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Abstract

Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular,
in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to
strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we
present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from
experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates
that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the
model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for
further theoretical work on the role of STC in learning and memory.
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Introduction

It is widely believed that synaptic potentiation, as demonstrated

by the physiological phenomenon of long-term potentiation (LTP),

plays an important rôle in memory formation in the brain [1,2].

This has triggered a vast number of experiments in which this

phenomenon has been recorded, both in vivo and in vitro. Typically,

LTP can be elicited in a population of CA1 neurons by placing an

electrode into an input pathway in the stratum radiatum, and

applying a burst of high-frequency stimulation.

One major result that has emerged is that there are at least two

distinct ‘‘phases’’ of LTP, see [3] for a review. Firstly, there is an

‘‘early’’, transient phase (e-LTP) that can be induced by a single,

brief (*1s), burst of high-frequency stimulation (weak HFS). The

lifetime of this phase is around three hours in slice experiments,

and its expression does not require protein synthesis [4–6].

Secondly, there is late-phase LTP (‘-LTP), which is stable for at

least the eight hour time-span of a typical slice experiment, but

which can last up to months in vivo [7–9]. ‘-LTP can be induced

by repeated (typically three) bursts of HFS, separated by

10 minute intervals (strong HFS). Thus, notably, more stimulation

does not increase the amount of synaptic weight change at

individual synapses (as often assumed in models), but rather

increases the duration of weight enhancement. It has been shown

that protein synthesis is triggered at the time of induction and is

necessary for ‘-LTP [4,5], although a more complicated rôle for

protein synthesis in LTP has been implied [10,11].

Interestingly, e-LTP at one synapse can be converted to ‘-LTP
if repeated bursts of HFS are given to other inputs of the same

neuron during a short period before or after the induction of e-

LTP at the first synapse [12–14]. This discovery led to the

hypothesis that HFS initiates the creation of a ‘‘synaptic tag’’ at the

stimulated synapse, which is thought to be able to capture

plasticity-related proteins (PRPs). The PRPs are believed to be

synthesized in the cell body, although recent data suggest they may

be manufactured more locally in dendrites [15]. The general

framework for these hetero-synaptic effects is called ‘‘synaptic

tagging and capture’’ (STC). Which proteins are involved in each

stage of STC has not been fully elucidated yet. Current data

suggest that, at least in apical dendrites, calcium/calmodulin-

dependent kinase II (CaMKII) is specifically involved in signaling

the tag in LTP induction [15] and protein kinase Mf (PKMf) is

involved in the late maintenance of potentiated synapses [6,16].

The counterpart of LTP, long-term depression (LTD), can be

induced by stimulating CA1 hippocampal neurons with low-

frequency stimulation (LFS) [17,18]. LTD states appear to have

analogous properties to the LTP states discussed above. The early

phase, which we call e-LTD, lasts around three hours, is not

dependent on protein synthesis, and can be induced by weak LFS,

consisting of, for example, 900 stimuli at 1 Hz. For induction of

the late phase, ‘-LTD, a stronger form of LFS is required, for

example 900 bursts of three stimuli at 20 Hz, with an inter-burst

interval of one second [19]. Like ‘-LTP, ‘-LTD is stable for the

duration of most experiments and is protein synthesis dependent

[20]. Moreover, e-LTD of one synapse can be converted to

‘-LTD if strong LFS is given to a second synapse of the same

neuron within an interval of around one hour [19]. The setting of

LTD tags appears to be mediated by mitogen-activated protein

kinases [15], but no ‘-LTD specific PRP is yet known.

It turns out that LTP and LTD are not independent processes

and that an interaction known as ‘‘cross-capture’’ can occur

between synapses tagged for LTP and synapses tagged for LTD
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[19]. Thus 1) e-LTD of one synapse can be converted to ‘-LTD
by giving ‘-LTP inducing strong HFS to a second synapse shortly

before or after the induction of e-LTD at the first synapse; 2) e-

LTP can be converted to ‘-LTP in an analogous manner. Cross-

capture suggests that strong HFS and strong LFS both trigger

synthesis of both ‘-LTP-related proteins and ‘-LTD-related
proteins.

A separate strand of research has put forward the idea that

plasticity protocols cause synapses to make discrete jumps between

weak and strong states [21,22]. Discrete synapses have a number

of interesting theoretical properties, for example: 1) old memories

become at risk of being erased as new ones are stored, (e.g. [23]); 2)

synaptic saturation, important in preventing run-away activity, is

automatically included, while storage capacity can be high [24].

There have been several biochemical models that posit binary

synapses [25–31]. Induction and maintenance of activity-depen-

dent plasticity has been successfully incorporated into a recent

study [31], and the longevity of evoked synaptic changes has been

investigated [28,29]. There is however great divergence between

most network-level plasticity models and the experimental

observations outlined above. Network models typically ignore

interaction between synapses, use graded weights, and assume that

the stimulus only determines the amount of weight change and not

its longevity.

Given the limited knowledge of the processes involved, a

detailed model seems at present out of reach. Instead, the model

we present in this paper aims to integrate the key results from

experiments on induction, maintenance and STC together into a

concise model, whilst remaining simple enough to be useful for

neural network modeling. The model posits a set of possible

physical states in which a synapse can exist, including, in

particular, states with a tag present. The states are characterized

by their synaptic strength, and also by their resistance to

potentiation and depression. These characteristics are assumed

to be determined by the number of AMPA receptors present in the

membrane [32], and by the configuration of proteins within the

post-synaptic density (PSD) [33]. In our model, a synapse existing

in one state will evolve by making stochastic transitions between

the different states, the probability per unit time of any given

transition being specified explicitly by the model. High- or low-

frequency stimulation is assumed to change these transition

probabilities.

The model does not, at this stage, include the complete

biochemical machinery involved in the induction, expression and

maintenance of synaptic plasticity. Instead, for reasons of

computational efficiency, we develop a high-level model that

abstracts these processes and concentrates on the quantities

important for network behavior, namely the induction protocols

and the resulting weight changes. The model reproduces sufficient

agreement with real data to render it useful in exploring further

the functional consequences of STC in network modeling.

Methods

Simulating Electrophysiology Experiments
We have used our model to simulate several electrophysiology

experiments with multiple populations of synapses. More specif-

ically, we consider stimulation of multiple independent synaptic

inputs to the same neuronal population in CA1, such that a

protein synthesis-triggering stimulus (i.e., strong HFS or strong

LFS) to one input affects all populations of synapses, and leads to

STC interactions between populations. The stimulation protocol

for the experiment sets the transition rates for synaptic state

transitions within each population.

In all cases we assume that at time t~0 there have been no

recent stimulation protocols, and that the system is in equilibrium.

Thus, initially, all transition rates are at their resting values, and all

synapses occupy one of the basal states. Moreover, within each

population, 80% of the synapses occupy the weak, as opposed to

the strong, basal state (see Results). Note though, that in a real

experiment, not all synapses will be in basal states, because they

might have experienced strong stimuli already, earlier in life. As a

result, some synapses may already be in the ‘-LTP or ‘-LTD state

before the experiment is started. These will however remain in

these states throughout the experiment, and not interfere with

other synapses, so they can be ignored. However, the presence of

such synapses would reduce the observed amount of LTP/D, both

in model and experiment.

The actual number of synapses measured in experiments using

extra-cellular recordings is not known and probably varies

considerably between experiments. The results we obtain come

from taking 1000 synapses in each population. Starting from the

initial equilibrium condition, we update state occupancy numbers

at each time-step by random sampling in accordance with the

transition rates. Then, for each population m, we can find the

relative field excitatory post-synaptic potential %fEPSP mð Þ tð Þ by

expressing the summed synaptic weight at time t as a percentage of

the initial summed synaptic weight:
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where N
mð Þ

i tð Þ denotes, for population m, the occupancy number

of state i at time t, with the states numbered as in Figure 1.

Author Summary

It is thought that the main biological mechanism of
memory corresponds to long-lasting changes in the
strengths, or weights, of synapses between neurons. The
phenomenon of long-term synaptic weight change has
been particularly well documented in the hippocampus, a
crucial brain region for the induction of episodic memory.
One important result that has emerged is that the duration
of synaptic weight change depends on the stimulus used
to induce it. In particular, a certain weak stimulus induces a
change that lasts for around three hours, whilst stronger
stimuli induce changes that last longer, in some cases as
long as several months. Interestingly, if separate weak and
strong stimuli are given in reasonably quick succession to
different synapses of the same neuron, both synapses
exhibit long-lasting change. Here we construct a model of
synapses in the hippocampus that reproduces various data
associated with this phenomenon. The model specifies a
set of abstract physical states in which a synapse can exist
as well as probabilities for making transitions between
these states. This paper provides a basis for further studies
into the function of the described phenomena.

Model of Synaptic Tagging and Capture

PLoS Computational Biology | www.ploscompbiol.org 2 January 2009 | Volume 5 | Issue 1 | e1000259



Furthermore, we used that the weight of states 4,5,6 was 2w, twice

that of states 1,2,3.

Mean Weight Change and Its Fluctuations
In addition to stochastically simulating experiments, it is

possible to calculate mean results as well as the inter-trial standard

deviation for each experiment we simulate. Let us consider a single

population of synapses within an experiment. Let Pi tð Þ denote the

probability that a particular synapse is in state i at time t. Then the

time evolution equation for the Pi is given by

dPi tð Þ
dt

~
X

j

Mij tð ÞPj tð Þ, ð2Þ

where the matrices Mij tð Þ are defined by

Mij tð Þ~rij tð Þ{dij

X
k

rki tð Þ, ð3Þ

and rij tð Þ denotes the transition rate from state j to state i at time t

(with the convention that the rii tð Þ~0). Using equations (2) and

(3), and the fact that at all times the occupancy numbers Ni follow

a multinomial distribution with parameters N~1000;ð
P1,P2, . . . ,P6Þ, it is straightforward to obtain the following

equations for the moments of the Ni:

d

dt
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X
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From these equations, together with equation (1), we obtain

Figure 1. Diagram of synaptic states in the model. The three states on the left have weak weights, whereas the three states on the right are
strong. Arrows indicate the transitions, whilst the symbols next to the arrows denote transition rates. The dotted arrows indicate transitions that are
only active after a plasticity-inducing stimulation. In addition, all transition rates except those labeled t change when a stimulation protocol is given
(see text for details). In the absence of recent stimuli, values of the transition rates are a~0:017min{1 , b~0:067min{1 , te~0:017min{1,
t‘~10{4min{1 , p~d~c~0. In that case the synapse fluctuates between states 3 and 4. Note that the drawing of weak states with a single AMPA
receptor and strong states with two AMPA receptors is intended to be merely a figurative rather than precise illustration; similarly with the ‘‘anchors’’.
doi:10.1371/journal.pcbi.1000259.g001
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where wi is the weight associated with state i, w1~w2~w3~w,

w4~w5~w6~2w. Numerical integration of equations (4), (7) and

(8), from appropriate initial conditions, enables us to plot the mean

and the standard deviation of %fEPSP tð Þ. Using the equilibrium

multinomial distribution N; Pif gð Þ~ 1000; 0,0,0:8,0:2,0,0ð Þ, the

appropriate initial conditions are S%fEPSP 0ð ÞT~100 and

Var %fEPSP 0ð Þ½ �~10=9.

Results

Description of the Model
Our model is designed to reproduce as much pre-existing

electrophysiological data on long-term plasticity and STC as

possible, whilst at the same time remaining as simple as possible

for its purpose. In drawing up a list of states, a trade-off must be

made between having few states and complicated transition rate

dynamics or having lots of states and simple transition rate

dynamics. Our convention is to say that states are distinct if they

differ either in their synaptic strength or in the expected time it will

take them to potentiate or depress in the absence of any plasticity

protocols. This leads us to a six state model, containing three weak

and three strong states: weak basal, strong basal, e-LTD, e-LTP,

‘-LTD and ‘-LTP. The reactions that are triggered by plasticity

protocols are incorporated via time-variable transition rates

between these six states.

Figure 1 shows schematic drawings of the synaptic states of the

model, together with the allowed transitions between states. The

rate parameter associated with the transition from one state A to

another state B gives the probability per unit time of a synapse in

state A making the transition. Equivalently, the inverse of the rate

parameter is the average time it takes the synapse to make the

transition (assuming no other transition is available). In our

simulations we model populations of synapses, with each

individual synapse behaving independently with respect to making

transitions between states. In mathematical terms, our model is a

stochastic Markov process. Effects of stimulation protocols are

modeled by transient changes to the transition rates. To model

STC, certain stimulation protocols given to just one population of

synapses can affect the transition rates of multiple populations.

These hetero-synaptic effects reflect the capturing component of

STC.

Description of the Six Synaptic States
In the absence of stimuli, synapses fluctuate between a weak and

a strong basal state. The weak basal state is assigned an arbitrary

synaptic weight w, whilst the strong basal state is taken to have

synaptic weight 2w. These could correspond to the two states

probed in the experiments of Ref. [22], in which it was found that

the pairing of a brief steady current injection with an appropriate

depolarization led to switch-like approximate doubling or halving

of synaptic efficacy. The difference in efficacy between the two

states is assumed to come about from AMPA receptor insertion/

deletion. The transition rate a for changes from weak to strong

efficacy is set to 1hr{1, whilst that for changes from strong to weak

efficacy, b, is set to 1=15ð Þmin{1. The values of these parameters

are chosen (a) to fit the observation that 80% of synapses occupy

the weak basal state when the population is in equilibrium [22]; (b)

for the model to reproduce data on e-LTP/D decay to good

agreement (via decay from the e-LTP/D state followed by

equilibration between the two basal states). These rates are

comparable with AMPA receptor recycling times [34].

The other strong synaptic states are the e- and ‘-LTP states.

They have the same efficacy as the strong basal state, but are

considered potentiated states due to their increased resistance to

depression. Choosing all potentiated states to have the same

weight is motivated by the data which shows that in experiments

all LTP forms exhibit very similar amounts of weight change. This

is actually surprising given the wide variety of mechanisms that

underlie the different forms of LTP. Transitions into the

potentiated states only occur during intervals following certain

stimulation protocols, which we discuss below. Once a synapse

enters the e-LTP state it will decay back into the strong basal state,

with transition rate te~1hr{1, unless it has the opportunity to

move into the ‘-LTP state. The motivation for this decay rate

comes from experimental results on e-LTP decay. Furthermore, it

is assumed there is a tag present in the e-LTP state since data

suggest synapses in an e-LTP state convert to an ‘-LTP state

whenever PRPs become available for capture [12,13]. Although

we do not model the biochemistry explicitly, we suggest that when

a synapse is in the e-LTP state, the CaMKII in the synapse is in a

phosphorilated state [15].

When a synapse enters the ‘-LTP state, it becomes very stable,

as the only transition is very slow decay to the strong basal state,

with a rate of t‘~10{4min{1. Synapses in the ‘-LTP state are

assumed to have captured PRPs, such as PKMf [6,16]. Although

there is some evidence that decay from the ‘-LTP state is an active

process rather than passive decay [8,35], detailed knowledge of

this is still lacking, so we did not attempt to include this. The given

decay rate is not intended to be precise, but is intentionally of a

smaller order of magnitude than the other time-constants of the

model. Finally, the model is symmetric in potentiation and

depression, and so the LTD states are analogous to the LTP states.

Transition Rates
The model has ten transitions in total, however setting some

rates identical leaves a total of seven transition rate parameters,

Figure 1. We have so far mentioned a and b which are responsible

for fluctuations between the basal states, as well as te and t‘ which

are the decay rates for e-LTP/D and ‘-LTP=D respectively. In

addition, there are three further parameters, p, d and c, for

transitions into e-LTP/D and ‘-LTP=D states. These are only

switched on following a plasticity-inducing protocol. Note that of

these seven parameters, only te and t‘ are constant; p, d , c, a and

b change transiently after stimulation.

Transition Rates Associated with Early LTP
In this section and the next we discuss the effects of LTP-

inducing protocols on the transition rates; the effect on synaptic

weight dynamics is discussed in later sections. We model induction

in a direct way, focusing on the effects of specific plasticity-

inducing stimuli rather than introducing additional stimulus

parameters (such as strength, frequency or duration). Specifically,

we consider 1) for e-LTP, a single one second burst of HFS (weak

Model of Synaptic Tagging and Capture
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HFS); 2) for ‘-LTP, three repeated bursts of HFS, separated by

10 minute time-intervals (strong HFS). The time courses for the

transition rates have been chosen so that the model matches the

electrophysiological data that the model aims to reproduce.

After any burst of HFS is applied, the following two changes

occur. Firstly, the rate a from the weak to strong basal state

increases to some very large value for a short period, before

returning to its original value. Mathematically, we use

a tð Þ~1hr{1zd t{t0ð Þ for a stimulus at time t~t0. This, in

effect, moves all synapses occupying the weak basal state into the

strong basal state. This rapid switching is motivated by the above-

mentioned observations at the single synapse level [22], and is

assumed to come about from AMPA receptor insertion.

Secondly, transitions from the strong basal state into the e-LTP

state are transiently turned on. Following a stimulus at time t~t0,

the rate p of these transitions is given by an alpha-function

p tð Þ~ t{t0

50min
exp 1{ t{t0ð Þ=10minf gmin{1. Thus the rate p takes

a few minutes to grow to a significant level, peaks at a value of

0:2min{1, ten minutes after stimulation, and then decays back

toward zero, Figure 2. Alpha-functions arise naturally in chemical

reaction dynamics. In general, a chain of first-order reactions will

lead to a difference of exponentials, while two subsequent

reactions with identical rates will yield an alpha-function. Here

the alpha-function is assumed to arise from the biochemical

induction process in the PSD. The time-course for p is motivated

from evidence that a synaptic tag takes a few minutes to form [36].

Biophysically, the transitions to the e-LTP state might

correspond to the phosphorilation of serine-831 of the GluR1

AMPA receptor sub-units during LTP induction [33], which is

higher 30 minutes after LTP induction than immediately post-

stimulus [2]. Serine-831 phosphorilation is driven by CaMKII

phosphorilation which happens on a faster time-scale than that of

tag stabilization [36]. A highly simplified model of this cascade

would yield an alpha-function. Alternatively, the CaMKII

phosphorilation itself might correspond to tag formation and the

transition to e-LTP.

Transition Rates Associated with Late LTP
In addition to evoking the rate changes described above, a

synapse subject to strong HFS must incur additional changes

resulting from the triggering of protein synthesis and diffusion

[4,5]. This translates in our model to the triggering of the

transition rate c from the e-LTP state into the ‘-LTP state. As

discussed above this might correspond to the capture of PKMf.

We assume that for ‘-LTP the second burst of HFS crosses the

threshold for protein synthesis and the rate c begins to change.

Simulations are not sensitive to the precise course c takes, nor is

this tightly constrained by experimental data. We assume the

plausible form c tð Þ~ t{t0

30min
exp 1{ t{t0ð Þ=30minf gmin{1 when

the second burst of HFS comes at time t~t0. The maximum value

of c~1min{1 is reached at time t~ t0z30ð Þmin. The precise

conditions for protein synthesis are not known. The strong HFS

protocol described here is not the only protocol that leads to

‘-LTP; sometimes a strong, single burst of HFS is used [11]. In

that instance, we would need to assume that protein synthesis

starts sooner. In general, this could be achieved by integrating the

stimulation and thresholding it.

Figure 2. The effects of tetanisation on the state transitions. (A,B) Each diagram represents the state diagram for the model, and the super-
imposed arrows indicate the transition rates that are significant in the given scenario, at the given time. To indicate how STC is incorporated into the
model, we show a tetanised synapse and an unstimulated synapse. (A) Weak HFS only affects the synapse to which it is applied, and transition into
the e-LTP state occurs over a period of a few minutes. (B) Strong HFS initially has the same effect as a weak tetanus. However, protein synthesis and
diffusion are triggered by this stimulus: at 20 minutes after stimulus onset, both synapses are affected by rapid transition rates from their e-LTP to
‘-LTP states, and also from their e-LTD to ‘-LTD states. Thus if weak HFS or LFS were given to the unstimulated synapse in this scenario, then the
STC process would occur. (In the latter case one has ‘‘cross-capture’’.) (C) The time course of the transition rate p from the strong basal state to the e-
LTP state following weak HFS at time t~0. (D) The time course of the transition rate c from the e-LTP state to the ‘-LTP state following strong HFS
starting at time t~0.
doi:10.1371/journal.pcbi.1000259.g002

Model of Synaptic Tagging and Capture
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The rate c also governs transitions from the e-LTD to the

‘-LTD state, which enables the model to describe ‘‘cross-capture’’,

whereby e-LTD of one synapse by weak LFS can be converted to

‘-LTD by applying strong HFS to a different synapse [19]. We

discuss this further in the section ‘‘Modeling synaptic tagging and

capture’’. Figure 2 summarizes the effects of weak and strong HFS

on the transition rates in our model, including their courses.

Transition Rates Associated with LTD
The effects of LFS are analogous to those of HFS. Both weak

and strong LFS affect the rate b from the strong basal to the weak

basal state, and the rate d from the weak basal to the e-LTD state

in the same way that HFS affects the rates a and p, respectively.

The only difference is that b is held very high (at 10min{1) for the

extended period of four minutes, to reflect the longer duration of

an LFS protocol. The rate d follows the time-course

d tð Þ~ t{t0

50min
exp 1{ t{t0ð Þ=10minf gmin{1, with t0 being the

time at stimulus onset. This transition could correspond to the

de-phosphorilation of serine S-845 [33].

As mentioned above, the rate from the e-LTD state to the

‘-LTD state is given by the same parameter c as the rate from the

e-LTP state to the ‘-LTP state. Strong LFS triggers this parameter

in the same way as strong HFS, i.e.,

c tð Þ~ t{t0

30min
exp 1{ t{t0ð Þ=30minf gmin{1 following strong LFS

starting at time t~t0. (This can be taken to start at stimulus onset

since the strong LFS we consider consists of triple pulses separated

by just one second intervals. This is in contrast to our strong HFS

protocol, for which the bursts are separated by 10 minute time-

intervals.)

Transition Rates during Synaptic Tagging and Capture
In the above discussion, we have focused on stimulation of a

single population of synapses. However STC relates to interactions

between different populations of synapses. In our model,

transitions from the weak basal state to the strong basal state (a),

or from the strong basal state to the e-LTP state (p) reflect synapse-

specific changes; namely changes in the number of AMPA

receptors, and configurational changes in the PSD [32,33]. The

transition rates a and p are only modified in stimulated synapses,

and hence weak HFS only affects synapses to which it is applied.

However, transition from the e-LTP to the ‘-LTP state results in

cell-wide changes, i.e., protein synthesis. Thus, after one population

of synapses has received strong HFS, many populations of synapses

will see a change in the rate c of these transitions. Consistent with

experiments, synapses in an unstimulated population have little

chance of being in the e-LTP state, and will not be affected by the

strong HFS; no tags are present. But if another population of

synapses has received weak HFS and move into the tagged (e-LTP)

state, then they have a chance to move into the ‘-LTP state;

proteins are captured by tags. The STC process for LTD is

analogous to that for LTP.

Note that there is evidence that the STC interaction has limited

range, and can not occur between far away synapses, such as

between a basal dendrite synapse and an apical dendrite synapse

[15,37]. In this work we assume that when two different

populations within the same neuron are stimulated, they are close

enough to interact via STC. However, extension to compartmen-

talized STC is possible (see Discussion).

As we demonstrate below, the model also accounts for ‘‘cross-

capture’’ in a straightforward way by using the same parameter c
for transitions from the e-LTP state to the ‘-LTP state and from

the e-LTD state to the ‘-LTD state. Thus, for example, after one

population of synapses has received strong HFS, synapses from a

second population that find themselves in the tagged e-LTD state

will have a chance to change into the ‘-LTD state as a result of

LTD tags capturing ‘-LTD-related proteins.

Response of the Model to Plasticity Protocols
Modeling physiological LTP and LTD. Next we examine

how the model defined above behaves as it is subjected to various

plasticity protocols.

As in experiment, weak HFS induces LTP in the target

population, and this lasts for around three hours, i.e., the duration

of e-LTP, Figure 3A. This comes about from many synapses

entering the e-LTP state of the model, where they remain until

spontaneous decay to the strong basal state occurs with rate

te~1hr{1. From there, return to equilibrium occurs as synapses

fluctuate between the two basal states on the time-scale of 15–

30 min, Figure 4A. A control population is plotted alongside the

potentiated population, and this is unaffected by the stimulation.

Strong HFS leads to long-lasting LTP (‘-LTP), Figure 3B.

Synapses move into the ‘-LTP state via the strong basal state

and the e-LTP state, and remain stable in this state for a long

duration. Figure 3C and 3D show the analogous results for LTD.

The lifetime of e-LTD is approximately the same as that of e-LTP.

However, the change in fEPSP relative to baseline is smaller for

LTD than it is for LTP. This is because in equilibrium 80% of

synapses are already in a weak state (weak basal). Thus, on

average, only around 20% of synapses can be depressed during

LTD, whereas during LTP around 80% of synapses can be

potentiated.

Synaptic tagging and capture. Figure 5 shows the response

of the model to STC protocols. In graph (A) strong HFS to

population 1 followed by weak HFS to population 2 leads to ‘-LTP
in both populations [12]. The weak HFS to population 2 has caused

synapses within this population to move into the e-LTP state.

Meanwhile, the strong HFS to population 1 has putatively triggered

protein synthesis and diffusion, and this has enabled transitions from

the e- to ‘-LTP state in both populations of synapses. Thus

population 2 synapses migrate further into the ‘-LTP state from the

e-LTP state, and we see a prolonged increase in the fEPSP. Weak

HFS to population 1 followed by strong HFS to population 2

rescues decay of e-LTP in population 1, Figure 5B, as observed

experimentally [13]. Here synapses in population 2 are in the

process of decaying from the e-LTP state to the strong basal state,

and back into equilibrium, but strong HFS to the other population

switches on transitions into the ‘-LTP state, and so many synapses

are transferred into this state, thus halting decay of the fEPSP.

Because of the decay period, the final level of potentiation for

population 2 is lower in Figure 5B (weak before strong) than it is in

Figure 5A (strong before weak), consistent with data [13].

The model also reproduces ‘‘cross-capture’’, as observed in [19].

Strong HFS to population 1 followed by weak LFS to population 2

leads to ‘-LTD in population 2, Figure 5C. Here the weak LFS to

population 2 induces movement into the e-LTD state, but the

strong HFS to the other population has enabled synthesis of

‘-LTD-related proteins and so further movement into the ‘-LTD
state occurs, resulting in long-lasting depression of the fEPSP.

Figure 5 elucidates the STC process further by showing occupancy

levels of the states of the model at key times during simulations of

(A) weak HFS being given to a single population; (B) multiple

populations in which strong HFS is given to one population before

two other populations are given weak HFS and weak LFS

respectively.

De-potentiation. The model also captures the phenomenon

of de-potentiation, in which LTP can be erased by application of an

LFS stimulus shortly after the LTP-inducing stimulus. Figure 6A

and 6B show that weak HFS followed by weak LFS to the same
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population leads to no lasting effect if LFS is given three minutes

after HFS, but leads to e-LTP if given 15 minutes after HFS, in

agreement with data in [36]. This is explained as follows, in terms of

state transitions. Immediately after HFS is applied, all synapses

occupy the strong basal state, hence the elevated fEPSP. However,

movement into the more stable e-LTP state only occurs over a

period of a few minutes. Thus, if LFS is given only three minutes

after HFS, many synapses are still in the strong basal state, and from

there they are moved into the weak basal state by the LFS. This

causes the fEPSP to fall back to around 100%. The weakened

synapses will mostly move into the e-LTD state, but since some

synapses remain in the e-LTP state, the net effect is an un-

potentiated fEPSP, which then remains stable as all the synapses fall

back into the two basal states. If LFS is administered 15 minutes

after HFS, it has little effect since at that stage most synapses occupy

the e-LTP state and are immune to de-potentiation.

These results are consistent with data from O’Connor et al. [22]

which show de-potentiation of some, but not all, synapses

10 minutes after successful LTP induction. Our model predicts

that fewer synapses would de-potentiate, the longer the interval

between LTP induction and the LTD protocol. Note that if

depotentation is successful, the fEPSP drops back quickly and

precisely to the equilibrium baseline value, which would be

difficult to explain using continuous instead of binary synapses.

In experiments where immunity to de-potentiation is observed,

following the LFS stimulus, the fEPSP drops, but later recovers

[36]. This is an effect not seen in our simulations. A possible

explanation for this is that the LFS transiently depresses the

Figure 3. Long-term potentiation and depression in the model. (A) Weak HFS to population 1 at time t0~20min results in e-LTP of that
population. The increase in weight to about 150% lasts about 90 minutes. Population 2 is a ‘‘control pathway’’, that has only test stimulation (to
measure its strength) but no tetanic stimulus applied to it. Apart from the fluctuations its weight is stable. (B) Strong HFS to Pop. 1 at t0~20min
results in ‘-LTP of that population. The control population is not affected. (C) Weak HFS to Pop. 1 at t0~20min results in e-LTD of that population.
(D) Strong LFS to Pop. 1 at t0~20min results in ‘-LTD.
doi:10.1371/journal.pcbi.1000259.g003
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synapses, masking the decay. Our model does not take pre-

synaptic effects into account, which can play a rôle in plasticity on

shorter time scales than those of e-LTP and ‘-LTP [38].

De-potentiation also interrupts tag formation, thus preventing

STC in the de-potentiated population if ‘-LTP is induced in a

second population (see Figure 2 in [36]). Figure 6C shows that our

model accounts for this. One population is potentiated and de-

potentiated, and then a second population is given strong HFS.

Population 2 exhibits ‘-LTP as expected, whilst the fEPSP of

population 1 remains stable at around 100%. Due to the de-

potentiation, when the strong HFS is administered to population 2

and protein synthesis occurs, very few synapses in population 1

occupy the e-LTP state, and hence there are very few tags present.

Thus there can be very little migration into the ‘-LTP state (STC).

Instead the synapses continue to fluctuate between the basal states.

Finally, once immunity to de-potentiation occurs, administering

LFS does not destroy tags [36]. We reproduce this result in

Figure 6D. As in Figure 6B, population 1 is given weak HFS,

followed by weak LFS after an interval of 15 minutes. Then

population 2 is later given strong HFS and both populations

exhibit ‘-LTP. In this instance a good number of population 1

synapses are in the tagged e-LTP state when protein synthesis

follows the strong HFS to population 2, and so STC can occur.

Theoretical Mean and Fluctuation Size
In addition to reproducing single-trial experiments, the model

makes novel predictions about the theoretical mean and inter-trial

standard deviation of the fEPSP. Figure 7A and 7B illustrate this

for populations of 1000 synapses given weak HFS and weak LFS,

whilst graphs C+D illustrate this for strong HFS and strong LFS.

Figure 4. Occupation of states. Each diagram represents the state diagram for the model, and the the area of the circle around each state
indicates the proportion of synapses occupying that state. (A) A single population of synapses is given weak HFS at t0~50min. The stimulus results in
a transient movement of synapses into the e-LTP state, followed by decay back to the initial state. (B) Multiple populations exhibiting synaptic
tagging, capture and cross-capture. One population is given strong HFS at t0~20min. Synapses initially move into the e-LTP state, in which a tag is
present, before moving into the ‘-LTP state via the eventual capture of PRPs. A second population is given weak HFS at t0~50min. Most of these
synapses move swiftly into the ‘-LTP state once the stimulus is given; PRPs are already available as a result of the stimulus to Pop. 1, so capture
occurs as soon as tag formation is complete. A third population is given weak LFS at t0~50min. Most of these synapses move swiftly into the ‘-LTD
state once the stimulus is given; an LTD tag is set, and this can immediately ‘‘cross-capture’’ ‘-LTD-related proteins that have been synthesized and
diffused as a result of the stimulus to Pop. 1.
doi:10.1371/journal.pcbi.1000259.g004

Figure 5. Synaptic tagging and capture in the model. (A) Strong HFS to Pop. 1 at t0~20min and weak HFS to Pop. 2 at t0~50min results in
‘-LTP of both populations. (B) Rescue of e-LTP decay: weak HFS to Pop. 2 at t0~20min followed by strong HFS to Pop. 1 at t0~50min. (C) Cross-
capture: strong HFS to Pop. 1 at t0~20min followed by weak LFS to Pop. 2 at t0~50min.
doi:10.1371/journal.pcbi.1000259.g005
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We see that when e-LTP is established the standard deviation is

greater than at baseline, whilst when e-LTD is established the

standard deviation is less, Figure 7B. In the former case, the

increase is a result of variability in the number of synapses that

make it into the e-LTP state. Although all synapses are initially

moved into the strong basal state by the HFS, (resulting briefly in

zero fEPSP variability), while the tag-forming reaction in the PSD

is still incomplete, a variable number of synapses drop into the

weak basal state from where they can no longer access the e-LTP

state, Figure 1. Although an analogous process occurs during the

onset of e-LTD, the standard deviation remains less in this case

since the transition rate from the weak to strong basal state

(a~1hr{1) is much less than that from the strong to weak basal

state (b~ 1=15ð Þmin{1). The standard deviation is also less when

‘-LTP=D is established, Figure 7D. This is because strong HFS/

LFS enables almost all the synapses to enter, first the e-LTP/D

state, and then the ‘-LTP=D state, in which the weight becomes

stable.

The theoretical predictions above can be used in a similar way

to the noise analysis technique used to extract properties of

voltage- and ligand-gated channels from measurements of their

mean current and current fluctuations [39]. In all cases the

transition matrix determines not only the evolution of the mean

but also the fluctuations around the mean. In principle this means

that a more accurate estimate of the transition matrix can be

obtained by fitting both the mean and the fluctuations. In analogy

with standard noise analysis, here the fluctuations in the basal state

are inversely proportional to the number of synapses, the spectrum

of the fluctuations can be used to determine the rate constants, and

changes to the fluctuations as compared to baseline can be used to

Figure 6. De-potentiation. (A) Weak HFS at t0~20min followed by weak LFS at t0~23min to same population leads to de-potentiation. (B) Weak
HFS at t0~20min followed by weak LFS at t0~35min. In this case e-LTP is not reversed by the LFS; it has become immune to depotentiation. (C) Pop.
1 is given weak HFS at t0~20min followed by weak LFS at t0~23min, and pop. 2 is given strong HFS at t0~50min. Pop. 1 remains stable at baseline
after the stimuli, while pop. 2 exhibits ‘-LTP. (D) Pop. 1 is given weak HFS at t0~20min followed by weak de-potentiation LFS at t0~35min, and pop.
2 is given strong HFS at t0~50min. In this instance both populations exhibit ‘-LTP.
doi:10.1371/journal.pcbi.1000259.g006
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calculate how many synapses have made a transition. Although we

have attempted to perform this type of analysis on data recorded

by Roger Redondo, we found that too many additional noise

sources, as well as non-stationarity, makes this analysis currently

unsuitable.

Discussion

We have presented a model of synaptic plasticity at hippocam-

pal synapses which reproduces several slice experiments. It

contains just six distinct states, yet gives rise to a rich set of

electrophysiological properties. The model incorporates the two

observed flavors of LTP and LTD, namely the early and late

phases, and de-potentiation, as well as the interaction between

these two phases, known commonly as synaptic tagging and

capture. The model has a number of key features:

Because all three LTP and all three LTD states have the same

weight associated to them (w and 2w, respectively), a given synapse

has a binary weight. This is reminiscent of a number of models

that have proposed bistable synapses to stabilize memories, often

using CaMKII as a switch [25–31]. In the current model, synapses

have three levels of stability (basal, early-phase and late-phase),

with the early- and late-phase being stable up to hours. It is likely

that on a biochemical level, bistable switches underlie these more

stable states and slow down the transition rates, consistent with

those earlier models.

Another key postulate of the model is the existence of a single

state that corresponds both to the synapse exhibiting e-LTP and

the presence of an ‘-LTP tag, (and similarly for LTD). They go

hand in hand; under natural conditions there is no mechanism by

which an ‘-LTP tag can be removed, whilst still retaining e-LTP,

or indeed vice-versa, Figure 6. If tag formation is incomplete, de-

potentiation (from LFS) can occur and tag formation halted, but if

tag formation is complete, de-potentiation can not occur and the

tag can not be destroyed, consistent with data in [36].

Pharmacological [15] and genetic manipulations (reviewed in

[40]) can interfere with tag setting and capture. The reverse, tag

setting without e-LTP, has not (yet) been observed.

Finally, the model makes predictions about the noise level in the

fEPSP during a period of potentiation (or depression) followed by a

return to baseline value. In particular, it predicts that the noise

level increases during a period of e-LTP, but decreases during a

period of e-LTD, ‘-LTP or ‘-LTD, Figure 7. The source of this

noise is purely the random nature of the transitions between states.

As experimental noise is not taken into account by the model, a

test of these predictions would require systematic removal of

experimental noise from a data set. The reason for the decreased

variability during ‘-LTP=D is that many synapses occupy a state

Figure 7. Theoretical mean and fluctuations in the synaptic strength. (A) The time course of the expected value of the fEPSP for a population
of 1000 synapses, given either weak HFS (blue, upper curve) or weak LFS (red, lower curve), administered at time t0~20min. (B) The corresponding
standard deviation of the fEPSP as a function of time. The fluctuation increases for e-LTP and decreases for e-LTD. (C,D) Analogous plots for a
population given strong HFS or strong LFS; in this case the fluctuations decrease for both protocols.
doi:10.1371/journal.pcbi.1000259.g007
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that is immune to weight change. An alternative, more

complicated model would allow for the possibility of a synapse

in a ‘‘strong’’ state to become even stronger, say by insertion of

even more AMPA receptors. If this were the case, then a greater

level of noise could occur during ‘-LTP=D as a result of synapses

fluctuating between the ‘-LTP=D state of our current model and

an extra ‘‘even stronger’’ state. Note however that this would be

inconsistent with experimental evidence that synapses have only

two stable levels of efficacy, e.g. [2,22].

Next, we discuss shortcomings and potential extensions of the

model. In general, it is likely that adding extra states and more

complex dynamics would refine the agreement with experimental

data. However, doing this incurs the cost of making the model

more cumbersome to fit and computationally more expensive.

Extra states could, for example, enable us to incorporate the

biochemistry of the PSD, leading to a more realistic description of

the flow from the basal states into the LTP and LTD states [41]. A

recent model of LTP by Smolen [42] indeed incorporates

continuous variables for the state of the tag and for protein

expression, together with modeling of calcium dynamics.

Protein synthesis probably plays a more subtle rôle in LTP than

our model incorporates. For example, immunity to de-potentiation

does not require protein synthesis in our model, even though some

data suggest it does [43]. Other data suggest that, at high levels of

synaptic activation, protein synthesis can be involved in e-LTP as

well as in ‘-LTP [10]. We have not considered such regimes of

reduced protein synthesis in which there could be competition for

the capture of proteins available [44]. To reduce the level of protein

synthesis, one could simply decrease the post-strong stimulus growth

and peak of the transition rate c, (the rate corresponding to the

availability of PRPs). Competition could then be incorporated by

reducing the value of c further every time a synapse makes the

transition into a ‘-LTP=D state. Both these effects would reduce the

number of synapses that enter the ‘-LTP=D states and the long

term change in the fEPSP would be reduced.

Another extension would involve specifying the distances of the

site of protein synthesis from the two stimulated populations. Our

results are not sensitive to the precise time-course of the transition

rate c, and so our model does not make predictions about this. The

time-course for c could however be made to reflect the distance of

the site of protein synthesis from the stimulated synapses. For very

local protein synthesis, c would grow faster and larger than for more

distant protein synthesis. In particular, if different populations were

at different distances from the site of protein synthesis, then the rate

c would differ between the two populations. For example, suppose

protein synthesis took place near a population of synapses given

strong HFS. Then a second population far from this site may only

experience STC weakly upon receipt of weak HFS. Few PRPs

would be available, so c would only grow a little, and only a few

synapses would move into the ‘-LTP state, causing the stable level

of the ‘-LTP fEPSP to be lower than usual. Such an extension could

perhaps account for recent data that suggest that STC interactions

do not occur between basal and apical dendrites [15].

Finally, the model does not take into account pre-synaptic

effects, which might play a rôle in plasticity on time scales shorter

than those of e-LTP and ‘-LTP [38]. Extending the model to take

account of these could also enhance agreement with data. For

instance, in experiments on immunity to de-potentiation one sees a

large drop, followed by recovery, in the fEPSP following the

application of LFS to an (e-LTP) potentiated population of

synapses [36]. In simulations from the model, LTP is also immune,

but without this large drop and subsequent recovery, Figure 6B.

Nevertheless, we believe that the model will be useful for

continuing theoretical work on the functional consequences of

STC, as it captures most known phenomena and is efficient to

simulate. In particular it provides a good starting point for neural

network modeling. For example, information storage capacity, and

the balance between learning and forgetting can be examined for a

network of neurons obeying the biophysics of the model. In future

theoretical work, this model could be incorporated into a higher-

level model that incorporates reinforcement learning and

dopamine neurons. It is known that dopamine must be present

for ‘-LTP to be established [19,45]. Moreover, Izhikevich [46] has

hypothesized that e-LTP plus tag formation could have the

function of maintaining a memory trace of some behavior until a

reward signal arrives; upon reward ‘-LTP is induced, whilst if

there is no reward then the memory trace is lost. Work in these

directions is underway.
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