clinical
isolates related to DCC2 clones were identified in our sample set, and clinical isolates
related to DCC3 clones were not necessarily dominant in our sample set. Consistent with
our results, recent genomic epidemiological studies have reported that DCC1 clones are
predominant in CF cohorts whereas DCC2 and DCC3 are not (18, 22). Thus, it is suggested

FIG 4 Phylogenetical association between ABS isolates in Japan and Taiwan and those in other countries. Phylogeny of ABS from several countries was
estimated using a core-genome alignment of 461 clinical isolates from four regions (Australia, East Asia, Europe, and North America). The complete
genome sequence of ATCC19977 was used as a reference. The lignment containing 102,613 recombination-free variable positions in the core genome
(3,584,621 bp, covering 70.7% of the reference genome) was used with RAxML to construct a maximum likelihood tree with 300 bootstrap replicates. The
16 monophyletic clusters (ABSGL1 to ABS-GL16) identified using TreeGubbins, and the corresponding clusters identified in Fig. 2, and Bryant et al. (2016)
are shown. The presence (black) and absence (white) of inducible macrolide resistance-associated mutations in the erm(41) gene are indicated. Disease
status (CF; yellow and non-CF; white) of the corresponding patients are shown. Each color box corresponds to the region where the clinical isolate was
isolated. Asterisks indicate clusters that consist of isolates from more than two regions. Scale bar indicates the mean number of nucleotide substitutions
per site (SNPs/Site) on the respective branch.
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that the DCC1 clone is distributed worldwide and preferentially infects and causes pulmo-
nary MABC disease over other clones in both CF and non-CF patients. However, it remains
unclear whether DCC2 or DCC3 preferentially causes disease compared to other clones.
Further genomic, epigenomic, and phenotypic analyses are needed to understand the
differences in pathogenicity, as observed in M. tuberculosis (37–39).

Notably, the ABS erm(41) T28C isolates from several countries belonged exclusively
to ABS-GL3, indicating that this sequevar can be considered as one of the globally
spreading clones. Furthermore, some isolates within ABS-GL3 appeared to reverse the
wild-type T28 genotype in erm(41), consistent with a recent global phylogenomic anal-
ysis of MABC (40). Moreover, we identified two patterns of reversion of the wild-type
T28 genotype: the reversion of the wild-type erm(41) T28 genotype by point mutation
and the incorporation of erm(41) from isolates belonging to other clusters into ABS-
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GL3 isolates. As the erm(41) T28C mutation is not reported to be detrimental to the sur-
vival of the bacterium in macrolide-free environments, one possible explanation for
the “genetic throwback” is that the ABS-GL3 isolates have undergone adaptive evolu-
tion to survive in the macrolide environment within the host and that the isolates may
be infecting other patients indirectly or directly (41). High recombination potential
observed in ABS-GL3 isolates, compared to strains in different clades (Fig. S3), may
drive the adaptive evolution. We also observed 2 MAS (TWN-024 and TWN-041) isolates
carrying full-length erm(41) genes with the T28C mutant and 1 MAS isolate carrying
full-length erm(41). The mutation pattern of erm(41) in TWN-024 and TWN-041 was iden-
tical to that in ABS-GL3 isolates (T28C, T159C, A238G, and A330C sequence variants, data
not shown). These results suggest that horizontal transfer of erm(41) that alters macro-
lide susceptibility may occur, although not frequently, between ABS and MAS.

In this study region, more than half of the MAS isolates belonged to MAS-GL1. This large
cluster was divided into three sub-clades, two of which (MAS-GL1.2 and MAS-GL1.3) were
exclusively related to isolates from patients during outbreaks in two CF centers in the USA
and UK (15, 32) and were annotated as DCC3 (19). Thus, we searched for genes significantly
associated with MAS-GL1.2 and MAS-GL1.3. The genes included a functional methyltrans-
ferase dpnIIA gene, expected to belong to the “DpnII restriction gene cassette.” DpnII only
methylates double-stranded DNA, whereas DpnI can methylate both single- and double-
stranded DNA, although both enzymes act at 59-GATC-39 in DNA (42). A recent study dem-
onstrated that the dpnIIA gene of MABC participates in altering the genome-wide methyla-
tion and expression levels of several genes and is required for intracellular survival (41).
Although other mycobacterial species express the homolog, no additional available func-
tional information on the gene exists. The proportion of isolates related to DCC3 in our
cohort was not necessarily higher than those related to other MAS clades. In addition,
strains belonging to MAS-GL1.1 and MAS-GL2 (=MAS-EA2, Mass5), which lost dpnIIA, were
isolated to the same extent as isolates related to DCC3. These results indicate that, at least
in our cohort, dpnIIA alone does not serve as a determinant of whether a MABC clone is
dominant. Nevertheless, all strains isolated during nosocomial outbreaks in CF centers
(15, 32) carry dpnIIA. Notably, a strain (GO-06) isolated from a nosocomial infection in the
surgical site of several patients in Brazil (43) still carries dpnIIA, although it is not related
to DCC3 (Fig. 7). Further research is needed to determine how the acquisition of dpnIIA led
to the nosocomial outbreak of MAS and whether there are other cases of outbreaks caused
by clade-specific gene acquisition to understand the pathogenic evolution of MABC.

The present study had some limitations. First, this study was conducted using MABC
clinical isolates from only four facilities in three locations; therefore, further validation
using other sample sets is needed to examine whether it presents the complete picture
of pulmonary MABC infection in Japan and Taiwan. Second, there is a lack of information
regarding epidemiological links among patients. The analysis of the genetic distances
between clinical isolates from individuals showed the possibility of direct or indirect trans-
mission of MABC (Fig. S2C) (15, 16). Further analysis, including tracking of epidemiological
linkages among patients and environmental sampling, is required to understand the
mode of transmission of MABC. Finally, as only a few patients with CF in East Asia, our
sample set did not include clinical isolates derived from patients with CF in Japan and
Taiwan. Therefore, it cannot be determined whether the detected area-specific clusters
were caused simply by differences in the geographical distribution of MABC or by differ-
ences in patients’ disease status (CF or non-CF).

Conclusions. We revealed the prevalent clones and the incidence of macrolide
resistance-associated mutations in MABC isolated from non-CF patients in Japan and

FIG 7 Legend (Continued)
absence (white) of the dpnIIA gene, disease status (CF or non-CF) of the corresponding patients, and the region where the clinical isolate was isolated
are shown. (B) Examples of acquisition of the dpnIIA locus between clinical isolates belonged to MAS-GL1.2 and MAS-GL1.3. Arrows indicate genes
annotated with DFAST-core (48), and dotted arrows indicate pseudogenes estimated by DFAST-core. Orthologous genes between clinical isolates are
shown with red connections and are plotted with genoPlotR (49). Five genes exclusively associated with clinical isolates that belonged to MAS-GL1.2
and MAS-GL1.3 are colored in yellow.
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Taiwan. We also clarified the relationship between these clones and previously
described dominant clones in the international CF patient community. Our results pro-
vide a cornerstone for WGS-based epidemiological analysis of pulmonary MABC dis-
ease in the East Asian region. Furthermore, our study provides insights to elucidate the
genetic differences between globally predominant and area-specific clones isolated
from patients with and without CF.

MATERIALS ANDMETHODS
Sample collection. Totally, 220 clinical isolates (one isolate per patient before treatment initiation)

were recovered from respiratory specimens from 2012 to 2017 (Table S3). All patients met the diagnostic
criteria for ATS/ERS/ESCMID/IDSA (13); 117 clinical isolates were obtained from three hospitals in Japan
(Fukujuji Hospital, Keio University Hospital, and Okinawa Chubu Hospital), and 103, from a hospital in
Taiwan (National Taiwan University Hospital). All isolates were classified as MABC by DDH Mycobacteria
(Kyokuto Pharmaceutical Industrial, Tokyo, Japan) and/or MALDI-TOF MS (Bruker Daltonics, MA, USA).

Genomic analysis. The raw WGS data of each isolate were de novo assembled in the Shovill pipeline
(https://github.com/tseemann/shovill) with default settings. Assembly statistics are listed in Table S4.
The MUMmer package (44) was used to identify conserved genomic regions among isolates and the
SNP sites within these regions, and Gubbins (45) was used to infer recombination sites. RAxML ver.
8.2.12 with the General Time Reversible (GTR)-GAMMA model (46) was used to reconstruct maximum-
likelihood trees.

Further details on the methods used are presented in the online data supplement.
Ethics approval. This study was reviewed and approved by the Medical Research Ethics Committee

of the Fukujuji Hospital (#18038), Keio University Hospital (#20080131), Okinawa Chubu Hospital (#2018-
89) and National Taiwan University Hospital (#201808087RINA) for the use of human subjects.

Data availability. All raw data and materials are available from the corresponding authors on
request. All raw read data for the newly sequenced isolates in this study are available at the NCBI under
BioProject accession number PRJDB10566.
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Supplemental material is available online only.
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