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Malaria represents a significant public health burden to populations living in developing
countries. The disease takes a relevant toll on pregnant women, who are more prone to
developing severe clinical manifestations. Inflammation triggered in response to P.
falciparum sequestration inside the placenta leads to physiological and structural
changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events
have been associated with poor gestational outcomes, such as intrauterine growth
restriction and premature delivery, contributing to the parturition of thousands of African
children with low birth weight. Despite significant advances in the field, the molecular
mechanisms that govern these outcomes are still poorly understood. Herein, we discuss
the idea of how some housekeeping molecular mechanisms, such as those related to
autophagy, might be intertwined with the outcomes of malaria in pregnancy. We
contextualize previous findings suggesting that placental autophagy is dysregulated in
P. falciparum-infected pregnant women with complementary research describing the
importance of autophagy in healthy pregnancies. Since the functional role of autophagy in
pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for
circumventing inflammation-induced stress in the placenta, acting as a cytoprotective
mechanism that attempts to ensure local homeostasis and better gestational prognosis in
women with malaria in pregnancy.
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POOR PREGNANCY OUTCOMES DUE TO DYSREGULATION OF
PLACENTAL HOMEOSTASIS IN WOMEN WITH MALARIA
IN PREGNANCY

Malaria represents a burden for multiple communities worldwide. Despite continuous
eradication efforts, 241 million cases were recorded in 2020, resulting in approximately 627
thousand deaths. The disease affects mostly African children and pregnant women, who are
highly susceptible to developing severe disease resulting from P. falciparum infections (1).
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Malaria in pregnancy (MiP) is often neglected, yet in 2019,
the World Health Organization raised awareness of this
issue, describing MiP as “a significant public health
problem”. In 2020, the disease affected nearly 12 million
African women who gave birth to more than 800 thousand
babies with low birth weight, contributing to high infant
mortality (1, 2).

P. falciparum infections during pregnancy often lead to
poor outcomes, such as maternal and fetal mortality, anemia,
fetal growth restriction, preterm delivery, and low birth
weight (3, 4). Disease susceptibility varies according to P.
falciparum endemicity spectrum, as pregnant women living in
high transmission settings tend to have symptomless
infections due to recurrent exposure during pregnancy.
Nevertheless , women in their firs t pregnancy may
experience more severe symptoms due to low immunity (5).
Immunity is governed by protective antibodies to VAR2CSA
(6, 7), which mediates the binding of P. falciparum-infected
erythrocytes to chondroitin sulfate A, abundantly expressed
by trophoblasts in the placenta (8, 9). This event promotes
parasite sequestration inside this organ, which characterizes
placental malaria (PM) (10). Trophoblasts (and eventually
maternal monocytes) in the placenta recognize P. falciparum
antigens, activating innate immune responses, which
culminate with the production of chemokines such as MIP-
1a, MCP-1, I-309, and IL-8 (responsible for monocyte
recruitment) and cytokines, such as IFN-g, TNF-a, IL-2, IL-
6, IL-10, and IL-1b, which are frequently found in placentas
from P. falciparum-infected women (11–15). Inflammation is
known to control infection, yet it is etiologically linked to poor
outcomes (16, 17) since both placental monocytes and
cytokines have been associated with maternal anemia,
pregnancy loss, preterm delivery, and low birth weight in
children born to P. falciparum-infected women (13, 14,
18–20).

The placenta ensures immunological tolerance to the
maternal immune system (21), promotes nutrient and gas
exchanges between the mother and the fetus (22), and works
as a physical and immunological barrier against pathogens
(23). These properties are lost during infections due to
significant tissue disarrangement. P. falciparum-infected
placentas often suffer from histological modifications, such
as the presence of malarial pigment hemozoin, leukocyte
infiltrate, syncytial nuclear aggregates, fibrinoid necrosis,
and trophoblast barrier thickening (24–26). Therefore, it is
possible that this reflects local homeostasis dysregulation,
which would predict fetal growth restrictions due to
placental insufficiency resulting from impaired placental
blood flow and vasculogenesis/angiogenesis, hypoxia,
oxidative stress, and reduced transplacental nutrient
transportation (3, 27).

Although several factors are known to be associated with
MiP outcomes, the molecular mechanisms involved in disease
pathogenesis are still unclear. Therefore, it is possible that
other mechanisms less studied to date, such as those involving
autophagy, might be linked to MiP pathogenesis.
Frontiers in Immunology | www.frontiersin.org 2
AUTOPHAGY

Regulation and Function in Homeostatic
and Stressful Conditions
Autophagy is conventionally known as a conserved mechanism of
lysosomal degradation of cytoplasmic components and is involved
in cellular differentiation and development (28), homeostasis and
survival (29). It can be activated in response to a plethora of stress-
inducing agents that range from starvation, hypoxia, oxidative stress
and damaged organelles to immune activation and pathogens,
promoting degradation of undesired microorganisms, nutrient
recycling, and organelle turnover (29–31) (Figure 1). In
mammalian cells, the most well studied type of autophagy is
macroautophagy (hereafter referred to simply as autophagy),
which relies on the de novo formation of a vesicular structures
capable of selecting and transporting cargo to lysosomes for
degradation (32). Proteins transcribed by autophagy-related genes
(ATGs) tightly regulate this process, which is primarily
characterized by the formation of an intermediate double-
membrane structure (phagophore) that surrounds specific cargo
(forming the autophagosome), ultimately fusing with lysosomes
(autolysosomes), which promote content digestion (29). The system
seems to be redundant, as different triggers converge to activate
almost identical transduction pathways inside cells (31). At its core,
autophagy is regulated by at least some primary core complexes
(Figure 1A): 1) the ULK complex (2), the Beclin1 interactome, 3)
ATG9 and VMP1 transmembrane proteins, 4) two ubiquitin-like
conjugation systems associated with ATG12 and LC3, and 5)
autophagosome-lysosome fusion mediators (i.e., Rab7). Some of
these components can be directly activated by distinct stress-
inducing signals, likely ending with autophagosome-lysosome
fusion and digestion of inner-vesicle cargo (29).

Several molecules can induce autophagy in response to
starvation (Figure 1B); however, the best studied are those
associated with mTOR, which constitutively inhibits autophagy in
homeostasis. Signals such as starvation, energy depletion, absence of
growth factors and amino acids, are transduced by AMPK or AKT
kinases, leading to mTOR inhibition (29, 33). Consequently, ULK1
complex activation occurs, promoting Beclin1 interactome
phosphorylation, which enables PI3K Vps34 to produce PI3P,
relevant to phagophore isolation from intracellular membrane
structures such as the endoplasmic reticulum (ER) (34, 35). In
parallel, ATG9 and VMP1 are responsible for lipid recruitment to
the isolated membrane, participating in its biogenesis (29).
Afterward, phagophore elongation and maturation occurs, which
depends on two ubiquitin-like conjugation systems: 1) the
oligomeric ATG12-ATG5-ATG16 complex and 2) LC3 (LC3I),
after being conjugated with a phosphatidylethanolimine (LC3II),
which together promote phagophore elongation and membrane
closure to form the autophagosome (29, 35). Selective autophagy
occurs in response to misfolded proteins and damaged organelles,
which are targeted for degradation by sequestosome-like proteins
such as SQSTM1/p62 and BNIP3. These proteins, which have LC3-
interacting regions, recognize ubiquitinated proteins and damaged
mitochondria, for instance, taking them to the emerging
autophagosome to be engulfed (29, 36).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barateiro et al. Autophagy During Malaria in Pregnancy
Other kinases that also regulate starvation-induced
autophagy, such as JNK1 and eIF2a, initiate autophagy in
response to oxidative and ER stress, and hypoxia (Figure 1B).
eIF2a transduces stress signals imposed by ER-misfolded
proteins, reduced oxygen levels and increased levels of reactive
oxygen species (ROS). Hypoxia and ROS can also induce
autophagy via JNK1 (29). Additionally, hypoxia induces
autophagy via HIF by weakening the Bcl2 inhibitory
interaction with Beclin1 or by inducing BNIP3 to deliver
mitochondria for autophagic degradation (29, 37). Abnormal
membrane potential in damaged mitochondria (Figure 1B),
Frontiers in Immunology | www.frontiersin.org 3
which are potent autophagy inducers, can also be sensed by
voltage-dependent kinases, inducing ubiquitination of
mitochondrial proteins, which are subsequently targeted by
SQSTM1/p62 and BNIP3, directing mitochondria to be
degraded by autophagy (29, 38). Apoptosis (Figure 1B), which
is often a consequence of mitochondrial damage, can be
counteracted by autophagy, both occurring almost in a
mutually exclusive manner. Upon dissociation from Bcl2,
Beclin1 induces autophagy via PI3K Vps34 (34), while Bcl2
inhibits apoptosis by counter regulating mitochondrial
membrane permeabilization (39, 40). This supports
B

A

FIGURE 1 | Schematic representation of autophagy in mammalian cells. (A) Autophagy proceeds through a series of events that begin with phagophore formation,
elongation, and maturation into an autophagosome. The autophagosome fuses with a lysosome to form the autolysosome, followed by the degradation of selected
cargo. Autophagy is tightly regulated by protein complexes produced from autophagy-related genes (ATGs) and its execution relies mostly on ULK1 and Beclin1
complexes (phagophore isolation), ATG9 and VMP1 (phagophore elongation), the ATG12 complex and LC3 (phagophore maturation into autophagosomes), and
Rab7 GTPase (autophagosome-lysosome fusion for autophagy completion). (B) Cells transduce distinct signals that equally induce autophagy. Starvation, growth
factor and amino acid depletion induces autophagy via AMPK and AKT, which blocks the inhibitory action of mTOR over the autophagy inducers ULK1 and Beclin1.
Oxidative stress and hypoxia induce autophagy via elf2a, JNK1 and HIF, being the latter responsible for disrupting the inhibitory action of Bcl2 over Beclin1.
Damaged organelles such as mitochondria induce autophagy, which digests damaged organelles and prevents cells death resulting from apoptosis. Immune system
activation induces autophagy via TLR signaling upon pathogen sensing by destabilizing Bcl2-Beclin1 interaction. Autophagy is also activated or inhibited by TNF-a
and IL-10, respectively. Inflammasome activity also induces autophagy, which works to counteract its overactivation resulting from excessive inflammatory signals.
Pathogens directly induce autophagy, besides activating the immune system, which suppresses pathogen development by directly targeting them for degradation.
ROS, reactive oxygen species; TLR, Toll-like receptor.
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autophagy’s role as a cytoprotective mechanism that can
circumvent cell death by abrogating manageable levels of
cellular stress (41, 42).

Innate immunity (Figure 1B) also modulates autophagy,
especially in the context of infections. Since infections have
been linked to nutritional stress, it is plausible to hypothesize
that evolution led to the development of cellular mechanisms
shared between the immune system and autophagy (31). TLRs
trigger autophagy via TRIF/MyD88 signaling, weakening the
Bcl2-Beclin1 interaction, which normally represses autophagy
(43). Likewise, NLRs were also shown to induce autophagy by
activating ATG16L1 in response to bacterial infections (44).
Immune system activation by pathogens frequently culminates
in cytokine production and inflammation. As such, autophagy
can be activated to 1) attenuate inflammation by controlling
immune system activation or 2) directly destroying pathogens
(30, 31, 45). Th1 proinflammatory cytokines, such as TNF-a, are
produced during infections and contribute to autophagy
induction by mechanisms that are still poorly understood (46).
TNF-a was shown to induce LC3 transcription and conversion
into LC3II, Beclin1 synthesis and autophagosome accumulation
in human muscle cells (47, 48). In addition, elimination of
intracellular pathogens such as T. gondii, Shigella spp., and
Listeria spp. by autophagy can also be tuned by TNF-a,
supporting the role of proinflammatory cytokines in
autophagy-dependent pathogen clearance (49, 50). On the
other hand, Th2 cytokines, such as IL-10, are known to inhibit
autophagy (46). IL-10 activation of its specific receptor was
shown to inhibit LPS- (51) and starvation-induced autophagy
in a PI3K- and AKT-dependent process (52).

Inflammation often promotes tissue damage while attempting
to clear infections. Therefore, autophagy can be cytoprotective by
degrading deleterious stimuli and controlling inflammation
(Figure 1B). Autophagy-inflammasome interplay might
represent the best example of how autophagy modulates
inflammation (53, 54). Autophagy is known to negatively
regulate inflammasomes and IL-1b production (54). NLRP3
and IL-1b levels were shown to be increased in ATG16L1
knockout mice challenged with bacterial toxins, suggesting a
negative regulation of the NLRP3 inflammasome by autophagy
(55). This probably occurs due to direct targeting of
inflammasome-associated proteins for degradation. AIM2,
ASC, Caspase-1, and IL-1b were shown to increase during
autophagy inhibition, which was shown to be dependent on
ubiquitination and SQSTM1/p62 selection (56, 57).
Alternatively, autophagy can target pathogens for degradation
(Figure 1B). It was shown that Sindbis and Chikungunya viral
proteins (58, 59) and bacteria such as L. monocytogenes and S.
typhimurium (60, 61) are selected by SQSTM1/p62 for
autophagic degradation. To a similar extent, intracellular
parasites such as Plasmodium spp. and T. gondii are also
targeted by autophagy (62). However, unlike conventional
autophagy, proteins such as LC3 may directly coat the
parasitophorous vacuole instead of directing the parasite to be
enwrapped by autophagosomes in a process known as LC3-
associated phagocytosis (62).
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Autophagy has an important role in maintaining tissue
homeostasis in response to nutritional, oxidative and
immunological stress. Likewise, gestation demands significant
levels of placental plasticity and adaptation to ensure
fetal development (63). Therefore, placental autophagy
is likely to be fundamental to a healthy pregnancy,
maintaining local homeostasis in response to metabolic and
immunological stressors with the potential to jeopardize
healthy gestational outcomes.

Placental Autophagy in Healthy and
Complicated Pregnancies
The role of placental autophagy during gestation is unclear.
However, it is believed that placental autophagy functions as a
survival mechanism while maintaining local homeostasis (64),
opposing the misleading definition that classifies autophagy as a
cell death mechanism (41). Embryonic development was
reported to be autophagy dependent, as genetic ablation of
ATG5 (65), Ambra1 (66), and Beclin1 (67) promotes
embryonic lethality by impairing germinal and embryonic
development. Knocking-out genes, such as Atg3, Atg9, Atg16l1
and Atg7, failed to induce embryonic lethality but promoted
neonatal death after birth (28). Despite current knowledge on
this topic, the mechanisms leading to poor outcomes in
autophagy-deficient pregnant mice are still unclear.

Logically, one could expect autophagic abnormalities in
complicated pregnancies. In uncomplicated pregnancies,
placental levels of Beclin1 and LC3 should not vary
significantly throughout gestation (68). However, the same is
not true during pregnancy-related disorders. Preeclamptic
women, for instance, who often experience hypertension,
placental insufficiency, fetal growth restrictions and preterm
delivery (69), frequently exhibit placental autophagy
dysregulation. Increased LC3II and Beclin1 levels and
diminished SQSTM1/p62 levels were found in placentas from
preeclamptic women with fetal growth restrictions, suggesting
overinduction of placental autophagy (70–73). Accordingly,
autophagy was hypothesized to be etiologically linked to these
outcomes during preeclampsia (71, 73, 74). However, pregnant
mice knockout for Atg7 and Atg9a present preeclamptic-like
symptoms and evidence of fetal growth restrictions, suggesting
that functional autophagy is necessary for healthy gestations (75–
77). The reason that placental autophagy is induced above basal
levels during complicated pregnancies remains a mystery.
Evidence indicates that autophagy is activated in response to
hypoxia, protein aggregation, and oxidative stress or to maintain
local homeostasis in response to inflammation (74, 78).

Other studies have shown an apparent link between impaired
autophagy and inflammation-induced preterm labor. Women
experiencing preterm delivery due to infection-induced
inflammation have impaired placental autophagy, characterized
by reduced levels of ATG16L1 and LC3II and increased levels of
SQSTM1/p62 (79). Likewise, downregulation of placental
autophagy genes such as Atg4c, Atg7, and LC3B was also
reported in a murine model of inflammation-induced preterm
delivery (80). Since delivery itself (either preterm or at term)
July 2022 | Volume 13 | Article 931034
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relies on mechanisms of inflammation, such as the secretion of
proinflammatory cytokines such as IL-1b (81, 82), its
exacerbation frequently results in labor anticipation; therefore,
counterregulatory mechanisms are necessary to ensure placental
homeostasis. Since autophagy was shown to downregulate
inflammasomes, for instance (54–57), it is plausible to
hypothesize that it might participate in the regulation of
placental inflammation. In fact, one study reported diminished
levels of Beclin1, ATG3, ATG5, ATG12 and ATG16L1 in
placental tissue after spontaneous delivery. Ex vivo stimulation
of this tissue with LPS led to increased liberation of IL-1b that
was augmented by autophagy inhibition and attenuated during
autophagy induction, suggesting that this homeostatic process
downmodulates placental inflammation in preterm
deliveries (83).

Therefore, placental autophagy might have a cytoprotective
role against stress induced during pregnancy (64). In addition,
studies have provided evidence of a link between infection-
induced inflammation during pregnancy and placental
autophagy (79, 80), which might be critical for dysregulating
placental homeostasis, contributing to poor outcomes during
pregnancy-related diseases, such as MiP.
IS THERE A ROLE FOR PLACENTAL
AUTOPHAGY IN MiP?

Evidence of Placental Autophagy
Dysregulation in Pregnant Women
With Malaria
Low birth weight in MiP is known to have a multifactorial
etiology. A combination of impaired placental perfusion,
dysfunctional endocrine signaling and transplacental nutrient
transportation seems to be the most significant cause (3).
However, a link between placental autophagy and MiP
pathogenesis was established, especially in the context of local
inflammation. Placental intervillositis (monocyte infiltrate in
the tissue) during MiP was shown to be associated with low
birth weight and reduced IGF levels, a hormone with significant
importance to fetal growth and transplacental nutrient
transportation (3, 84). Accordingly, it was observed that
placental inflammation characterized by the presence of
cytokines such as IL-1b and intervillositis was also associated
with decreased expression of amino acid and glucose
transporters, and low birth weight (85, 86). It was
hypothesized that reduced transplacental nutrient uptake due
to decreased expression of nutrient transporters was controlled
by mTOR as a consequence of diminished levels of circulating
IGF and local inflammation (63, 87). Kinases rpS6, 4E-BP1, and
AKT (mTOR targets) phosphorylation levels were diminished
in placentas from women with MiP-associated intervillositis
and constitutive mTOR activation in trophoblasts was shown to
upregulate amino acid transporter activity even when incubated
with conditioned culture medium from monocytes co-cultured
with P. falciparum-infected erythrocytes, proving the existing
link between mTOR activity, downregulation of transplacental
Frontiers in Immunology | www.frontiersin.org 5
amino acid transport and MiP-associated intervillositis (88).
Although autophagy activation is directly associated with
mTOR inhibition in the absence of nutrients and growth
factors (29), no hypotheses were raised at that time.
Afterward, evidence of placental autophagy dysregulation in
P. falciparum-infected women was presented. Placental
parasitemia and intervillositis were associated with increased
LC3II protein levels and autophagosomes/lysosomes in the
placenta (induced autophagy); however, reduced Rab7 and
unaltered SQSTM1/p62 levels supported autophagy blockage
with consequent impaired degradation of autophagosome
content (89). Likewise, our findings suggested abnormal
autophagy regulation in placentas from P. falciparum-infected
women, characterized by reduced ULK1 , BECN1 and
MAP1LC3B mRNA levels and reduced ULK1, Beclin1 and
LC3II protein levels. These differences were more prominent
in placentas diagnosed with PM, which experience higher levels
of local inflammation (90).

Despite evidence supporting the existence of impaired
placental autophagy during MiP, its role in disease
pathogenesis remains unclear . Dissecting placental
autophagy’s role during MiP is extremely important to
understand whether this mechanism has a pathogenic or a
cytoprotective function that can be exploited to improve
MiP prognosis.

Hypothetical Modulators of Placental
Autophagy During MiP
One can consider that parasite virulence factors such as
VAR2CSA and microvesicles might have a role on placental
autophagy modulation. Pregnant women diagnosed with PM
(VAR2CSA-dependent sequestration of infected erythrocytes)
experience a significant modulation of autophagy when
compared to women without PM (90). Additionally, infected
erythrocytes selected for binding trophoblasts activate JNK1 in
these cells (12), which is a known autophagy inducer (29).
However, experiments with null-VAR2CSA parasites were
missing so we cannot rule out the hypothesis that observed
effects might still occur in a binding independent manner and
simply due to parasite antigen recognition. Plasmodium-
derived microvesicles, which carry parasite-derived antigens
and activate the immune system, are transferred to astrocytes
by LC3-associated phagocytosis, with implications to
neuroinflammation and cerebral malaria pathogenesis (91).
Besides, microvesicles can also trigger inflammation by
activating TLR4-MyD88 axis (92), which is linked to
autophagy modulation as previously discussed. Although we
cannot discard the hypothesis that some of these virulence
factors regulate autophagy, it seems that placental autophagy
during MiP is mostly modulated by immune signals and
inflammation with possible implications to disease
pathogenesis (Figure 2).

During MiP, trophoblasts produce chemokines upon
parasite recognition, recruiting monocyte-producing
cytokines and ROS to clear local infection. However,
excessive inflammation downregulates IGF signaling and
July 2022 | Volume 13 | Article 931034
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glucose/amino acid transportation, activating autophagy upon
mTOR inhibition (85, 86, 88, 89). Autophagy might also be
triggered upon parasite sensing by TLRs (92), which induce
autophagy through the MyD88-TRIF interaction with the Bcl2-
Beclin1 complex (43). In fact, TLR-MyD88 signaling, which
initiates inflammation by promoting the production of
cytokines such as TNF-a, and IL-1b (by inducing its
transcription and posttranslational maturation through the
inflammasomes), is implicated in the outcomes of MiP, since
genetic depletion of TLR4 and MyD88 improves pregnancy
outcomes in an experimental murine model of MiP (93–96). In
Frontiers in Immunology | www.frontiersin.org 6
parallel, MiP-associated hypoxia and ROS (3, 27) can promote
mitochondrial instability, increasing oxidative stress and cell
death via apoptotic pathways. Placental apoptosis occurs in
pregnant mice and women with MiP, characterized by
increased trophoblast apoptosis, active Caspase-3, and
reduced Bcl2 levels (97, 98). Accordingly, reduced Bcl2 levels
and damaged mitochondria might also activate autophagy via a
canonical pathway dependent on Beclin1. Inflammasomes,
which potentiate inflammation and cell death via pyroptosis
in response to parasite antigens and danger signals, can also
induce autophagy. Placental NLRP3- and AIM2-dependent IL-
FIGURE 2 | The hypothetical role of placental autophagy during malaria in pregnancy. During MiP, immune system activation in response to local infection results in
inflammation and placental homeostasis imbalance. Monocytes and trophoblasts recognize infected red blood cells and parasite-derived antigens (dsDNA, GPI and
hemozoin) via TLRs, which promote the downstream production of cytokines such as TNF-a and IL-1b (upon being processed by the inflammasome). TLR-MyD88-
TRIF signaling might trigger autophagy by disrupting the Bcl2-Beclin1 interaction or through the paracrine action of the produced cytokines. In addition, inflammation
leads to the downregulation of glucose/amino acid transporters, consequently activating autophagy upon mTOR inhibition. The hypoxic environment and ROS
produced by monocytes might also induce autophagy by promoting oxidative stress and mitochondrial instability. Consequent activation of apoptotic machinery
might also activate autophagy. As such, a multitude of stimuli might induce placental autophagy above basal levels, which might function as a cytoprotective
mechanism that maintains local homeostasis and proper gestational development when stress intensity is low. In these circumstances, autophagy might circumvent
lethal outcomes that may arise from activation of cell death mechanisms. However, persisting infection and sustained inflammation might increase cellular stress by
activating programmed cell death mechanisms that regulate pyroptosis and apoptosis, for instance. First, autophagy might act as a survival mechanism by
promoting nutrient recycling and destroying death signals such as inflammasome machinery and damaged mitochondria. However, if stress input increases above a
given threshold, cell death executors such as apoptotic caspases might degrade autophagy-related proteins, consequently impairing their cytoprotective functions.
Therefore, tissue homeostasis will not be maintained, resulting in the dysregulation of placental physiology, eventually leading to MiP poor pregnancy outcomes.
dsDNA, parasite double-stranded DNA; iRBC, infected red blood cells; GPI, glycosylphosphatidylinositol; ROS, reactive oxygen species; TLR – Toll-like receptor.
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1 axis activation is associated with MiP outcomes (99), which in
principle can be downregulated by autophagy if overactivated
(54) . In add i t ion , au tophagy can be induced by
proinflammatory cytokines such as TNF-a, which induce
apoptosis via death receptors and are associated with MiP
poor outcomes (14, 19, 20).

A Hypothetical Role for Placental
Autophagy During MiP
If autophagy promotes survival in response to stress, if it is
essential for gestational development, and is downregulated in
pregnancies complicated by infection-induced inflammation
such as MiP, one can hypothesize that poor outcomes will
result from placental homeostasis imbalance, which cannot be
maintained by autophagy due to nonmanageable stress levels
caused by infection. A cytoprotective role for placental
autophagy during MiP can be hypothesized when stress levels
are not lethal and cell death mediated by apoptotic mechanisms,
for instance, is not triggered in response to stress (Figure 2).
Autophagy can counteract cell death via apoptosis, for instance,
by degrading damaged mitochondria and proapoptotic
cytosolic signals; however, stress levels will eventually exceed a
given threshold, and autophagy will not be able to circumvent
the lethal outcome. The interplay between autophagy and
apoptosis is mostly of an inhibitory nature (42). Therefore,
proapoptotic caspases may eventually cleave regulatory
proteins, downmodulating autophagy and possibly aborting its
cytoprotective function, resulting in total dysregulation
of cellular homeostasis and ultimately, cell death. This
sequence of events may promote placental damage and
dysregulation of local homeostasis, ultimately contributing to
MiP poor outcomes.

In this context, we hypothesize that placental autophagy plays
a cytoprotective role during MiP by promoting nutrient recycling
and controlling inflammation and cellular damage. However,
this activity cannot be properly exerted due to the
nonmanageable levels of inflammation, cell death and tissue
Frontiers in Immunology | www.frontiersin.org 7
damage observed in placentas from women infected with P.
falciparum, contributing to impaired gestational development
and poor pregnancy outcomes.
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