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Introduction
Bloom’s syndrome (BS) is a rare autosomal recessive disease 

characterized by a predisposition to a wide variety of cancers 

(German 1993). The responsible gene product, BLM, is a member 

of the highly conserved RecQ family of DNA helicases (Ellis 

et al., 1995). Cells derived from BS patients exhibit elevated 

frequencies of sister chromatid exchanges (SCEs), chromosomal 

breaks, interchanges between homologous chromosomes, and 

sensitivity to several DNA-damaging agents. The single RecQ 

helicase homologues of Saccharomyces cerevisiae (Sgs1; Gangloff 

et al. 1994) and Schizosaccharomyces pombe (Rqh1; Stewart 

et al., 1997) play critical roles in the maintenance of  genomic 

stability. In human cells, fi ve genes encoding RecQ helicase 

homologues have been identifi ed, and defects in two of them, 

WRN and RTS, cause Werner’s syndrome and Rothmund-Thomson 

syndrome, respectively, which are disorders associated with geno-

mic instability (Yu et al., 1996; Kitao et al., 1999).

Biochemical analyses indicated that BLM demonstrates G4 

DNA unwinding, branch migration, and canonical DNA he-

licase activity (Bachrati and Hickson, 2003). More importantly, 

BLM with DNA topoisomerase IIIα (TOP3α) was shown to 

resolve double Holliday junctions (HJs) to yield noncrossover 

products (Wu and Hickson, 2003). BLM interacts physically 

with several proteins involved in various aspects of DNA meta b-

olism, such as RAD51 and WRN (Wu et al., 2001; von Kobbe 

et al., 2002). In addition, BLM is a component of the BRCA1-

associated genome surveillance complex (Y. Wang et al., 2000), 

which contains BRCA1, ATM, MRE11, RAD50, NBS1, MSH2, 

MSH6, and RFC, and a complex containing the fi ve Fanconi 

anemia complementation proteins (FANCA, FANCG, FANCC, 

FANCE, and FANCF), RPA, TOP3α, and BLAP75 (Meetei et al., 

2003; Yin et al., 2005). BLAP75 was recently shown to stimulate 

the dissolution of double HJs by BLM and TOP3α (Raynard et al., 

2006; Wu et al., 2006).

Despite the accumulation of biochemical data on the activi-

ties and binding partners of BLM, little is known about its biologi-

cal functions. Recently, we have reported a possible involvement 

of BLM and TOP3α in the dissolution of sister chromatids 

during the late stage of DNA replication using corresponding 
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 B
loom’s syndrome (BS), which is caused by mutations 

in the BLM gene, is characterized by a predisposi-

tion to a wide variety of cancers. BS cells exhibit 

 elevated frequencies of sister chromatid exchanges (SCEs), 

interchanges between homologous chromosomes (mitotic 

chiasmata), and sensitivity to several DNA-damaging agents. 

To address the mechanism that confers these pheno-

types in BS cells, we characterize a series of double and 

triple mutants with mutations in BLM and in other genes 

involved in repair pathways. We found that XRCC3 

 activity generates substrates that cause the elevated SCE in 

blm cells and that BLM with DNA topoisomerase IIIα sup-

presses the formation of SCE. In addition, XRCC3 activity 

also generates the ultraviolet (UV)- and methyl methane-

sulfonate (MMS)–induced mitotic chiasmata. Moreover, 

disruption of XRCC3 suppresses MMS and UV sensitivity 

and the MMS- and UV-induced chromosomal aberrations of 

blm cells, indicating that BLM acts downstream of XRCC3.
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gene-disrupted chicken DT40 cells (Seki et al., 2006a). However, 

in BS cells, the molecular basis of the elevated frequencies of 

SCE, interchanges between homologous chromosomes, and their 

sensitivity to several DNA-damaging agents is not well understood. 

To address the mechanism that confers these BS cell pheno-

types and to understand the functions of BLM in the cell, we 

used chicken DT40 cells to establish and characterize double 

and triple blm mutants bearing mutations in other genes involved 

in various repair pathways, including homologous recombina-

tion (XRCC3, RAD52, and RAD54). Based on our data, we discuss 

BLM function and propose an error-free lesion bypass mechanism 

that involves XRCC3 and BLM.

Results
Generation of various BLM-defi cient 
and XRCC3-defi cient cell lines
To investigate the function of BLM under DNA damage–inducing 

conditions, we generated double and triple mutants of BLM bear-

ing mutations in genes of the RAD52 epistasis group (RAD52, 

RAD54, and XRCC3) that are relevant for homologous recombi-

nation, and in genes involved in postreplication repair (RAD18) 

and nonhomologous end-joining (KU70) using the chicken B 

cell line DT40 (Bezzubova et al., 1997; Takata et al., 1998, 2001; 

Yamaguchi-Iwai et al., 1998; Yamashita et al., 2002). We gener-

ated fi ve mutants with XRCC gene–disrupted (xrcc3) cells con-

taining human XRCC3 (hXRCC3) and EGFP transgenes, which 

can be deleted by activating the Cre recombinase with 4-hydroxy 

tamoxifen (Ishiai et al., 2004). Although growth of hXRCC3-

complemented xrcc3 cells was slightly slower than that of wild-

type cells, the sensitivities of the cells to methyl methanesulfonate 

(MMS) and UV were indistinguishable from those of wild-

type cells (unpublished data). Thus, we considered hXRCC3-

complemented xrcc3 cells to be equivalent to wild-type cells. 

A scheme for the systematic generation of the various double 

and triple mutants from xrcc3+hXRCC3 (“wild-type”) cells is 

shown in Fig. 1 A. Gene disruption was confi rmed by RT-PCR 

(Fig. 1 B) and genomic PCR (not depicted). Generation of 

rad52/blm, ku70/blm, and rad18/blm cells is shown in Fig. 1 C 

and described in Materials and methods.

Figure 1. Generation of double and triple mutants of BLM with mutations in other genes involved in DNA repair pathways. (A) Schematic representa-
tion of the generation of several mutants in a conditional xrcc3 background. (B) RT-PCR analysis of total RNA from the indicated mutants in the condi-
tional xrcc3 background. (a–c) Each mutant cell line was examined for the expression of hXRCC3, BLM, RAD54, and RECQL1 mRNA. RECQL1 was 
amplifi ed as a control. (d and e) Each mutant cell line was examined for the expression of hXRCC3, WRN, BLM, and RECQL1 mRNA. (C) Disruption 
of BLM in the indicated single gene mutants. (a) Schematic representation of the generation of mutants. (b–d) RT-PCR analysis of total RNA from the 
indicated mutants.
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Elevated SCE in blm cells depends 
on XRCC3
A characteristic feature of BS cells is a high incidence of SCE. 

A possible explanation for this property is that BLM with TOP3α 

dissolves double HJs in a manner that does not produce cross-

overs, and that the BLM defect results in crossovers that are de-

tected as SCE. Double HJs are formed by the activities of proteins 

involved in homologous recombination such as RAD51 (Ira et al., 

2003; Wu and Hickson, 2003). Thus, we investigated the fre-

quency of SCE in relevant mutant cells. As shown in Fig. 2 A, the 

SCE frequency in xrcc3 cells was lower than in xrcc3+hXRCC3 

cells, and the elevated SCE frequency in xrcc3/blm+hXRCC3 

(“blm”) cells was greatly reduced by deletion of hXRCC3 (Fig. 2 A, 

bottom). We previously reported that disruption of RAD54 con-

siderably reduces the frequency of SCE in blm cells (W. Wang 

et al., 2000). As expected, the xrcc3/blm/rad54+hXRCC3 (“blm/
rad54”) cells generated in this study showed a lower SCE fre-

quency than xrcc3/blm+hXRCC3 cells (Fig. 2 B). In contrast, 

disruption of RAD52 did not affect the increased frequency of 

SCE in blm cells (Fig. 2 C).

We also examined the functional relationship between BLM 

and TOP3α in the suppression of SCE. As TOP3α-depleted 

cells exhibit lethality, we previously generated top3α and 

top3α/blm cells carrying a mouse Top3α transgene placed under 

the control of the doxycyclin-repressible promoter (Seki et al., 

2006a). The top3α cells ceased to grow within 3 d after the 

addition of doxycyclin, and they showed an increase in SCE 

frequency 2 d after the treatment, as similarly observed for blm 

cells (Fig. 2 D). Moreover, the SCE frequency in top3α/blm 

cells 2 d after doxycyclin addition was almost the same as that 

of blm cells, indicating that TOP3α functions with BLM to sup-

press the formation of SCE. Notably, disruption of TOP3β did 

not increase the SCE frequency (Fig. 2 E).

BLM and XRCC3 belong to the same DNA-
repair or damage-tolerance pathway
To identify the pathway in which BLM functions under DNA 

damage–inducing conditions, we performed colony survival 

assays of various mutant cells in the presence of MMS. Double 

mutant ku70/blm and rad18/blm cells were more sensitive to 

MMS than either single mutant (Fig. 3 A). The same tendency 

was also seen in rad52/blm cells.

Interestingly, the MMS sensitivity of xrcc3/blm+hXRCC3 

cells was partially suppressed by disruption of XRCC3 (Figs. 3 B, a, 

Figure 2. Spontaneous SCE levels of various mutants. (A) SCE levels of xrcc3+hXRCC3 (“wild-type”), xrcc3/blm+hXRCC3 (“blm”), xrcc3, and xrcc3/blm 
cells. Numbers represent means and SDs of scores from two hundred metaphase cells. (B) SCE levels of xrcc3+hXRCC3, xrcc3/blm+hXRCC3, xrcc3/
rad54+hXRCC3 (“rad54”), and xrcc3/blm/rad54+hXRCC3 (“blm/rad54”) cells. (C) SCE levels of wild-type, blm, rad52, and rad52/blm cells. (D) SCE 
levels of top3α and top3α/blm cells in a conditional top3α background. The expression of mouse Top3α is suppressed by doxycyclin. (E) SCE levels of 
wild-type, blm, top3β, and top3β/blm cells. The error bars show SD of scores from 100 metaphase cells.
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and S1 A, available at http://www.jcb.org/cgi/content/full/jcb

.200702183/DC1). All clones of xrcc3/blm cells derived from 

the same parental xrcc3/blm+hXRCC3 cells showed almost 

the same sensitivity to MMS (unpublished data), which ex-

cluded the possibility that the suppression of MMS sensitivity 

was caused by mutations occurring during mutant isolation. 

Thus, BLM appears to function downstream of XRCC3 under 

damage-inducing conditions.

It has been reported that wrn/blm cells show synergistic or 

additive increases in sensitivity to genotoxic agents including 

MMS, compared with either single mutant (Imamura et al., 2002), 

suggesting that BLM and WRN perform nonoverlapping functions. 

The MMS sensitivity of xrcc3/wrn cells was higher than that of 

either single mutant (Fig. 3 B, b), suggesting that WRN functions 

independently of XRCC3 in response to MMS-induced damage. 

However, the MMS sensitivity of xrcc3/wrn/blm triple mutant 

cells was not higher than that of xrcc3/wrn/blm+hXRCC3 

(“wrn/blm”) or xrcc3/wrn cells (Fig. 3 B, c), indi cating that 

BLM and XRCC3 function in the same pathway, even in the 

wrn background.

In contrast to what we found for XRCC3, we previously 

observed that blm/rad cells show higher sensitivity to genotoxic 

agents, including MMS (W. Wang et al., 2000), compared with 

either single mutant. xrcc/blm/rad54+hXRCC3 cells were simi-

larly more MMS sensitive than either single mutant (Fig. 3 C, a). 

In S. cerevisiae, proteins belonging to the RAD52 epistasis group, 

such as RAD51, RAD54, RAD55, and RAD57, are involved in 

recombinational repair (Sung et al., 2000). Thus, it is possible 

that XRCC3, a RAD51 paralogue in higher eukaryotic cells, 

fun ctions in a recombinational repair pathway involving RAD54. 

Therefore, we examined the MMS sensitivity of xrcc3/rad54 and 

xrcc3/blm/rad54 cells. The MMS sensitivity of the xrcc3/rad54 

cells was higher than that of either single mutant (Figs. 3 C, b, 

and S1 B), and the sensitivity of xrcc3/blm/rad54 cells was almost 

Figure 3. Survival curves of mutant cells exposed to MMS. (A–C) Cells were treated with the indicated concentrations of MMS. Colonies were counted 
after 7–14 d, and the percent survival was determined relative to the number of colonies of untreated cells. Representative data are shown. The error bars 
indicate SD. The differences in the duplicated data were often so minute that the SD was hidden by the symbols in the fi gures.
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the same as that of xrcc3/blm/rad54+hXRCC3 cells (Fig. 3 C, c). 

Thus, the genetic data obtained here are compatible with the 

notion that BLM and XRCC3 function in the same DNA repair 

or damage tolerance pathway after MMS treatment, but probably 

not in the canonical recombinational repair pathway.

To investigate the functional relationship between BLM 

and XRCC3, we examined RAD51 focus formation after expo-

sure to MMS (unpublished data). After MMS treatment, an in-

crease in the number of cells exhibiting RAD51 foci was observed 

in both xrcc3/blm+hXRCC3 and xrcc3+hXRCC3 cells. However, 

xrcc3 and xrcc3/blm cells showed little increase in the number 

of RAD51 foci after MMS exposure. In contrast, MMS-induced 

RAD51 focus formation was observed in rad52 and rad52/blm 

cells. These results indicated that RAD51 focus formation does 

not correlate with survival after exposure to MMS.

Chromosomal aberrations in blm, xrcc3, and 
xrcc3/blm cells induced by exposure to MMS
To understand the mechanism of the suppression of MMS sensi-

tivity in xrcc3/blm+hXRCC3 cells after disruption of XRCC3, we 

examined xrcc3/blm, rad52/blm, and related cell lines for a variety 

of chromosomal aberrations (the types of chromosome aberrations 

analyzed are presented in Fig. S2, A and B, available at http://www

.jcb.org/cgi/content/full/jcb.200702183/DC1). As shown in 

Fig. 4 A, the number of chromosomal aberrations increased 12 h 

after exposure to MMS in all cells examined; xrcc3/blm+hXRCC3 

cells had a higher number of chromo some aberrations than 

xrcc3+hXRCC3 and xrcc3 cells, and the defect in xrcc3/
blm+hXRCC3 cells was suppressed by deletion of hXRCC3.

In contrast, a slight increase in chromosomal aberrations 

was observed in rad52/blm cells compared with either single 

mutant after exposure to MMS (Fig. 4 B), indicating that dis-

ruption of XRCC3 but not RAD52 specifi cally suppresses the 

defect in blm cells.

Elevation of MMS-induced mitotic 
chiasmata in blm cells
We next focused our attention on chromatid exchanges. Although 

we observed chromatid exchanges between nonhomologous 

chromosomes or different regions of homologous chromosomes 

(Fig. S3 A, available at http://www.jcb.org/cgi/content/full/jcb

.200702183/DC1), the majority of chromatid exchanges ob-

served after exposure to MMS involved homologous chromo-

somes, which is a typical feature of chicken DT40 cells (Fig. 4 C). 

This type of chromosomal aberration is called a mitotic chiasma 

because it resembles the chiasma structure seen in meiosis. 

A slight increase of mitotic chiasmata was observed in xrcc3/
blm+hXRCC3 cells compared with xrcc3+hXRCC3 cells 

(Fig. 4 D, a). This phenotype is reminiscent of the increased inter-

changes between homologous chromosomes in BS cells (Chaganti 

et al., 1974). As shown in Fig. 4 D, MMS-induced mitotic chias-

mata in xrcc3+hXRCC3 and xrcc3/blm+hXRCC3 cells were 

almost completely suppressed by deletion of hXRCC3 (Fig. 4 D, a), 

whereas disruption of RAD52 had no effect on the formation of 

mitotic chiasmata (b). In chromosomes forming mitotic chias-

mata, it is generally held that the events of homologous recom-

bination, but not the separation of the recombinant chromosomes 

linked by sister chromatid cohesion, have been completed 

(Fig. S3 B; Huttner and Ruddle, 1976; Therman and Kuhn, 1981). 

If this were the case, RAD54 would also be likely to be required 

for the formation of mitotic chiasmata. Indeed, RAD54 was re-

quired for mitotic chiasma formation in the presence or absence 

of BLM (unpublished data).

UV sensitivity and increased chromosomal 
aberrations of blm cells are suppressed by 
disruption of XRCC3
As described in the previous section, we analyzed blm cells 

and blm-related double mutant cells after exposure to MMS. 

However, MMS induces a variety of DNA lesions including base 

alkylation and generation of single- and double-strand breaks. 

Thus, we examined these cells after irradiation with UV light 

that generates a specifi c lesion, thymine dimers. We also exam-

ined the sensitivity of these cells to x rays because x rays and 

MMS are reported to induce double-strand breaks. As shown 

in Fig. 5 A (a), xrcc3/blm+hXRCC3 cells were as sensitive to 

x rays as xrcc3+hXRCC3 cells. The sensitivity of xrcc3/blm cells 

to x rays was not higher than that of either single mutant. Note 

that the x-ray sensitivity of xrcc3 cells was very mild compared 

with that of atm cells, which are sensitive to ionizing radiation 

(Takao et al., 1999). Similar results were previously reported with 

xrcc3 DT40 cells (Takata et al., 2001; Yonetani et al., 2005). 

However, hamster irsSF cells carrying a mutation in XRCC3 are 

reportedly sensitive to ionizing radiation (Liu et al., 1998; Hinz, 

et al., 2005). The relatively high rate of recombination in DT40 

cells may account for this inconsistency.

In contrast to their ionizing radiation sensitivity, xrcc3/
blm+hXRCC3 cells were mildly UV sensitive compared with 

xrcc3+hXRCC3 cells, and this sensitivity was suppressed by 

deletion of hXRCC3 to the level of xrcc3 cells (Fig. 5 A, b). Chromo-

somal aberrations increased gradually during incubation after 

UV irradiation (Fig. 5 B, a). Details of various types of chromo-

some aberration are shown in Fig. S2 C. Chiasmata began to 

appear 6 h after UV irradiation and their frequency increased 

thereafter (Fig. 5 B, b). This type of chromosomal aberration 

was increased in blm cells. Deletion of hXRCC3 suppressed var-

ious types of chromosome aberrations in xrcc3/blm+hXRCC3 

cells to the level seen in xrcc3 cells. This especially concerned 

chromosome-type aberrations that manifest gaps or breaks at the 

same positions on sister chromatids (Figs. 5 C [a] and S2 D). 

The induction of mitotic chiasmata by UV irradiation in xrcc3/
blm+hXRCC3 and xrcc3+hXRCC3 cells was almost completely 

suppressed by deletion of hXRCC3 (Fig. 5 C, b).

Discussion
Cells derived from BS patients exhibit elevated levels of SCE, 

interchange between homologous chromosomes, and sensitivity 

to several DNA-damaging agents. In this paper, we performed 

a systematic genetic analysis of mutant chicken DT40 cells to 

explore the function of BLM and identify a putative mechanism 

underlying the phenotype of BS cells.

We demonstrated that XRCC3 and RAD54 are required 

for the elevated levels of SCE and MMS- or UV-induced mitotic 
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chiasmata observed in blm cells. The MMS sensitivity of blm 

cells was partially suppressed by disruption of XRCC3, but 

not by disruption of RAD52, RAD54, WRN, RAD18, or KU70. 

The suppression of blm-associated phenotypes upon disruption of 

XRCC3, particularly cell viability and increased chromosomal 

aberrations, was clearly evident in response to UV irradiation. 

Thus, the increased frequency of SCE, the sensitivities to MMS 

and UV, and the elevated frequency of mitotic chiasmata are 

caused by the function of XRCC3.

BLM and TOP3𝛂 negatively regulate the 
formation of SCE by acting on substrates 
generated by XRCC3
It is noteworthy that BLM interacts with RAD51D as well as 

RAD51 (Wu et al., 2001; Braybrooke et al., 2003). To determine 

the relationship between BLM and RAD51 in SCE formation, 

we constructed rad51/blm+hRAD51 cells carrying a tetracycline-

repressible human RAD51 gene. Because RAD51 is essential 

for cell viability, we could not assay the sensitivity of rad51/blm 

Figure 4. MMS-induced chromosomal aberrations in mutant cells. (A and B) Chromosomal aberrations. Cells were cultured in the presence of 8 × 10−6 
(vol/vol) MMS for 4 h and transferred to fresh medium without MMS. Cells were harvested at the indicated times, and 200 cells in the fi rst metaphase were 
analyzed for chromosomal aberrations, as described in Materials and methods. (−) indicates spontaneous chromosomal aberrations. Data represents 
SEM. (A) xrcc3+hXRCC3 (“wild-type”), xrcc3/blm+hXRCC3 (“blm”), xrcc3, and xrcc3/blm cells. (B) Wild-type, blm, rad52, and rad52/blm cells. 
(C and D) MMS-induced mitotic chiasmata. Cells were treated as described in A and B. (C) Images of MMS-induced mitotic chiasma in cells 12 h after exposure 
to MMS. (a) Schematic of a mitotic chiasma. (b–f) Typical examples of mitotic chiasmata resulting from recombination between homologous chromosomes. 
The point of recombination between homologous chromosomes is indicated with an arrow. The numbers in the fi gures indicate the number of macro-
chromosomes. (D) 400 (a) and 200 (b) cells in the fi rst metaphase 12 h after MMS exposure were analyzed. Data represents SEM. (a) xrcc3+hXRCC3, 
xrcc3/blm+hXRCC3, xrcc3, and xrcc3/blm cells. There was a statistically signifi cant difference between xrcc3+hXRCC3 and xrcc3/blm+hXRCC3 cells 
(t test; *, P < 0.05). (b) Wild-type, blm, rad52, and rad52/blm cells.
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cells to DNA-damaging agents. We measured spontaneous SCE 

frequency under conditions of reduced hRAD51 expression. Under 

these conditions, we found that the elevated SCE frequency in 

blm cells was reduced considerably (Seki et al., 2006b). Next, to 

examine whether RAD51D functions like XRCC3, we generated 

rad51d/blm cells and found that, like XRCC3, RAD51D is re-

quired for the increased SCE frequency in blm cells (Fig. S4, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200702183/DC1).

Biochemical studies of BLM showed that it has DNA 

helicase and branch migration activities. More importantly, it has 

been reported that BLM and TOP3α can dissolve double HJs 

to form noncrossover products in vitro (Wu and Hickson, 2003). 

Thus, it is possible that double HJs are formed as a result of the 

ability of XRCC3, RAD51D, RAD51, and RAD54 to deal with 

lesions and that these structures are dissolved by BLM and TOP3α 

in a manner that does not result in crossovers (Fig. S5, available 

at http://www.jcb.org/cgi/content/full/jcb.200702183/DC1). 

Therefore, defects in BLM, TOP3α, or both cause an increase 

in crossing over when HJs are resolved by certain nucleases, 

resulting in an increase in SCE.

A possible mechanism for the increase 
of mitotic chiasmata in blm cells after 
exposure to MMS or UV
Mitotic chiasmata are the visual manifestation of crossover re-

combination involving homologous chromosomes (Fig. S3 B). 

The increase of mitotic chiasmata in blm cells seems to be 

caused by a defect in a function of BLM/TOP3α that resolves 

recombination intermediates and prevents their crossing over. 

However, it is also possible that the increased incidence of mi-

totic chiasmata in blm cells is caused by an increase in lesions 

leading to homologous recombination, because the elevated 

Figure 5. Suppression of UV sensitivity and UV-
 induced chromosomal aberrations in blm cells by 
disruption of XRCC3. (A) X-ray and UV sensitivities of 
xrcc3+hXRCC3 (“wild-type”), xrcc3/blm+hXRCC3 
(“blm”), xrcc3, xrcc3/blm, and atm cells (Takao et al., 
1999). Cells were irradiated with the indicated dose 
of x ray or UV. Colonies were counted after 10 d, and 
the percent survival was determined relative to the 
number of colonies derived from untreated cells. Rep-
resentative data are shown. The error bars indicate SD. 
The differences in the duplicated data were often so 
minute that the SD were hidden by the symbols in 
the fi gures. X-ray (a) and UV survival curves (b) are 
shown. (B) UV-induced chromosomal aberrations (a) and 
mitotic chiasmata (b) in wild-type and blm cells. Samples 
were prepared every 3 h after irradiation with 8 J/m2 UV. 
200 cells in the fi rst metaphase after UV irradiation 
were analyzed. Data represents the SEM. (C) UV- induced 
chromosomal aberrations (a) and mitotic chiasmata 
(b) in xrcc3+hXRCC3, xrcc3/blm+hXRCC3, xrcc3, 
and xrcc3/blm cells. Samples were prepared 12 h 
after irradiation with 8 J/m2 of UV. 200 (a) and 400 
(b) cells in the fi rst metaphase were analyzed. (−) indi-
cates spontaneous chromosomal aberrations. Data 
represents the SEM. There was a statistically signifi -
cant difference between xrcc3+hXRCC3 and xrcc3/
blm+hXRCC3 cells (t test; *, P < 0.05).
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level of mitotic chiasmata is very close to the elevated level of 

chromosomal aberrations.

The classical symmetrical quadriradial chromosomes 

often observed in human BS cells are identical to the mitotic 

chiasmata observed in the current study. A mitotic chiasma is 

a product of homologous recombination between homologous 

chromosomes. In fact, crossover recombination events involv-

ing homologous chromosomes have been observed in BS cells 

that carry different mutations in the two alleles of BLM, as indi-

cated by the appearance of the wild-type BLM gene during cell 

culture (Ellis et al., 1995). The recombination between homo l-

ogous chromosomes associated with crossovers may cause a loss 

of heterozygosity, which may underlie the predisposition to cancer 

observed in BS patients.

A possible mechanism for the suppression 
of the MMS and UV sensitivity of blm cells 
by disruption of XRCC3
In a previous paper, we demonstrated that blm/rad54 double 

mutant cells are more sensitive to MMS than either of the corres-

ponding single mutants (Fig. 3; W. Wang et al., 2000). XRCC3, 

RAD51B/C/D, and XRCC2 are RAD51 paralogues. In this paper, 

we found that disruption of XRCC3 but not RAD51D (Fig. S4) 

suppresses the sensitivity of blm cells to both MMS and UV ir-

radiation, suggesting that BLM functions downstream of XRCC3. 

However, XRCC3 disruption exerted only a partial effect on MMS 

sensitivity, indicating that BLM also functions in an XRCC3-

independent pathway. It is noteworthy that XRCC3 and RAD51D 

play similar but independent roles in the response to DNA damage 

(Yonetani et al., 2005). Thus, the discrepancy between the 

effects of the XRCC3 deletion and the RAD51D deletion on the 

DNA damage sensitivity of blm cells could be caused by certain 

differences derived from these independent roles.

Mutant xrcc3/rad54 cells showed higher sensitivity to 

MMS than either of the corresponding single mutants. One possi-

ble model that could explain the data is shown in Fig. 6 A. 

RAD51-mediated homologous recombination is probably initi-

ated by many homologous recombination-related proteins and 

RAD51 paralogues, including XRCC3. The functions of the 

RAD51 paralogues could be supported by the RAD52 backup 

system (Fujimori et al. 2001), and the search and invasion of 

homologous regions by the DNA associated with RAD51 fi la-

ments could be supported by RAD54/RAD54B. HJs could be 

dissolved by BLM/TOP3α to avoid the formation of crossovers. 

As XRCC3 reportedly resolves HJs, it seems possible that 

XRCC3 would also function in the resolution of HJs (Liu et al., 

2004) with the formation of crossovers. Accordingly, in the 

absence of BLM/TOP3α, XRCC3 would resolve HJs, resulting in 

increased SCE. This conjecture is supported by the observation 

that no high incidence of SCE is observed in blm/xrcc3 cells in 

the absence of both BLM and XRCC3. The higher sensitivity of 

the blm/rad54 and xrcc3/rad54 cells to MMS and UV compared 

with that of each mutant alone could be also explained by this 

model, assuming that RAD54B acts as a backup system in these 

circumstances. In addition, the suppression of the high SCE fre-

quency and increased sensitivities of blm cells to MMS and UV 

by the XRCC3 disruption could also be explained by this model 

if XRCC3 functions upstream of BLM. However, this model 

does not necessarily explain all the data obtained in this study.

However, there is another explanation for the suppression 

of SCE and blm cell sensitivity to DNA-damaging agents by the 

XRCC3 disruption. Specifi c DNA damage produced by defects 

in BLM/TOP3α could require XRCC3 to initiate unnecessary 

homologous recombination that could lead to increased sensi-

tivity to DNA-damaging agents or an increase in SCE. If there 

were no such initiation, the recombination induced by the defect 

in XRCC3 wouldn’t cause cells to die or produce SCE.

We prefer the alternative model shown in Fig. 6 B to ex-

plain the suppression of the sensitivity of blm cells to DNA-

damaging agents by XRCC3 disruption. Interestingly, in fi ssion 

yeast, the deletion of the human RAD51D or XRCC2 (another 

RAD51 paralogue) homologues rdl1 or rlp1 suppresses the UV 

and MMS sensitivity of an rqh1 disruptant, the S. pombe BLM 

homologue deletion mutant (Martin et al., 2006). Moreover, it is 

noteworthy that mutation of SGS1, the budding yeast homo-

logue of BLM, leads to RAD51-dependent accumulation of cruci-

form structures when replication forks encounter DNA lesions 

on the template strand (Liberi et al., 2005; Branzei et al., 2006). 

Based on this observation, a model has been proposed in which 

stalled or failed replication forks are converted by RAD51 to 

 intermediates that possess a pseudo double HJ, which is sub-

sequently dissolved by Sgs1 and Top3α to restore the replication 

fork. This model proposes a novel, error-free lesion bypass system. 

In the context of this model, our results suggest that XRCC3 

is involved in the formation of pseudo double HJs, which are 

Figure 6. Model of a role for BLM in the XRCC3-related damage tolerance 
pathway. (A) A model based on canonical recombination pathways. (B) A 
model for a damage tolerance pathway involving XRCC3 and BLM based 
on the S. cerevisiae model proposed by Liberi et al. (2005) and Branzei 
et al. (2006).
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dissolved by BLM and TOP3α, resulting in the restoration of 

replication forks (Fig. 6 B). The failure to dissolve pseudo double 

HJs in blm cells stabilizes these structures and results in DNA 

breaks, which manifest themselves as chromosomal aberrations. 

Disruption of XRCC3 suppresses the formation of detrimental 

intermediates in the absence of normal BLM function, leading to 

suppression of MMS and UV sensitivity and decreased numbers 

of MMS- and UV-induced chromosomal aberrations. XRCC3, 

but not RAD54, is required for slowing replication fork pro-

gression after exposure to DNA-damaging agents, such as UV 

and cisplatin (Henry-Mowatt et al., 2003). Although the mecha-

nism underlying this phenomenon has not been addressed, 

this model provides a putative explanation. Upon activation of 

the XRCC3/BLM-dependent error-free lesion bypass pathway, 

progression of the replication fork halts until the repair process 

is completed. In the absence of XRCC3, replication proceeds, 

bypassing DNA lesions and generating gaps, as observed in 

yeast cells. Remaining lesions are bypassed or repaired by trans-

lesion synthesis or other mechanisms (Lopes et al., 2006). Recently, 

it has been reported that the MMS and UV sensitivity of rad18 

cells is also suppressed by disruption of XRCC3 (Szuts et al., 

2006). Our results indicate that BLM and RAD18 function in a 

different pathway upon exposure to MMS (Fig. 3 A). Thus, 

elucidation of the relationship between the XRCC3–BLM and 

XRCC3–RAD18 pathways should provide a more comprehen-

sive view of DNA lesion–avoidance systems involving XRCC3, 

BLM, and RAD18.

Materials and methods
Cell culture and DNA transfection
Cells were cultured in RPMI 1640 supplemented with 10% fetal bovine 
serum, 1% chicken serum (Sigma-Aldrich), and 100 μg kanamycin/ml at 
39.5°C. For gene targeting, 107 DT40 cells were electroporated with 30 μg 
of linearized targeting constructs using a Gene Pulser apparatus (Bio-Rad 
Laboratories) at 550 V and 25 μF. Drug-resistant colonies were selected 
in 96-well plates. Genomic DNA was isolated from drug-resistant clones. 
Gene disruption was confi rmed by RT-PCR.

For generating double or triple mutants of xrcc3 with mutations in BLM, 
WRN, and/or RAD54, these genes were disrupted in conditional xrcc3 
cells as described in Fig. 1. After gene disruption, the hXRCC3 expression 
cassette was excised by Cre recombinase activated by 4-hydroxytamoxifen 
(Ishiai et al., 2004). The BLM gene was also disrupted in rad52, ku70, and 
rad18 cells. The cell strains used in this study are summarized in Table I.

RT-PCR analysis
Total RNA was isolated using TRIzol (Invitrogen) and converted to 
cDNA with SuperscriptIII (Invitrogen). A part of each gene was amplifi ed 
with Ex Taq polymerase. Primers were used to amplify hXRCC3 (sense, 
5′-G A T T T G G A T C T A C T G G A C C T G A A T C C C A G -3′; antisense, 5′-G A G C-
T G C G T C C G G C C A G C T C A G T G A T G -3′), BLM (sense, 5′-A C C A G C G T G-
T G T C T C T G C T G -3′; antisense, 5′-C T A C A G A T T T T G G A A G G G A A G C -3′), 
WRN (sense, 5′-C A G T G G A A A G T G A T A C A T T C T G T T T T A G A A G A C -3′; 
anti sense, 5′-C A C C T G C A A T T A T C A C A G C A C T C T T C -3′), RAD54 (sense, 
5′-C T G G C C A A G A G G A A G G C G G G C G G C G A G G A -3′; antisense, 5′-T T A-
G G G A A T C C C T C G C T G C T C T T C A T G G G -3′), RAD52 (sense, 5′-C G G C T C-
A T A C C A T G A A G A T G T G G G -3′; antisense, 5′-C C T G T T A C G A G T T G T C A T C-
T G G T G A C G -3′), KU70 (sense, 5′-C C A G C A A A A T T A T T A G T A G T G A C A A G-
G A T C T G -3′; antisense, 5′-C T G C A T A T G G T A G G A A A A T G A T G T G G A A A C C -3′), 
RAD18 (sense, 5′-C C C A T A A C T A T T G T T C C C T T T G C A T A C G G -3′; antisense, 
5′-G G G A T T T A G A G A A T C A C A C T G A G C A T T A T A C A C G T G C -3′), and RECQL1 
(sense, 5′-A T G A C A G C T G T G G A A G T G C T A -3′; antisense, 5′-T C A G T C A A-
G A A C A A C A G G T T G G T C A T C T C -3′; as a control) by RT-PCR.

Table I. DT40 strains used in this study

Genotype Disrupted gene (selective marker) Expression plasmid Reference

blm BLM (His/Bsr) W. Wang et al., 2000

wrn WRN (His/Bsr) Imamura et al., 2002

rad52 RAD52 (His/Bsr) Yamaguchi-Iwai et al., 
1998

ku70 KU70 (His/Bsr) Takata et al., 1998

rad18 RAD18 (His/Hyg) Yamashita et al., 
2002

top3α TOP3α (Neo/His) FLAG-mTOP3α: Hyg Seki et al., 2006a

top3β TOP3β (Puro/Bsr) Seki et al., 2006a

atm ATM (Neo/Puro) Takao et al., 1999

rad52/blm RAD52 (His/Bsr), BLM (Hyg/Puro) This study

ku70/blm KU70 (His/Bsr), BLM (Hyg/Neo) This study

rad18/blm RAD18 (His/Hyg), BLM (Bsr/Neo) This study

top3α/blm TOP3α (Neo/His), BLM (Puro/Bsr) FLAG-mTOP3α: Hyg Seki et al., 2006a

top3β/blm TOP3β (Puro/Bsr), BLM (Neo/His) Seki et al., 2006a

xrcc3+hXRCC3 XRCC3 (His/Bsr) hXRCC3: Neo Ishiai et al., 2004

xrcc3 XRCC3 (His/Bsr) Ishiai et al., 2004

xrcc3/blm+hXRCC3 XRCC3 (His/Bsr), BLM (Eco/Puro) hXRCC3: Neo This study

xrcc3/blm XRCC3 (His/Bsr), BLM (Eco/Puro) This study

xrcc3/wrn+hXRCC3 XRCC3 (His/Bsr), WRN (Eco/Puro) hXRCC3: Neo This study

xrcc3/wrn XRCC3 (His/Bsr), WRN (Eco/Puro) This study

xrcc3/wrn/blm+hXRCC3 XRCC3 (His/Bsr), WRN (Eco/Puro), BLM (Bleo/Hyg) hXRCC3: Neo This study

xrcc3/wrn/blm XRCC3 (His/Bsr), WRN (Eco/Puro), BLM (Bleo/Hyg) This study

xrcc3/rad54+hXRCC3 XRCC3 (His/Bsr), RAD54 (Hyg/Puro) hXRCC3: Neo This study

xrcc3/rad54 XRCC3 (His/Bsr), RAD54 (Hyg/Puro) This study

xrcc3/blm/rad54+hXRCC3 XRCC3 (His/Bsr), BLM (Eco/Puro), RAD54 (Hyg/Bleo) hXRCC3: Neo This study

xrcc3/blm/rad54 XRCC3 (His/Bsr), BLM (Eco/Puro), RAD54 (Hyg/Bleo) This study

Bleo, bleomycin; Bsr, blasticidin; Eco, ecogpt; His, histidinol; Hyg, hygromycin; Neo, neomycin; Puro, puromycin.
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Measurement of spontaneous SCE
5 × 105 cells were cultured for two cycles in a medium containing 10 μM 
BrdU and pulsed with 0.1 μg/ml colcemid for 2 h. The cells were har-
vested and treated with 75 mM KCl for 12 min at room temperature and 
fi xed with methanol-acetic acid (3:1) for 30 min. The cell suspension was 
dropped onto wet glass slides and air dried. The cells on the slides were 
incubated with 10 μg/ml Hoechst 33258 stain in phosphate buffer, 
pH 6.8, for 20 min and rinsed with MacIlvaine solution (164 mM Na2HPO4 
and 16 mM citric acid, pH 7.0). The cells were exposed to a black light 
(352 nm) at a distance of 1 cm for 30 min, incubated in 2× SSC (0.3 M 
NaCl and 0.03 M sodium citrate) at 58°C for 20 min, and stained with 3% 
Giemsa solution (Merck) for 25 min.

Measurement of sensitivity to MMS, UV, and x rays
To determine MMS sensitivity, 4 × 102 cells were inoculated into 60-mm 
dishes containing various concentrations of MMS in a medium supplemented 
with 1.5% (wt/vol) methylcellulose, 15% fetal bovine serum, and 1.5% 
chicken serum. For UV sensitivity, cells were suspended in 1 ml phosphate-
buffered saline, inoculated into 6-well plates, and irradiated with various 
doses of UV. For x-ray sensitivity, cells were suspended in 1 ml phosphate-
buffered saline, inoculated into 1.5-ml tubes, and irradiated with various 
x-ray doses. UV- or x-irradiated cells were inoculated into 60-mm dishes 
containing a medium supplemented with 1.5% (wt/vol) methylcellulose, 
15% fetal bovine serum, and 1.5% chicken serum. Colonies were counted 
after 7–14 d, and the percent survival was determined relative to the num-
ber of colonies of untreated cells. We performed the same survival experi-
ments several times (Fig. S1). After confi rming that all the data gave similar 
results, we presented representative data (Fig. S1, surrounded by red square). 
In each experiment, we tested each cell genotype in duplicate.

Detection of chromosomal aberrations
Cells were treated with 0.1 μg/ml colcemid the last 2 h to increase meta-
phase-arrested cells and were harvested at the indicated time points.  Harvested 
cells were treated with 75 mM KCl for 12 min at room temperature and fi xed 
with methanol-acetic acid (3:1) for 30 min. The cell suspension was dropped 
onto wet glass slides, air dried, and stained with 3% Giemsa solution, pH 6.8, 
for 25 min, and the cells were examined by light microscopy.

To enumerate MMS- and UV-induced chromosomal aberrations, cells 
were cultured in the presence of 10 μM BrdU. Incorporation of BrdU into sis-
ter chromatids was used to discriminate fi rst and second metaphase, and only 
chromosomal aberrations occurring during fi rst metaphase were counted.

All images of mitotic chiasma were collected with a camera (Cool-
SNAP; Photometrics) mounted on a microscope (BX50F; Olympus). CoolSNAP 
version 1.2.0 (Roper Scientifi c) was used for image acquisition.

Online supplemental material
Fig. S1 shows survival curves of various mutant cells exposed to MMS. 
Fig. S2 shows the classifi cation of chromosomal aberrations. Fig. S3 shows 
mitotic chiasma. Fig. S4 shows characterization of rad51d/blm cells. Fig. S5 
is a schematic model of SCE formation. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200702183/DC1.
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