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Change-point detection (CPD) is to find abrupt changes in time-series data. Various computational algorithms have been
developed for CPD applications. To compare the different CPD models, many performance metrics have been introduced to
evaluate the algorithms. Each of the previous evaluation methods measures the different aspects of the methods. Based on the
existing weighted error distance (WED) method on single change-point (CP) detection, a novel WED metrics (WEDM) was
proposed to evaluate the overall performance of a CPD model across not only repetitive tests on single CP detection, but also
successive tests on multiple change-point (MCP) detection on synthetic time series under the random slide window (RSW) and
fixed slide window (FSW) frameworks. In the proposed WEDM method, a concept of normalized error distance was introduced
that allows comparisons of the distance between the estimated change-point (eCP) position and the target change point (tCP) in
the synthetic time series. In the successive MCPs detection, the proposed WEDM method first divides the original time-series
sample into a series of data segments in terms of the assigned tCPs set and then calculates a normalized error distance (NED) value
for each segment. Next, our WEDM presents the frequency andWED distribution of the resultant eCPs from all data segments in
the normalized positive-error distance (NPED) and the normalized negative-error distance (NNED) intervals in the same
coordinates. Last, the meanWED (MWED) andMWTD (1-MWED) were obtained and then dealt with as important performance
evaluation indexes. Based on the synthetic datasets in theMatlab platform, repetitive tests on single CP detection were executed by
using different CPD models, including ternary search tree (TST), binary search tree (BST), Kolmogorov–Smirnov (KS) tests, t-
tests (T), and singular spectrum analysis (SSA) algorithms. Meanwhile, successive tests on MCPs detection were implemented
under the fixed slide window (FSW) and random slide window (RSW) frameworks. *ese CPD models mentioned above were
evaluated in terms of our WED metrics, together with supplementary indexes for evaluating the convergence of different CPD
models, including rates of hit, miss, error, and computing time, respectively. *e experimental results showed the value of this
WEDM method.

1. Introduction

Change-point (CP) detection is the application of core
techniques to detect abrupt changes in properties of time-
series data. It has been widely studied in many real-world
problems, such as atmospheric and financial analyses [1],
fault detection in engineering systems [2, 3], changes

detection in a variance of oceanographic time series [4],
genetic time-series analyses [5], and online detection of
steady-state operation [6]. For example, the usage of this
method to detect abnormal patterns in ECG and EEG signals
may also be beneficial [4, 7–15].*is application would allow
appropriate staff to be alerted of abrupt changes in a patient’s
medical situation and to provide on-time treatment [16, 17].
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In addition, CPDmodels can be tightly combined with some
nonlinear modeling approaches and their applications, such
as classification of human hand movements [18], degrada-
tion signal for prognostic improvement [19], real-life hand
prosthetic control [20], single-channel surface electromy-
ography (sEMG)-based control [21]. CPD models utilize
algorithms that cover the fields of data mining, statistics, and
computer science, including parametric and nonparametric
methods [8, 22–27]. Each CPD algorithm can be assessed
from the aspect of detection accuracy, computational cost, or
whether it can be a real-time detection.

Many performance metrics have been introduced to
evaluate CPD algorithms based on the type of decisions they
make [28]. Aminikhanghahi and Cook [29] reviewed the
performance evaluation methods commonly used for CPD
models. *e evaluation can be based on a yes/no decision
whether the resultant change point was detected within a
certain distance from the actual change point. In this case,
the CPD model can be treated as a binary classification
model and can be evaluated with the usual measures, such as
accuracy, sensitivity, specificity, or ROC curve [30, 31]. For
real applications, for example, clinical decision-making, cut-
offs applied to the model outcomes can be adjusted to
achieve different sensitivity and specificity [32]. However,
when the difference in time between the resultant eCP and
the actual tCP represents the measure of CPD performance,
then the evaluation of these algorithms is not as straight-
forward as for the binary classification. *ere is no single
label against which the performance of the algorithm can be
measured. A few useful metrics consider the distance be-
tween the eCP and the tCP to measure CPD method per-
formance. *ese metrics include mean absolute error
(MAE), mean squared error (MSE), mean signed difference
(MSD), root mean squared error (RMSE), and normalized
root mean squared error (NRMSE). Of these, except NRMSE
normalizes the unit size of the predicted value and facilitates
a more direct comparison of error between different data-
sets, the other methods measure only the absolute distances
between the eCP and the tCP. However, even NRMSE does
not count the difference between the situations when the
eCP is before and after the actual tCP. It also fails to consider
the relative position of the tCP within the total length of the
time-series sample.

In our previous studies [33], a preliminaryWEDmethod
was proposed for evaluating a CPDmodel for single change-
point detection. In this existing method, a concept of
weighted error distance (WED) is introduced for counting a
normalized error distance between each pair of the resultant
eCPs and the actual tCPs, and then the performance of
different CPD models is ranked by the averaged WED ac-
cordingly [33]. In this study, a novel WEDM method is
proposed to compare the overall performance of CPD
models for MCPs detection on multiple data segments in a
time series with different data features. Based on the pre-
vious WEDmeasure, a concept of normalized error distance
was introduced in this WEDM method, that allows com-
parisons of the distance between the estimated change-point
(eCP) position and the target change point (tCP). During the
successive MCPs detection, the proposed WEDM method

first divides the original sample into a series of data segments
in terms of assigned tCPs, and then counts a normalized
error distance (NED) value for each segment. *en, our
WEDM presents the frequency andWED distribution of the
resultant eCPs from all data segments in the normalized
positive-error distance (NPED) and the normalized nega-
tive-error distance (NNED) intervals in the same coordi-
nates. Last, the mean WED (MWED) and MWTD (1-
MWED) were calculated and dealt with as important per-
formance indexes. Based on the synthetic datasets in the
Matlab platform, both repetitive tests on single CP detection
and successive test on MCPs detection were executed by
using different CPD models, including ternary search tree
(TST) [8, 34], binary search tree (BST) [15, 24], Kolmo-
gorov–Smirnov (KS) tests [22, 25], t-tests (T) [23, 35], and
singular spectrum analysis (SSA) algorithms [36] recorded
in our previous studies [22, 37]. Meanwhile, these CPD
models above were evaluated under the random slide
window (RSW) [8, 38, 39] and fixed slide window (FSW)
frameworks [40–44] in terms of our WEDM and supple-
mentary indexes including the rates of hit, miss, error, and
computing time, respectively. *e experimental results
showed the value of this WEDM method.

2. Methods

In this part, the proposed WEDM is theoretically illumi-
nated in the following steps. First, the diagnosed sample is
divided into a series of data segments according to the
assigned target MCPs. Second, a normalized error distance
(NED) is calculated by comparing the distance between the
resultant eCP position and the actual tCP within each data
segment. *ird, the frequency and WED distribution of the
resultant eCPs detected from all segments are presented
across the normalized positive-error distance (NPED) and
the normalized negative-error distance (NNED) intervals in
the same coordinates. Last, the metrics of mean WED
(MWED) and mean WTD (MWTD) are given to efficiently
evaluate a CPDmodel for MCPs detection on a series of data
fluctuations in an identical time series.

2.1. Data Segmentation. Suppose a time-series signal X �

X1, . . . , Xi, . . . , XN􏼈 􏼉 can be observed as a trajectory of a
multiple data distribution process, in which the segmentXi is
defined by the following equation:

Xi � fi(t) + εi, (1)

where t∈{ ti−1+1,..., ti}, 0< i≤M, and fi ∈ f1, . . . , fM􏼈 􏼉 is a
deterministic and piece-wise function of one-dimensional
signal with change points (satisfying fi ≠fi+1, and i� 1, . . .,
M−1 for insuring that abrupt changes occur), and M∈{1, 2,
. . ., n} is the number of data segment regimes and therefore
M−1 is the number of abrupt changes, 0� t0< t1< ···< ti <···<
tM � n.*e numberM−1 and locations η1,. . ., ηM−1 of change
points in the process are supposed to be unknown. *e
sequence (εi)i ∈ N is assumed to be random white noise and
such that E(εi) is exactly or approximately zero. In the
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simplest case, (εi)i ∈ N is modeled as i.i.d., but can also follow
more complex time-series distributions.

Consider an observed time-series signal
X � X1, . . . , Xi, . . . , XN􏼈 􏼉 with M−1 change points men-
tioned above, one-part time series
X′ � Xs, . . . , Xj, . . . , Xe􏽮 􏽯 with a size of N′ is selected from
X, 1≤ s< j< e≤N, and 1<N′ ≤N. Suppose a set of target
MCPs tMCP set � tCP1, . . . , tCPn􏼈 􏼉 is contained within X′,
and 1≤ n≤M − 1. In the proposed WEDM method, the
diagnosed data sample X′ is first divided into a series of data
segments according to different target CP positions in the
tMCP set. *e process of data segmentation is described
below (Figure 1):

(1) For each tCPi to be diagnosed in the tMCP set, the
data segment Segi can be denoted as follows:

Segi � mtCPi−1, . . . , tCPi . . . , mtCPi􏼈 􏼉, (2)

where 1< i< n and 1< n<N′, and two endpoints
mCPi−1 and mCPi in Segi are formulated as follows:

mtCPi−1 �
tCPi−1 + tCPi( 􏼁

2
andmtCPi �

tCPi + tCPi+1( 􏼁

2
.

(3)

(2) Especially, the first Seg1 and the last Segn can be
presented according to the tCP1 and tCPn as follows:

Seg1 � Xs, . . . , tCP1􏼈 􏼉 and Segn � tCPn, . . . , Xe􏼈 􏼉, (4)

where Xs and Xe are the two endpoints in X′,
respectively.

(3) *en, the time series X′ � Xs, . . . , Xj, . . . , Xe􏽮 􏽯 can
be divided into a set of data segments
SEG setX′ � Seg1, . . . , Segn􏼈 􏼉. *at is,
X′ � Seg1, . . . , Segn􏼈 􏼉, and the following equation
holds

NX′ � 􏽘

n

i�1
N Segi, (5)

where NX′ is the total length of X′, and N Segi refers to
the size of Segi.

2.2.NEDEvaluationonSingleCPDetection. In the scheme of
error distance (ED) measurement on single CP detection
(Figure 2), each segment Segi � Xa . . . Xc . . . Xb􏼈 􏼉 in time
series X′ � Seg1, . . . , Segn􏼈 􏼉 is divided into the former (left)
part Xa, . . . , Xc−1􏼈 􏼉 and the latter (right) part Xc+1, . . . , Xb􏼈 􏼉

by the actual tCPi located at the data point Xc and 1≤ i≤ n.
From a statistical point of view, we refer to the former

(left) part as a positive area and the latter (right) part as a
negative one. When applying a CPD to detect the actual tCPi
in the data segment Segi, a resultant eCPimight be estimated
from either the positive area or the negative one. A few
concepts are introduced here to measure CPD model per-
formance: true-positive distance (tPD), positive-error dis-
tance (pED), true-negative distance (tND), and negative-

error distance (nED). If the resultant eCPi is detected on the
left side of the tCPi (positive area), then pEDi and tPDi can be
calculated.*at is, the distance from the eCPi to the tCPi and
the start point, respectively. Meanwhile, nEDi and tNDi are
not applicable. Conversely, when the eCPj is estimated from
the right side of the tCPi (negative area), nEDi equals the
distance from eCPj to tCPi, and tNDi is the distance from the
eCPj to the end of the data segment Segi. At the same time,
pEDi and tPDi do not exist (Figure 2). *ese definitions can
be represented in formulas (6)–(9)as follows:

tPDi � eCPi − mCPi

� Xd − Xa,
(6)

pEDi � tCPi − eCPi

� Xc − Xd,
(7)

tNDi � mCPi+1 − eCPj

� Xb − Xe,
(8)

nEDi � eCPj − tCPi

� Xe − Xc.
(9)

In which, Xa and Xb represent the start and endpoints of
the time-series segment Segi, respectively, Xc is the position
of actual tCPi in the Segi, Xd and Xe refer to the positions of
resultant eCP on the left or right side of the tCPi respectively.

Basically, for a current data segment Segi in the scheme
of NED evaluation on single CP detection (Figure 3), the
distance between the start point and the tCPi and the
distance from the tCPi to the end of each segment are both
normalized to 1, and the normalized tCP position for each
segment will match to the same point. In formulas (10)–(13),
tPDRi, pEDRi, tNDRi, and nEDRi can be interpreted as
the normalized true-positive distance (NtPDi), normalized
positive-error distance (NpEDi), normalized true-negative
distance (NtNDi), and normalized negative-error distance
(NnEDi), respectively.

tPDRi NtPDi( 􏼁 �
tPDi

tPDi + pEDi

, (10)

pEDRi NpEDi( 􏼁 �
pEDi

tPDi + pEDi

, (11)

tNDRi NtNDi( 􏼁 �
tNDi

tNDi + nEDi

, (12)

nEDRi NnEDi( 􏼁 �
nEDi

tNDi + nEDi

. (13)

*ereafter, a normalized error distance NEDi in formula
(14) is presented by a piecewise function of NpEDi and
NnEDi, according to the resultant eCPi located at the
positive or negative area.

NED
i

�
NpEDi, e − CPi on positive area,

NnEDi, e − CPi on negative area.
􏼨 (14)
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2.2.1. WED Evaluation on MCPs Detection. Given a series of
data segments SEG setX′ � Seg1, . . . , Segn􏼈 􏼉 in a diagnosed
time series X′ above, we can assemble all the resultant eCPs
into an identical coordinate and present their NED values
ranging from the positive area [−1, 0] to the negative area [0,
1] in the x-axis (Figure 4).*en, the frequencies ofNEDi can
be defined in the all resultant eCPs as follows:

Freq NED
i

􏼐 􏼑 �
Num NED

i
􏼐 􏼑

Nt
. (15)

In which, Num(NEDi ) is the number of the resultant
eCPs that their NED values equal to NEDi, and Nt is the
number of resultant eCPs in total, 1≤ i≤Nt.

*en, the weighted error distance WEDi is introduced
according to the NEDi and Freq(NEDi) in the resultant
eCPs (Figure 5). For each eCPi in the scattered distribution
of resultant eCPs, its corresponding WEDi is equal to
WpEDi or WnEDi depending on whether the NEDi is lo-
cated at the positive-NpED or negative-NnED area ranging
from −1 to 1 in the x-axis. *e definitions of WpEDi,
WnEDi, and WEDi are formulated as follows:

WpEDi � Freq NpEDi( 􏼁∗NpEDi,

WnEDi � Freq NnEDi( 􏼁∗NnEDi,

WED
i

�
WpEDi, NED

i
, on, NpED area,

WnEDi NED
i
, on, NnED area.

⎧⎨

⎩

(16)

*ereafter, a mean weighted error distance (MWED) is
defined as follows:

MWED �
􏽐

l
i�1 WPEDi + 􏽐

r
j�1 WNEDj

l + r
, (17)

where l and r refer to the numbers of the eCPs located before
and after the actual tCPs (positive-NpED area and negative-
NnED area), respectively. In most of the CPD models, when
the search algorithm reaches the start or end of the time
series, if no change point is found, then the resultant eCP can
be set as either the start or the end. *erefore, the sum of l
and rwill be equal toN (the total number of actual tCPs to be
diagnosed in a time series X′). Formula (17) can be sim-
plified as follows:

Xs XetCPi-1 tCPi tCPi+1

mtCPi-1 mtCPi mtCPi+1

Segi-1 Segi Segi+1F (x)

X

Figure 1: *e scheme of WEDM evaluation on the target MCPs detection in the diagnosed X′.

t-CPi, XcmCPi, Xa mCPi+1, Xb

Segi

Positive Area Negative Area

e-CPi, Xd e-CPj, Xe

tPDi pEDi nEDi tNDi

0
X´

Figure 2:*e scheme of error distance (ED)measurement on single CP detection in the data segment Segi. In the positive area,Xa represents
the start point of Segi, and Xd is the position of resultant eCPiwithin the positive area before the actual tCPi. On the other hand, Xb represents
the endpoint of Segi, and Xe stands for the eCPj located within the negative area after the tCPi.

xt-CPi, 0 

NmCPi, -1 NmCPi+1, 1

Segi

eCPi eCPj

NpEDi NnEDj

Positive Area Negative Area

Figure 3: *e scheme of NED evaluation on single CP detection in the data segment Segi. In which, “−1” and “1” represent the start and
endpoints of Segi, and “0” refers to the position of actual tCPi in the x-axis, respectively.
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MWED �
􏽐

N
i�1 WEDi

N
. (18)

Furthermore, following MWED, 1-MWED can be re-
ferred to as mean weighted true distance (MWTD) and used
as a measure of the overall performance of a CPD model for
MCPs detection on time series with a series of data
fluctuations.

3. Results and Discussion

To accurately evaluate different CPD models, other related
indexes were introduced besides our WEDM. In the syn-
thetic experiments, time-series datasets were generated and
assembled by using the Gaussian distribution function in the
Matlab platform, and then repetitive tests on single CP
detection were executed by using different TST, BST, KS,
and SSA models. Meanwhile, the performance of CPD
models was evaluated by using successive tests on MCPs
detection that were implemented under different RSW and
FSW frameworks, respectively.

3.1. Related Evaluation Indexes. In the synthetic tests, some
other indexes are used for evaluating the convergence of
different CPD models, including the hit, miss, and error
rates, and computing time. Given a data segment Segi in the

time series X’ mentioned above, the related definitions are
introduced in terms of the error distance between the re-
sultant eCPs and the actual tCPi as follows (Figure 6):

(1) Error distance: Given an actual tCPi assigned in the
current data segment Segi, the error distance EDtCPi

between each pair of the estimated eCPj and the tCPi
is defined by EDtCPi � |eCPj − tCPi|.

(2) Hit area: For the actual tCPi, the hit area named
HAtCPi is formulated by HAtCPi � [tCPi − hdi,

tCPi + hdi], where hdi is the threshold value of error
distance between tCPi and eCPj.

(3) Hit: Given an error distance EDtCPi mentioned
above, if 0≤EDtCPi ≤ hdi holds, then the tCPi is hit
by eCPj and recorded by Hit(tCPi) � 1. *erefore,
the value of WEDi defined in formula (18) equals 0.

(4) Error: On the other hand, if EDtCPi > hdi holds, then
eCPj is dealt as an error result labeled by
Error(eCPj) � 1. In this circumstance, the value of
WEDi is within the rage (0, 1).

(5) Miss: In addition, if no change point is detected from
the Segi, then the target tCPi is missed, and iden-
tified by Miss(tCPi) � 1. Accordingly, the value of
WEDi is set to be 1 because of the missing tCPi.
*ereafter, the hit rate, miss rate, and error rate are
formulated as follows:

e-CPi 0–1.0 1.0

t-CPs = tMCPset = {tCP1, ... ,tCPm}

NpEDi

e-CPj

NnEDi
X´

Positive Area Negative Area

Figure 4: *e scheme of NED evaluation for MCPs detection on tMCPset� tCP1, . . . , tCPm􏼈 􏼉 in a time series X′. For each resultant eCPi,
the value ofNEDi equals toNpEDi orNnEDi depending on that the eCPi is located at the positive or negative area ranging from −1 to 1 in the
x-axis.

t-CPs = tCPset = {tCP1, ... ,tCPm}WED

–1 1

eCPj (NNEDj , WNEDj)

NpED NnED

0 x

eCPi (NPEDi , WPEDi)

1

Figure 5:*e scheme ofWEDmetrics for MCPs detection on a set of target MCPs tCPset� t{ )CP1, . . . , tCPm􏼈 􏼉 in a time series X′. For each
eCPi in the scattered distribution of resultant eCPs, the value of WEDi refers toWPEDi orWNEDi according to whether the NEDi is located
at the positive-NpED or negative-NnED area ranging from −1 to 1 in the x-axis.
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Hit rate �
Nhit

NeCPs

􏼠 􏼡∗ 100%,

Miss rate �
Nmiss

NeCPs

􏼠 􏼡∗ 100%,

Error rate �
Nerror

NeCPs

􏼠 􏼡∗ 100%.

(19)

In which, Nhit � 􏽐
NtCPs

i�1 Hit(tCPi ) is the number of
actual tCPs hit by the resultant eCPs,
NMiss � 􏽐

NtCPs

i�1 Miss(tCPi ) is the part of actual tCPs
that are missed, and NError � 􏽐

NtCPs

i�1 Error(eCPi )

stand for the number of the resultantMCPs in which
DtCPi > hdi holds. NeCPs is the number of resultant
MCPs in total, and it is usually larger than NtCPs, that
is, the number of the actual tCPs within the time
series X′ . Generally, it holds true that hit rate +

miss rate + error rate � 1 for all the resultant eCPs.
(6) Computing time: In addition, for a certain CPD

model k, the computing time is mainly used for tCPs
detecting from the multiple data segments in X′, and
it can be denoted as follows:

ST
k

� 􏽘

Ns

i�1
STi, (20)

where STi refers to the computing time cost in the Segi, and
Ns is the total data segments. *en, the normalized time is
defined as follows:

NST
k

�
ST

k

􏽐
n
k�1 ST

k
. (21)

In which, STk stands for the computing time of the
model k, and n is the total model to be compared.*e NSTk

represents the time ratio of model k to all methods, and then
it can reflect the searching efficiency against others. Gen-
erally, both TSTand BSTmodels in our previous studies have
a time complexity of nearly O(logN) [8, 10, 13]; therefore,
they should be faster and more efficient than some tradi-
tional algorithms with time complexity about O(N2), such
as KS, CUSUM, t-test, or SSA methods.

3.2. Repetitive Tests on Single CP Detection. In the first ex-
periment, repetitive tests on single CP detection were exe-
cuted on the synthetic dataset, that is, Dataset1
� X1, . . . Xi, . . . , XK􏼈 􏼉 that was generated by the Gaussian
function in the Matlab R2016 platform. For each time series
Xi � x1, . . . , xi, . . . xN􏼈 􏼉 with single target CP, it is com-
posed of both the positive area XiL � x1, . . . , xm􏼈 􏼉 and the
negative area XiR � xm+1, . . . , xN􏼈 􏼉 before and after the
assigned target tCPi � xm. *e former XiL and latter XiR

were generated by the normal distribution N (μ� 0, σ � 1) of
size m (m time points included in the positive area), and N
(μ�V, σ � 1) of size N-m (N-m time points in the negative
area), respectively, where V is a constant mean value, and N
is the total length of Xi.

Here, we first present the results from Dataset1 that was
composed of multiple 20 data groups with different lengthN,
variance V, and tCP, and each group contains 100 time-
series samples.*erefore, Dataset1 included 2000 time series
in total, and this experiment named Exp1 is performed by
using TST, BST, KS, T, and SSA models, respectively. In our
simulations, the time-series samples in each group were
generated by selecting the random values of sample lengthN
from 2̂10 to 2̂15, variance V from 1.0 to 3.7, and the position
of actual tCP from 1 to N.

In the 20 groups of Exp1, the repetitive tests are executed
by using different CPD models including the TST, BST, KS,
T, and SSA, respectively (Figure 7).With the total 2000 time-
series samples in Dataset1, the frequency and WED dis-
tribution of resultant MCPs are illustrated from the positive-
NpED range of [−1, 0] to the negative-NnED range of [0, 1]
in the x-axis. From these results, we can see that if the
resultant eCP is much closer to the central axis of x� 0, then
the WED value generally gets smaller and tends to be 0, and
vice versa. In all five models, TST and KS obtain the eCPs
that are mostly located near the central field of x� 0, and
then have narrower WED distributions and smaller WED
values than other models, except that TST has a few eCPs
fallen into the positive-NpED field. As for other BST, T, and
SSAmodels, the eCPs are mainly scattered with a wide range
from the NpED to the NnED areas, therefore their WED
distributions are wider and bigger, especially for T and SSA.

Meanwhile, these simulation results also illustrate that
both TST and KS have better convergency than others,
especially, the TST has the highest hit level and takes the

mCPi

tCPi

HAtCPi

mCPi+1

Segi

Figure 6: *e scheme of single CP detection on the data segment Segi within a sliding window Wi. *e definitions of hit, error, miss, and
redundant are introduced according to the distance between tCP and eCP, respectively.
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shortest convergent time in all five models. For the rest
models, BST seems much better than others, and T has the
worst convergency, because of the lowest hit, the biggest
error, and convergent time in all five models. Furthermore,
the mean analyses (Table 1) indicate that the TST takes the
shortest computing time, has the highest hit rate, the
smallest MWED, and the biggest MWTD out of the other
four models. For T and SSA models, a lot of eCPs are
scattered the whole field from NPED to NNED, especially, T
has the biggest values of error rate andMWED and needs the
longest time in all five models.

In addition, the efficiencies of five models are evaluated
using random parameter values in a total of 20 tests. *e
dynamic tracks including hit rate, miss rate, error rate, and
MWED are illustrated versus the test number from 1 to 20
(Figure 8). Also, the mean analyses on hit rate, miss rate,
error rate, and MWED are presented in the histograms, in
which, “1,” “2,” “3,” “4,” and “5” in x-axis refer to the TST,
BST, KS, T, and SSA models, respectively. In the whole
process of simulation tests, the TST model has a relatively
higher hit rate with some fluctuations and keeps more stable
and lower levels of miss rate, error rate, and MWED than
others. Although KS has a smaller hit rate than TSTand BST,
it keeps lower tracks of miss and error rates than BST, T, and
SSA. To some extent, BST has a bigger hit rate, and lower
values of error rate and MWED than T and SSA, it seems
unstable due to the drastic oscillations in the tracks of hit and
miss rates. For Tand SSA, both models have smaller hit rates
and keep dramatic fluctuations in the tracks of error rate and
MWED value, despite a lower miss rate than BST.

Furthermore, taking one representative test as an ex-
ample, the simulations of single CP detection are repetitively
executed by using 100 time-series samples with random
values of parameters N� 2̂14, tCP� 12267, and V� 1.9. For
different TST, BST, KS, T, and SSA models, the resultant
eCPs are illustrated using the locations, distributions, fre-
quency, and WED, in line with the test number, time-series

positions, NPED, and NNED in the x-axis, respectively
(Figure 9). For both TSTand KS models, it is easy to see that
most of the eCPs are located within the small range near the
actual tCP� 12267, and similar results can be found in the
distribution, frequency, and WED analyses on the resultant
eCPs. On the contrary, similar results for the rest of BST, T,
and SSA models are that lots of the eCPs are randomly
scattered across the fields from NPED to NNED, and small
parts of the eCPs are gathered near the actual tCP.

*en, the mean analyses for this representative test are
summarized in terms of WMTD, hit rate, miss rate, error rate,
MWED, and time (Table 2). *e results show that the TST
model has much smaller values of MWED, miss and error
rates, and computing time, as well as the biggest values of hit
rate and MWTD than others. Despite a long time and smaller
hit rate than TST, KS kept similar levels of MWTD, hit, miss,
and error rates with it. As for the rest BST, T, and SSA, although
the three models had similar performance, BST had the biggest
miss rate, T had the smallest MWTD and hit rate, and the
biggest values of time, error rate, and MWED.

3.2.1. Successive MCPs Detection under the RSW Framework.
In the second experiment, successive tests on MCPs de-
tection were implemented by using other synthetic datasets
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Figure 7: *e frequency and WED distribution of resultant MCPs from the 20 groups in Dataset1. For the different models of (a) TST, (b)
BST, (c) KS, (d) T, and (e) SSA, the frequency and WED distribution of the resultant MCPs are demonstrated from the NpED range of [−1,
0] to the NnED range of [0, 1] in the x-axis, respectively.

Table 1:*emean analyses of single CP detection in Exp1 by using
TST, BST, KS, T, and SSA models.

Items
Methods

TST BST KS T SSA
MWTD 0.9972 0.9633 0.9947 0.7030 0.8349
Hit rate 0.4040 0.1540 0.0430 0.0340 0.0585
Miss rate 0.0005 0.0035 0.0000 0.0005 0.0005
Error rate 0.0012 0.0038 0.0002 0.1202 0.0601
MWED 0.0028 0.0367 0.0053 0.2970 0.1651
Time 0.0032 0.0039 0.3126 0.5239 0.1566

Computational Intelligence and Neuroscience 7



such as Dataset2 � X1, . . . Xi, . . . , XW􏼈 􏼉 that was composed
of W time-series samples, and each sample
Xi � Seg1, . . . , Segj, . . . Segn􏼈 􏼉 was assembled by n data
segments with different features and distributions. For a
given tMCP set � tCP1, . . . , tCPn􏼈 􏼉, each tCPi is assigned
between two adjacent segments Segi and Segi+1, 1 ≤ i ≤n − 1.
*en, the sample Xi can be denoted as Xi � {xs1

1 , . . . xs1
Ns1−1,

tCP1, . . . , x
sj
1 , . . . x

sj
Nsj−1, tCPj, xsn

1 , . . . xsn
Nsn−1, tCPn}, where

Nsj is the size of segment Segj in Xi. In the successive tests

on MCPs detection, two experiments named Exp2 and Exp3
were implemented based on Dataset2 under the RSW and
FSW frameworks, respectively. For each experiment, a series
of tests for MCPs detection was executed by using TST, BST,
KS, T, and SSA models, respectively.

In Exp2, the number of segments n within each sample
Xi was stochastically chosen from 15 to 30, and each data
segment Segj � {xsj

1 , . . ., X
sj
Nsj} was randomly generated by

the Gaussian distribution N(Uj, Vj) of lengthNsj from 2̂12 to
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Figure 8: *e results of multiple 20 tests on single CP detection by using 2000 synthetic time series in Dataset1 of Exp1, with random
parameters of sample size (N) from 2̂10 to 2̂15, actual tCP from start to end of sample length (N), and variance (V) from 1.0 to 3.7. For TST,
BST, KS, T, and SSA models, the dynamic tracks of (a) hit rate, (b) miss rate, (c) error rate, and (d) MWED versus simulation tests range
from 1 to 20. In addition, the mean analyses on (e) hit rate, (f ) miss rate, (g) error rate, and (h) MWED, in which, “1” “2”, “3”, “4”, and “5” in
x-axis refer to the TST, BST, KS, T, and SSA models, respectively.
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2̂15, with mean Uj from 1.0 to 0.1×NMCPs, and variance Vj
from 1 to 2.0×NMCPs, respectively. Here, we present the
results of successive tests onMCPs detection under the RSW
framework. First, the frequency and WED distribution of
resultant MCPs (Figure 10) are displayed within the whole
range from the negative-NPED field to the positive-NNED
field in the x-axis. Generally, for a certain CPD model, the
resultant MCPs are closer to the central axis x� 0, their
values of MWED are much smaller. In contrast, the bigger
MWTD has, the better efficiency is, and vice versa. In all five
models, the results (Figure 10) and the mean analyses
(Table 3) show that most of the resultant MCPs detected by
TST are located near the central axis x� 0, and TST has the
biggest hit rate, the smallest values of miss and error rates,
therefore it has the highest MWTD out of others. For the
BST model, although a lot of the resultant MCPs are scat-
tered away from the central axis x� 0, it has a smaller error
rate andMWED, as well as a bigger hit rate andMWTD than
the rest models. For KS, T, and SSA, the common feature is
that most of the resultant MCPs are spread through the
whole field ranging from −1 to 1 in the x-axis. KS has a
bigger MWTD than the other two, T has the smallest

MWTD, and SSA has the biggest values of error rate and
computing time in all five models.

Meanwhile, these simulations illustrate that the TST has
the best convergency because it has the highest hit level, the
lowest error, and takes the shortest convergent time in all
five models. For the others, the BSTmodel has much better
convergency due to the higher hit, lower error, and shorter
time than others. SSA seems the worst one in all five models,
because of the lowest hit, the biggest error, and convergent
time.

Second, the performance of five CPD models is dem-
onstrated by a series of 10 tests in total, in which the re-
spective parameters of the sample size N, the number of
MCPs NMCPs, the mean μ, and variance δ are randomly
taken from 2̂12–2̂15, 15∼30, 1∼0.1×NMCPs, and
1∼2×NMCPs, respectively. *e results of dynamic tracks and
mean analyses (Figure 11) indicate that the TSTmodel still
keeps a better grade with a higher andmore stable level of hit
rate, as well as the lower levels of error rate and MWED than
the other four models. Although BST looks more efficient
than KS, T, and SSA, the dynamic tracks in all four items
present stronger fluctuations, especially for the miss rate.

10000

0

10000

0

10000

0

10000

0

10000

0
0 50

Test number

Locations of e-CPs

100

SS
A

T
KS

BS
T

TS
T

(a)

0.2
0.4

0

0.05
0.1

0

0.05
0.1

0

0.05
0.1

0

0.1
0.2

0

Time-series positions

Distribution of e-CPs

1500050000 10000

(b)

0.2
0.4

0

0.05

0

0.05

0

0.05

0

0.1
0.05

0

Frequency of e-CPs

NPED NNED
–1 –0.5 0 0.5 1

(c)

1
2

0

0.005
0.01

0
2

0
1

0.01
0.005

0

0.1
0.005

0

WED of e-CPs

NPED NNED
–1 –0.5 0 0.5 1

×10–4

×10–4

(d)

Figure 9:*e repetitive simulations of single CP detection on 100 time series from one of 10 tests in Exp1, with random parameter values of
sample size N� 2̂14, actual tCP� 12267, and variance (V)� 1.9. By using different TST, BST, KS, T, and SSA models, the simulation results
including (a) locations, (b) distributions, (c) frequency, and (d) WED of the resultant eCPs are represented in line with the test number,
time-series positions, NPED, and NNED in the x-axis, respectively.

Table 2: *e analyses of one representative test on repetitive single CP detection by different CPD models.

items
Methods

TST BST KS T SSA
MWTD 0.9998 .7315 0.9980 0.5708 0.6567
Hit rate 0.3400 0.0600 0.0400 0.0010 0.0020
Miss rate 0.0000 0.0001 0.0000 0.0000 0.0000
Error rate 0.0001 0.0259 0.0001 0.2496 0.1536
MWED 0.0002 0.2685 0.0020 0.4292 0.3433
Time 0.0012 0.0012 0.3276 0.5861 0.0840
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*is probably means that BST has unstable performance
during the process of MCPs detection. As for the rest
models, they all have similar tracks of lower hit rate and
bigger error rates. KS presents instability due to the fluctuant
tracks of miss rate and MWED, and so does the T model
because of the fluctuant miss rate in the total of random 10
tests. Also, the model’s performance can be intuitively
evaluated and distinguished from each other in terms of the
mean analyses in the histograms (Figure 11(e)–11(h)).

Last, one representative test is selected from Exp2 above,
and the simulations of MCPs detection are demonstrated by
using a time series with nMCPs� 25 (Figure 12). For the
diagnosed data sample (Figure 12(f )), the distributions of
resultant MCPs are illustrated by using different CPD
models of TST, BST, KS, T, and SSA models, respectively
(Figure 12(a)–12(e)). *e results of frequency and WED
distribution of resultant MCPs (Figure 13) and mean ana-
lyses (Table 4) reveal that the TST is a superior one in all five
models because most of the resultant MCPs hit the target
MCP positions, and few of them are dealt with as miss or
error states. *e BST model takes second place due to a
smaller hit rate and bigger error rate than TST. For the rest
models, KS, T, and SSA get worse one by one because more

numbers of resultant MCPs are in the error state. As a result,
the hit rate gets lower, and MWED takes bigger as well.

Successive MCPs detection under the FSW framework.
In the Exp3 under the FSW framework, the total of 30

data segments was arranged within each sample Xi, and each
data segment Segj � { x

sj
1 , . . ., X

sj

Nsj} was randomly generated
by the Gaussian distribution N(Uj, Vj) of lengthNsj from 2̂12
to 2̂15, with mean Uj from 1.0 to 0.1× 30 and variance Vj
from 1 to 2.0× 30, as well as with the size of fixed slide
window Nfsw ranging from 2̂6 to 2̂15, respectively.

In our simulations, we execute a total of 10 successive
tests on MCPs detection under the FSW framework. First,
the frequency and WED distribution of resultant MCPs
(Figure 14) are displayed from the negative-NPED field to
the positive-NNED field in the x-axis. Generally, for a
certain CPD model, the resultant MCPs are much closer to
the central axis x� 0, and their WED values are much
smaller. *e results (Figure 14 and Table 5) indicate that for
the TST model, most of the resultant MCPs detected are
located near the central axis x� 0, and it has the biggest hit
rate, the smallest values of error rate, MWED, and com-
puting time; therefore, it has the highest MWTD in all five
CPD models. As for BST, KS, T, and SSA models, the

Table 3: *e performance analyses on MCPs detection by five CPD models in Exp2 under the RSW framework.

items
Methods

TST BST KS T SSA
MWTD 0.9264 0.8856 0.7850 0.5141 0.5299
Hit rate 0.8629 0.6255 0.2256 0.2029 0.0820
Miss rate 0.0398 0.0585 0.0430 0.0471 0.0018
Error rate 0.1006 0.3421 0.7682 0.7661 0.8851
MWED 0.0736 0.1144 0.2150 0.4859 0.4701
Time 0.0004 0.0003 0.1483 0.1134 0.7376
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Figure 10: *e analyses on the frequency and WED distribution of resultant MCPs in the total 10 tests of Exp2. For the different MCP
models of (a) TST, (b) BST, (c) KS, (d) T, and (e) SSA under the RSW framework, the frequency andWED distribution of resultantMCPs are
illustrated within the NPED ranging from −1 to 0, and the NNED ranging from 0 to 1 in the x-axis.
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common feature is that most of the resultant MCPs are
randomly scattered through the whole field ranging from −1
to 1 in the x-axis. For KS, it has a smaller miss rate and
MWED and a bigger MWTD than the others. Although BST
has a bigger hit rate and shorter time, it has a bigger MWED
and smaller MWTD than TSTand KS. Tand SSA have much
bigger values of MWED, error rate, and smaller MWTD,
especially SSA has the smallest MWTD and the biggest
values of error rate and time in all five models.

Meanwhile, these simulations illustrate that the TST has
the best convergency, in terms of the highest hit, the lowest
error, and the shortest time in all five models. For the other
four models, the BST model is much better than the rest
ones, because it has a relatively higher hit level, lower error
rate, and much shorter time than others. Unfortunately, SSA
has the worst convergency in all five models, due to the
lowest hit level, the biggest error rate, and the longest
convergent time out of the other four models.
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Figure 11: *e simulations of MCPs detection on the total of 10 tests in Exp2 under the RSW framework, with random parameters of
sample size Nsj from 2̂12 to 2̂15, the number of tCPs NMCPs from 15 to 30, mean Uj from 1 to 0.1×NMCPs, and variance Vj from 1 to
2×NMCPs, respectively. For the different TST, BST, KS, T, and SSAmodels, the performance analyses are denoted in (a) hit rate, (b) miss rate,
(c) error rate, and (d) MWED, respectively. Furthermore, the mean analyses are illustrated in histograms of (e) hit rate, (f ) miss rate, (g)
error rate, and (h) MWED, in which, “1,” “2,” “3,” “4,” and “5” in x-axis refer to TST, BST, KS, T, and SSA, respectively.
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Figure 12:*e simulations of MCPs detection on the representative test withNMCPs � 25. For one selected sample in (f ), the resultant MCPs
are illustrated by using different models of (a) TST, (b) BST, (c) KS, (d) T, and (e) SSA, respectively.
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Figure 13: *e results of WED evaluation on the 100 samples with NMCPs � 25 in Exp2. For the different MCP models of (a) TST, (b) BST,
(c) KS, (d) T, and (e) SSA, the frequency andWED distribution of resultant MCPs are illustrated within the NPED ranging from −1 to 0, and
the NNED ranging from 0 to 1 in the x-axis, respectively.
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Second, the performance evaluation on five CPDmodels
is demonstrated respectively by a series of successive MCPs
detection tests in Exp3. Generally, the dynamic tracks and
histogram analyses (Figure 15) show that all five CPD
models present respective instability in response to the size
of the fixed slide window, Nfsw ranging from 2̂6 to 2̂15,
especially for the TST, BST, and KS models. Despite the TST
model having the biggest miss rate with drastic fluctuations,
it still keeps a better efficiency due to the highest hit rate and
the lowest levels of error rate and MWED out of the other
four models. As for the rest ones, BST seems better than KS,
T, and SSA, because of the higher hit rate and the slightly
decreasing level of error rate. Although KS reversely keeps
decreasing hit rate and increasing error rate with big

fluctuation, it seems better than T and SSA, on account of
lower levels of miss rate andMWED. Both Tand SSA present
inefficiency and insensitivity in response to the increasing
Nfsw, especially for the SSA model, with the lowest hit rate
and the highest levels of error rate and MWED out of other
ones.

Last, taking the TST model as an example, five repre-
sentative simulations are selected from the total 10 tests in
the FSW framework of Exp3 (Figure 16(a)–16(e)), and then
the performance evaluation is listed under the values of
Nfsw � 2̂6, 2̂8, 2̂12, 2̂14, and 2̂15, respectively (Table 6). Given
one data sample withNMCPs � 30 (Figure 16(f )), the results of
MCPs detection show that the TSTmodel presents the best
performance as Nfsw � 2̂12, in terms of the biggest values of

Table 4: *e mean analyses on five CPD models in one representative MCPs detection test with NMCPs � 25.

items
Methods

TST BST KS T SSA
MWTD 0.9655 0.9319 0.8836 0.6042 0.5779
Hit rate 0.9310 0.5667 0.3030 0.2222 0.0727
Miss rate 0.0345 0.0333 0.0303 0.0635 0.0000
Error rate 0.0345 0.4333 0.6970 0.7619 0.8909
MWED 0.0345 0.0681 0.1164 0.3958 0.4221
Time 0.0004 0.0003 0.1889 0.1209 0.6896
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Figure 14: *e analyses on the frequency and WED distribution of resultant MCPs in the total 10 tests of Exp3. For the different MCP
models of (a) TST, (b) BST, (c) KS, (d) T, and (e) SSA under the FSW framework, the frequency andWED distribution of resultantMCPs are
illustrated within the NPED field ranging from −1 to 0 and the NNED field ranging from 0 to 1 in the x-axis.

Table 5: *e mean analyses on MCPs detection in Exp3 by five CPD models under the FSW framework.

Items
Methods

TST BST KS T SSA
MWTD 0.9875 0.7758 0.8268 0.5063 0.5009
Hit rate 0.7867 0.5167 0.3106 0.1862 0.0525
Miss rate 0.1900 0.0930 0.0894 0.0977 0.0633
Error rate 0.0200 0.4186 0.6194 0.7271 0.9004
MWED 0.0125 0.2242 0.1732 0.4937 0.4991
Time 0.0006 0.0008 0.1419 0.0766 0.7802
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Figure 15:*e simulations ofMCPs detection on the total of 10 tests in Exp3 under the FSW framework, with random parameters of sample
size Nsj from 2̂12 to 2̂15, the fixed number of tCPs NMCPs � 30, mean Uj from 1 to 0.1× 30, and variance Vj from 1 to 2× 30, respectively. For
the different CPDmodels of TST, BST, KS, T, and SSA, the performance analyses are denoted in (a) hit rate, (b) miss rate, (c) error rate, and
(d) mwed, respectively. Furthermore, the mean analyses are illustrated in (e) hit rate, (f ) miss rate, (g) error rate, and (h) MWED, in which,
“1,” “2,” “3,” “4,” and “5” in x-axis refer to TST, BST, KS, T, and SSA, respectively.
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Figure 16: Continued.
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hit rate and MWTD, and the smallest values of miss and
error rates and MWED in all five tests. However, the effi-
ciency of TST tends to be worse as the value of Nfsw takes too
bigger or too smaller. *erefore, the size of the fixed slide
window is a key factor for the FSW framework during the
MCPs detection.

In all, these results in the two experiments above suggest
that the proposed WED method can visually present the
distribution of resultant eCPs in the error state and the
normalized distance from the target position of zero in the x-
axis.*e simulation results suggest that the mean analyses of
MWED can generally count the mean value of error ratio
against total tests and thenmeasure the efficiency of a certain
model in the successive MCPs detection. *e performances
of different CPD models can be evaluated, and the better
ones can be discerned from the others.

4. Conclusions and Discussion

In this study, a novel WEDM method is proposed for
evaluating the overall performance of a CPD model across
not only repetitive tests on single CP detection, but also
successive tests on multiple change-point (MCP) detection
on synthetic time series under different RSW and FSW
frameworks. In this WEDM method, a concept of nor-
malized error distance was introduced that allows com-
parisons of the distance between the estimated change-point
(eCP) position and the target change-point (tCP) in the
synthetic time series. Especially, both positive- and negative-
error distances between resultant eCPs and actual tCPs are
weighted or normalized for creating WED metrics.

As opposed to previous methods, our WEDM allows
comparison when CPD is used across multiple time-series
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Figure 16: *e simulations of MCPs detection by TSTmodel under different sizes of fixed slide window Nfsw in the FSW framework. Given
the diagnosed data sample with NMCPs � 30 in (f), the resultant MCPs detection is illustrated under different Nfsw values of (a) 2̂6, (b) 2̂8,
(c) 2̂12, (d) 2̂14, and (e) 2̂15, respectively.

Table 6: *e performance evaluations on the TST model with different Nfsw under the FSW framework in Exp3.

Items Nfsw � Hit rate Miss rate Error rate MWED MWTD
2̂6 0.4667 0.5333 0.0000 0.5333 0.4667
2̂8 0.7000 0.3000 0.0000 0.3000 0.7000
2̂12 0.9667 0.0303 0.0333 0.0586 0.9414
2̂14 0.7667 0.2000 0.0333 0.2002 0.7998
2̂15 0.6000 0.3333 0.0000 0.3333 0.6667
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samples with different lengths and variances, especially cross
multiple data segments in an identical time series, with
different patterns, such as data distributions, segment sizes,
and number and positions of targets tCPs. In the successive
MCPs detection, our WEDM method first divides the
original sample into a series of data segments in terms of
assigned target change points and then calculates a nor-
malized error distance (NED) value for each segment. Next,
WEDM presents the frequency andWED distribution of the
resultant eCPs from all data segments in the normalized
positive-error distance (NPED) and the normalized nega-
tive-error distance (NNED) intervals in the same coordi-
nates. Last, the mean WED (MWED) and MWTD (1-
MWED) were obtained and dealt with as important per-
formance indexes.

In our simulations, a series of MCPs detection tests were
executed by using synthetic time-series datasets in the Matlab
platform, and the proposed method was applied to the
evaluation of the CPD utilizing TST, BST, KS, T, and SSA
models under repetitive single CP detection in Exp1, suc-
cessive MCPs detection under the RSW in Exp2, and FSW
framework in Exp3, respectively. *e results of the study
showed its ability to compare the results from the CPDmodels
working with a series of synthetic tests on multiple time-series
samples.*eWEDmetrics offer a new way of evaluating CPD
performance. It allows better visualization of the distribution
of the resultant eCPs when the CPDmodels work on multiple
time series with different data features, as well as multiple data
segments of a time-series sample with different data patterns.
Meanwhile, the convergence of different CPD models was
analyzed in terms of the dynamic tracks and mean analyses on
the value of WED, as well as other measurements, including
the rates of hit, error, and miss, and the computational cost.
Our WEDM method can not only offer a visualizable and
overall measure but also give better advice for users as to what
CPD models to use based on the application.

Data Availability
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