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Abstract: The metabolomic profile of vaso-occlusive crisis, compared to the basal state of sickle cell
disease, has never been reported to our knowledge. Using a standardized targeted metabolomic
approach, performed on plasma and erythrocyte fractions, we compared these two states of the
disease in the same group of 40 patients. Among the 188 metabolites analyzed, 153 were accurately
measured in plasma and 143 in red blood cells. Supervised paired partial least squares discriminant
analysis (pPLS-DA) showed good predictive performance for test sets with median area under the
receiver operating characteristic (AUROC) curves of 99% and mean p-values of 0.0005 and 0.0002
in plasma and erythrocytes, respectively. A total of 63 metabolites allowed discrimination between
the two groups in the plasma, whereas 61 allowed discrimination in the erythrocytes. Overall, this
signature points to altered arginine and nitric oxide metabolism, pain pathophysiology, hypoxia
and energetic crisis, and membrane remodeling of red blood cells. It also revealed the alteration of
metabolite concentrations that had not been previously associated with sickle cell disease. Our results
demonstrate that the vaso-occlusive crisis has a specific metabolomic signature, distinct from that
observed at steady state, which may be potentially helpful for finding predictive biomarkers for this
acute life-threatening episode.

Keywords: lipidomics; metabolomics; sickle cell disease; vaso-occlusive crisis

1. Introduction

The recurrent episodes of vaso-occlusive crises in sickle cell patients result from hemoglobin S
polymerization, which increases the rigidity of the red blood cells. These rigid sickle erythrocytes
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have altered rheological and adhesive properties and become caught up in microcirculation, leading to
microvascular obstructions in organs. Although the clinical manifestations of this acute episode are
variable from one patient to another, the vaso-occlusive crisis is marked by intense pain and severe
organ damage. The painful episode is life-threatening and the recurrence of crises causes disabling
chronic complications, explaining the reduced life expectancy of these patients. The polymerization
of hemoglobin S is induced by hypoxia, through anemia, fever, cold, dehydration, and any form of
stress, including adverse socio-economic and environmental conditions [1]. The management of the
vaso-occlusive crisis is mainly achieved by blood transfusion, hyperhydration, reoxygenation, and
appropriate analgesia.

Biologically, the vaso-occlusive crisis is accompanied by hypercoagulability, as well as by deep
metabolic, inflammatory, and oxidative stresses. More than 100 biomarkers have been reported in
sickle cell disease, such as the disruption of the arginine and nitric oxide (NO) metabolism at the origin
of sickle cell vasculopathy [2,3]. Despite these profound biological changes accompanying the crisis,
relatively few metabolomics studies, which were recently reviewed [4], have been conducted in sickle
cell patients, and to our knowledge, none of them have specifically reported the biological fingerprint
of the crisis, in comparison to the steady state of the disease.

The most documented study, performed by Darghouth et al. [5], compared the red blood cell
metabolomes of 28 adult patients with the HbSS (Hemoglobin SS) genotype at steady state and
24 healthy adults (HbAA). Among the 89 metabolites identified, 31 exhibited significantly modified
concentrations, revealing the involvement of important metabolic pathways and metabolites including
glycolysis, pentose phosphate, glutathione, ascorbate, amino acids, polyamines, carnitine, and creatine.
Using metabolomic profiling of the whole blood and plasma in a mouse model of the disease (n = 6 per
group), Xia et al., progressively deciphered a central pathogenic mechanism, also found in humans,
promoting the polymerization of the hemoglobin S through sphingosine-1-P [6,7]. Their initial study
revealed 251 significantly altered metabolites, involving glycolysis, pentose phosphate, amino acids,
nucleotides, xenobiotics, lipids, fatty acids, and carbohydrate pathways. Lastly, a metabolomic
approach was applied in the plasma of patients (n = 23) with sickle cell disease according to their
level of albuminuria [8]. The concentration of six metabolites was found to be altered according to
albuminuria: betaine, proline, dimethylarginine, glutamate, leucine, and lysine.

In this study, we used a standardized targeted metabolomics approach in order to explore the
plasma and erythrocyte profiles of patients during their vaso-occlusive crisis, in comparison with the
profiles obtained in the same patients after they return to the steady state a few months later.

2. Experimental Section

2.1. Ethics Statement

The study was conducted in accordance with the Declaration of Helsinki (1983) and was approved
by the institutional ethical committee of the “Centre de Recherche et de Lutte Contre la Drépanocytose
(CRLD)” of Bamako, Mali (N◦18/002/MSHP-CRLD-CEI; 7 February 2018). Each participant gave
his/her signed informed consent after receiving all the information necessary to understand the
research protocol.

2.2. Study Participants

Figure 1 shows the global flow chart of the study design. The study included 40 individuals aged
from 6 to 51 years old (mean = 18.64 years, 19 males and 21 females). Follow-up for all participants
included was carried out at the “Centre de Recherche et de Lutte Contre la Drépanocytose” of Bamako,
Mali. Participants were recruited between February and July 2018. The inclusion criteria were a
confirmed diagnosis of sickle cell disease by HPLC. Individuals who had received a transfusion were
excluded from the study. All patients were receiving analgesic treatments. At inclusion, during
the crisis period, the average body temperature of patients was 37.6 ◦C (range 35.9–39.2 ◦C), their
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hemoglobin blood concentration was 9.01 g/dL on average (range 8.1–9.8), and their oxygen saturation
(SpO2) was 95.25% on average (range: 83–99%). The patients were their own controls, as a new blood
sample was taken after returning to a steady state a few (2–3) months later in the same specialized care
center. The steady state for these patients corresponded to an absence of acute pain and fever, as well
as any other signs or acute complication suggestive of a vaso-occlusive crisis for at least 2 months.
The fasting blood samples were collected in the morning in heparinized tubes. They were immediately
centrifuged at 3000 rpm for 10 min at +4 ◦C and 50 microliter aliquots of plasma, and red blood
cells were stored at −80 ◦C before being transported in dry ice to the laboratory of biochemistry and
molecular biology at the University Hospital of Angers, France, for the metabolomic analysis. After
removing one sample with hemolysis, the plasma study involved 39 patients, whereas the erythrocyte
study involved all the 40 patients.

Figure 1. Global flow chart and study design.

2.3. Metabolomics Analyses

Red blood cell samples (50 µL) were mixed with a cold solution of phosphate-buffered saline (PBS;
15 µL) and methanol (85 µL), and were transferred to pre-cooled 2.0 mL homogenization Precellys tubes
prefilled with 1.4 mm diameter ceramic beads. Homogenization was performed with two grinding
cycles, each at 6500 rpm for 20 s, spaced by 20 s, followed by a grinding cycle at 6000 rpm for 30 s,
using a Precellys homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France) kept in a room
at +4 ◦C. The supernatant (cell extract) was recovered after centrifuging the homogenate (10,000× g,
5 min at +4 ◦C) and kept at −80 ◦C until metabolomic analysis.

Targeted quantitative metabolomics analyses were performed using Biocrates AbsoluteIDQ
p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) and a QTRAP 5500 mass spectrometer
(SCIEX, Villebon-sur-Yvette, France). This kit allows quantification of up to 188 different endogenous
molecules distributed as follows: free carnitine (C0), 39 acyl-carnitines (C), the sum of hexoses
(H1), 21 amino acids, 21 biogenic amines, and 105 lipids. The lipids are distributed in the kit in
four different classes: 14 lysophosphatidylcholines (LPC), 38 diacyl phosphatidylcholines (PC aa),
38 acyl-alkyl-phosphatidylcholines (PC ae), and 15 sphingomyelins (SM). Flow injection analysis
coupled with tandem mass spectrometry (FIA-MS/MS) was used for analyzing carnitine, acyl-carnitines,
lipids, and hexoses. Liquid chromatography (LC) was used to separate amino acids and biogenic
amines before quantitation with mass spectrometry.
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All reagents used in this analysis were of LC-MS grade and were purchased from VWR
(Fontenay-sous-Bois, France) and Merck (Molsheim, France). The samples were prepared and
analyzed following the Biocrates Kit User Manual. Briefly, each plasma or red blood cell extract
sample was thoroughly vortexed after thawing, then centrifuged at +4 ◦C for 5 min at 5000× g. Next,
10 microliters of each sample were added to the filter on the upper wells of the 96-well plate. Metabolites
were extracted and derivatized for quantitation of amino acids and biogenic amines. The extracts
were finally diluted with MS running solvent before FIA- and LC-MS/MS analysis. Three quality
controls (QCs) composed of human plasma samples at three concentration levels—low (QC1), medium
(QC2), and high (QC3)—were used to evaluate the performance of the analytical assay. A seven-point
serial dilution of calibrators was added to the 96-well plate of the kit to generate calibration curves for
quantification of amino acids and biogenic amines.

2.4. Statistical Analyses

Before statistical analyses, the raw metabolomics data were examined to exclude metabolites with
concentration values >20% below the lower limit of quantitation (LLOQ) or >20% above the upper
limit of quantitation (ULOQ). To prevent the removal of discriminant features for metabolites having
>20% of its concentration out of range, a chi-squared test was performed to determine the relation
between the number of values within and without the quantitation range and crisis status.

Supervised principal component analysis (PCA) was used to detect similar groups of samples and
outliers, that is, samples displaying an atypical metabolite profile. Partial least squares-discriminant
analysis (PLS-DA) was performed on unit-variance scaled data to discriminate between in-crisis (IC)
and out-of-crisis (OC) samples on the basis of their metabolic profiles. Data were randomly divided
between the training-validation set comprising 30 in-crisis/30 out-of-crisis patients (3/4 of all samples)
and the test set containing the remaining one-quarter of all samples (10 in-crisis/10 out-of-crisis samples
for red cells and 9 in-crisis/9 out-of-crisis samples for plasma). The training-validation sets were used
for constructing PLS-DA models and the test sets were used to validate the supervised model. Using
cross-validation, there are C30

20 = 30′045′015 combinations of 20 samples chosen out of 30, representing
more than 30 million training with their corresponding validation sets. To make the cross-validation
process computationally feasible, we stored all these combinations in a M = 20 × 30,045,015 matrix,
then 23,345 combinations (i.e., models) were chosen by sampling M every 1287 columns. For each of
the 23,345 models, the area under the receiving operator characteristic (AUROC) along with the p-value
were calculated on the validation set. AUROCs are an almost universal indicator of the performance of
a classifier, and AUROC values larger than 0.8 characterize models with good predictive capabilities,
as long as the AUROCs are obtained in a set not used for constructing the supervised model. Each
p-value associated with an AUROC indicates the probability of the equality of the supervised model
and a random model (i.e., AUROC = 0.5).

Best models (i.e., AUROC ≥ 0.95) were chosen as the final models and their predictive capabilities
were further tested in the test set. The global performance of PLS-DA models on our data was
considered satisfactory only if the median AUROC and p-values were at least 0.8 and at most 0.05,
respectively, when the best models of the training set were applied to the test set. In this case,
discriminant variable selection was based on the variable importance for the projection (VIP) and the
loading parameters. The VIP summarizes the importance of each variable for the PLS-DA model,
whereas the loading indicates the relationship between the y vector containing the class information
(i.e., in-crisis or out-of-crisis) and variables in the X matrix (i.e., metabolites). Variables with a VIP
value greater than unity are important for group discrimination. Multivariate analysis was performed
using the mixOmics R package (http://www.Rproject.org).

3. Results

After the validation of QCs and elimination of metabolites with concentration values >20%
below the lower limit of quantitation or >20% above the upper limit of quantitation, 153 (81%)

http://www.Rproject.org
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and 143 (76%) metabolites were considered accurately measured in the plasma and red blood cells,
respectively, and were subsequently used for statistical analyses. These raw data (11,934 metabolite
concentrations in the plasma and 11,440 in red blood cells) are available in Tables S1 and S2 found in
the Supplementary Materials.

3.1. Metabolite Profile of the Vaso-Occlusive Crisis in the Plasma

The scatter plot of the unsupervised paired PCA did not show any spontaneous grouping or
any strong outliers in the first principal plan (PC1 vs. PC2; Figure 2A). Paired PLS-DA showed
good overall predictive performance of the supervised models with median AUROC and p-values
in the validation set of 0.86 and 0.0065, respectively (Figure S1A,B). More than 70% (16,516) of all
models had AUROC ≥ 0.8. By selecting best final models (BMs) as those with the higher AUROC (i.e.,
AUROC ≥ 0.95) on the validation sets, 4277 (≈18%) were retained and their performance predictive
capabilities (i.e., AUROC) were assessed on the test set. Very good performance capabilities were
found when applying the BMs to the test set with median AUROC and p-values of 0.99 and 0.0005,
respectively (Figure S1C,D). Median coordinates from 4277 BMs were calculated for each sample used
in the training-validation set, and the resulting scatter plot of the two latent variables showed good
discrimination between in-crisis and out-of-crisis groups (Figure 2B).

Figure 2. (plasma): Multivariate unsupervised (A) and supervised (B) scatter plots constructed
with plasma samples. (A) Principal component analysis (PCA) scatter plot built with all samples
(39 in-crisis/39 out-of-crisis). No spontaneous grouping or outliers were detected in the first principal
plan. (B) Partial least squares-discriminant analysis (PLS-DA) scatter plot built using median coordinates
of best models and the 60 training set samples (30 in-crisis/30 out-of-crisis). A good separation was
observed in the plan determined by two latent variables with only two samples misallocated. Legend:
PC1,2: principal component 1 and 2, respectively. LV1,2: latent variable 1 and 2, respectively. Red
circles correspond to samples drawn during vaso-occlusive crisis and blue circles to samples drawn
after the crisis. Principal components and latent variables have no dimension (arbitrary units).

Median VIP and loading were combined in a volcano plot (Figure 3). The best discriminant
metabolites (i.e., VIP ≥ 1 and high absolute loading values) contributing to the model included a
subset of 63 (41%) of the accurately measured metabolites in the plasma, comprising free carnitine,
2 acyl-carnitines, 13 amino acids, 6 biogenic amines, 1 sphingomyelin, 5 lysophosphatidylcholines,
12 diacyl phosphatidylcholines, 22 alkyl-acyl-phosphatidylcholines, and the sum of hexoses.
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Figure 3. (plasma): Loading vs. variable importance for the projection (VIP; volcano plot) for PLS-DA
models constructed from plasma samples. Median loading and VIP were calculated for each metabolite
using 4277 best models (BMs) (i.e., AUROC in validation sets (AUROCva) (≥ 0.95). Only the most
important metabolites, that is, those with VIP ≥ 1, have been labeled. Positive/negative loadings
indicate increased/decreased metabolite concentrations during in-crisis compared to out-of-crisis
phases. The main features of the metabolomic signature included relatively increased level of
hexoses (H1), phenylalanine (Phe), and valeryl-carnitine (C5) during the crisis. On the other
hand, the following metabolites were relatively decreased during the crisis: free carnitine (C0)
and octadecanoyl-carnitine (C18); 12 amino acids including asparagine (Asn), glutamine (Gln),
glycine (Gly), citrulline (Cit), alanine (Ala), proline (Pro), threonine (Thr), arginine (Arg), lysine
(Lys), serine (Ser), methionine (Met), and ornithine (Orn); 6 biogenic amines including asymmetric
dimethylarginine, symmetric dimethylarginine, and their sum (ADMA, SDMA, and total DMA,
respectively), serotonin (Serotonin), 3,4-dihydroxyphenylalanine (DOPA), and cis-4-hydroxyproline
(c4-OH-Pro); 5 lysophosphatidylcholines; 12 diacyl phosphatidylcholines (PC aa) and 22 alkyl-acyl
phosphatidylcholines (PC ae); and 1 hydroxy sphingomyelin with an acyl chain of 22 carbons
and 2 unsaturated bonds (SM.OH.22.2). Color code for metabolite bubbles: hexose: gray; amino
acids: green; biogenic amines: light green; (acyl) carnitines: brown; lysophosphatidylcholines
with less than 22 carbons on their acyl group: light blue; lysophosphatidylcholine with more than
22 carbons on its acyl group: dark blue; phosphatidylcholine: orange; hydroxy-sphingomyelin: yellow.
For phosphatidylcholines, the sum of the length of the two acyl or acyl-alkyl groups is noted after
the “C” and is followed by the number of double bonds. The same notation is used for representing
the length and the number of double bonds in the acyl chain of lysophosphatidylcholines. VOC:
vaso-occlusive crisis.

3.2. Metabolite Profile of the Vaso-Occlusive Crisis in the Red Blood Cells

The scatter plot of the paired PCA for red cell samples did not show any strong outliers but, in
contrast with plasma samples, it showed a spontaneous separation of the two groups (PC1 vs. PC2;
Figure 4A). Paired PLS-DA exhibited good predictive performance of the supervised model with
median AUROC and p-values in the validation set of 0.91 and 0.0019, respectively (Figure S2A,B).
More than 83% (19,544) of models built with red cell samples had AUROC ≥ 0.8. By selecting best
final models as those with the higher AUROC (i.e., AUROC ≥ 0.95) when applied to the validation
sets, 7955 (34%) were retained, and their performance predictive capabilities (i.e., AUROC) were
assessed on the test set. Very good performance capabilities were found when applying the BMs to the
test set with median AUROC and p-values of 0.99 and 0.0002, respectively (Figure S2C,D). Median
coordinates from the 7955 BMs were calculated for each sample used in the training-validation set, and
the resulting scatter plot of the two latent variables showed good discrimination between the in-crisis
and out-of-crisis groups (Figure 4B).
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Figure 4. (red blood cells): Multivariate unsupervised (A) and supervised (B) scatter plots constructed
with red cell samples. (A) Principal component analysis (PCA) scatter plot built with all samples
(n = 80; in-crisis (IC)/out-of-crisis (OC) = 40/40). Samples from IC patients (red circles) are roughly
separated from samples taken from OC patients (blue circles) in the first principal plan of the PCA.
No outlier was detected in this plan. (B) PLS-DA scatter plot built using median coordinates of best
models and 60 samples (IC/OC = 30/30). A good separation was observed in the plan determined by
two latent variables with only two samples misallocated. Legend: PC1,2: principal component 1 and 2,
respectively. LV1,2: latent variable 1 and 2, respectively. Principal components and latent variables
have no dimension (arbitrary units).

Median VIP and loading were combined in a volcano plot (Figure 5). The best discriminant
metabolites (i.e., VIP ≥ 1 and high absolute loading values) contributing to the model included a subset
of 61 (43%) of the accurately measured metabolites in red blood cells. Lipid remodeling dominated
the metabolomic signature with up to 42 phosphatidylcholine (PC) species (17 diacyl-PC or PC
aa and 25 alkyl-acyl PC or PC ae) that increased during the crisis, along with 4 sphingomyelins
and 5 lysophosphatidylcholines, all of them with an acyl chain of more than 22 carbons,
and malonyl-carnitine. On the contrary, glutamine, aspartate, trans-4-hydroxyproline, serotonin,
tetradecadienyl-carnitine, and four LPCs, all of them with an acyl chain length of less than 22 carbons,
were found to be decreased during the crisis.

Figure 5. (red blood cells). Loading vs. VIP (volcano plot) for PLS-DA models constructed from red cell
samples. Median loading and VIP values were calculated for each metabolite using 7955 best models
(BMs) (i.e., AUROCva ≥ 0.95). Only the most important metabolites, that is, those with VIP ≥ 1, have
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been labeled. Positive/negative loadings indicate increased/decreased metabolite concentrations
between the in-crisis and out-of-crisis situation. The main features of the metabolomic signature
are a relatively increased level during the crisis of 42 phosphatidylcholines (PC) with 17 diacyl
phosphatidylcholines (PC aa) and 25 alkyl-acyl phosphatidylcholines (PC ae), 4 sphingomyelins
(SM), malonyl-carnitine (C3-DC), and 5 lysophosphatidylcholines species (LPCs) with acyl chain
length longer than 22 carbons. On the other hand, four LPCs with acyl chain length of less
than 22 carbons were relatively decreased during the VOC along with aspartate (Asp), glutamine
(Gln), trans-4-hydroxyproline (t4-OH-Pro), serotonin, and tetradecadienyl-carnitine (C14:2). Color
code for metabolite bubbles: amino acids: green; biogenic amines: light green; acyl-carnitines:
brown; lysophosphatidylcholines with less than 22 carbons on their acyl group: light blue;
lysophosphatidylcholine with more than 22 carbons on the acyl group: dark blue; phosphatidylcholine:
orange; sphingomyelins: yellow. For phosphatidylcholines, the sum of the length of the two acyl
or acyl-alkyl groups is noted after the C and is followed by the number of double bonds. The same
notation is used for representing the length and the number of double bonds in the acyl chain of
lysophosphatidylcholines and (hydroxy) sphingomyelins. VOC: vaso-occlusive crisis.

4. Discussion

Our results demonstrate that the vaso-occlusive crisis is associated with a specific metabolomics
signature, whereby (i) the plasma mainly shows alteration of polar metabolites while several
phospholipid species decrease, and (ii) erythrocytes show extensive phospholipids remodeling,
with key polar metabolites also affected.

4.1. Plasmatic Metabolic Signature

The plasmatic signature is characterized by a decreased concentration in symmetric and asymmetric
dimethylarginine (asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and
total DMA) as well as 13 amino acids (arginine, ornithine, citrulline, proline, methionine, asparagine,
glutamine, alanine, threonine, lysine, glycine, serine, histidine), and an increase in phenylalanine. It is
worth noting that DMA and most of these amino acids are linked to arginine and nitric oxide (NO)
metabolism. In effect, the steady state of the disease is known to be associated with a decrease in
arginine concentration because of arginine consumption to synthesize ornithine, polyamines, proline,
and glutamate (via arginase) rather than NO (via NO synthase) [9,10]. During hemolysis, arginase
is liberated from red blood cells and competes with NO synthases for arginine consumption and,
furthermore, free hemoglobin fixes NO. This effect is exaggerated by ADMA, which originates from
protein and tissue hydrolysis and acts as a strong competitive inhibitor of NO synthases. In fact,
increased ADMA concentration in blood has been positively related to fatal outcomes in sickle cell
disease [8,11]. Taken as a whole, the alteration of arginine and NO metabolism is an important feature
of sickle cell disease that likely explains the observed changes in amino acid content.

Interestingly, arginine concentration, which is already affected in the steady state, is found
to be decreased further by the vaso-occlusive crisis. By contrast, SDMA and ADMA, which are
significantly higher in the steady state, decrease significantly during the crisis. This finding is in
agreement with previous measurements of arginine and DMA in the plasma of 33 HbSS patients
and 35 HbAA healthy controls [12]. In that study, average arginine concentration was found to
be 72.9 µmol/L, 58.5 µmol/L, and 52.3 µmol/L in healthy controls, asymptomatic patients, and in
patients suffering from vaso-occlusive crises, respectively. ADMA was found to be significantly
higher in asymptomatic patients (0.70 µmol/L) compared to controls (0.39 µmol/L), without further
significant modification during the crisis (0.66 µmol/L). SDMA also increased in asymptomatic patients
(0.55 µmol/L) compared to healthy controls (0.42 µmol/L), without further significant modification
during the crisis (0.51 µmol/L). Average values obtained in the present study during the crisis (arginine
54.4 µmol/L, ADMA 0.65 µmol/L, SDMA 0.85 µmol/L) and in the steady state (arginine 64.1 µmol/L,
ADMA 0.74 µmol/L, SDMA 0.88 µmol/L) are comparable with that previous study [12]. However, our
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multivariate statistical model reveals that DMA concentration was actually reduced during the crisis,
suggesting that DMA levels were no longer homeostatic.

In the steady state of sickle cell disease, it was shown that ornithine and citrulline plasmatic
concentration was not modified unlike proline concentration although proline can be synthetized by
arginine catabolism [9]. The significant decrease of these amino acids in the metabolomics signature of
the crisis suggests that both arginase and NO synthases activities (which sustain ornithine and proline
production, and NO and citrulline, respectively) are inhibited. To our knowledge, potential alterations
in the plasmatic concentration of other amino acids in the steady state have not been documented.
As such, a comprehensive characterization of amino acid concentration associated with crises and how
it compares to steady state and healthy individuals is still required.

4.2. Red Blood Cell Metabolic Signature

In erythrocytes, compared to the metabolomic profile previously reported in steady state [5], we
found a decrease in both aspartate and glutamine concentration during the crisis, while the former
is higher and the latter is lower in the steady state compared to healthy individuals. There were no
further changes in the concentration of other amino acids (glycine, serine, alanine, ornithine, aspartate,
lysine) during the crisis, whereas they have been reported to be altered in the steady state. It should
be noted that spermine and spermidine, two polyamines produced from ornithine that are known
to stabilize the red blood cell plasma membrane [13,14], are more abundant in red blood cells in the
steady state; here, we found no further change during the crisis.

The red blood cell signature associated with the vaso-occlusive crisis was also characterized by an
important reconfiguration of phospholipid composition, with an increase in phosphatidylcholines,
lysophosphatidylcholines, and four sphingomyelins. This profile differs considerably from that reported
in the steady state because a decrease in phosphatidylcholines has been described previously despite an
increase in lysophosphatidylcholines [15]. These changes suggest that a remodeling of the red blood cell
plasma membrane takes place during the crisis, probably associated with acute sickling. Interestingly,
this lipid remodeling impacted on the plasma composition because, in contrast to erythrocytes, there
was a significant decrease in many phosphatidylcholines and lysophosphatidylcholines.

4.3. Potential New Sickle Metabolites

The present study also suggests that several key metabolic pathways that had not been previously
associated with sickle cell disease were altered. In fact, we found an increase not only in plasmatic
hexose concentration, but also in phenylalanine and α-aminoadipate. Furthermore, plasmatic DOPA,
serotonin, and hydroxyproline decreased, the latter two also being diminished in the erythrocytes.
The increase in hexose, along with the alteration of several acyl-carnitines, observed in both the plasma
and red blood cells, points to a decrease in the metabolic flux associated with oxidative catabolism,
probably due to hypoxia. The increase in α-aminoadipate in the plasma of patients is also consistent
with a deregulation of glucose homeostasis and carbohydrate metabolism during the vaso-occlusive
crisis. Indeed, α-aminoadipate is an intermediate of lysine catabolism that has been reported to be a
predictive biomarker of diabetes [16]. Our findings are thus consistent with the relationship that has
been found between sickle cell disease and type 2 diabetes [17].

Here, concurrent alterations in other pathways include (i) a decrease in collagen turnover during
the acute episode as suggested by the general decrease in hydroxyproline, which has also been found
to be increased in the urine of sickle cell patients in the steady state [18]; (ii) an alteration of the
phenylalanine metabolism; (iii) an increase in lipid peroxidation caused by the drop in serotonin.
In fact, serotonin has been shown to be able to mitigate lipid peroxidation [19–21]. It should also be
noted that serotonin liberation by blood platelets exerts a vasoconstricting effect [22], and the change
in concentration found here might be involved in the pathophysiology of the vaso-occlusive crisis; and
(iv) lastly, an alteration of DOPA metabolism.
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4.4. Metabolites Potentially Associated with Pain

Acute vascular occlusion is associated with intense pain, which is typical of the crisis. In the
literature, many metabolites have been found to be involved in pain pathophysiology. Here, we
cross-referenced the keyword “pain” with each of the metabolites identified in our plasma signature
using an online search engine. Interestingly, at least 15 of the metabolites found to be significantly
changed during the crisis are often related to pain: ADMA, SDMA, total DMA, ornithine, glutamate,
glutamine, aspartate, glycine, phenylalanine, α-aminoadipate, serotonin, DOPA, phosphatidylcholines,
lysophosphatidylcholines, and sphingomyelins. For instance, serotonin is an important mediator of
the descending anti-nociceptive system in the brain stem. In a mouse model of sickle cell disease, it has
been proposed that the decline in serotonin was involved in hyperalgesia, thus suggesting serotonin
can be used for pain treatment in this disease [23]. Glutamine (found here to decrease in the plasma) is
related to both pain and NO metabolism and has been shown to mitigate pain in a phase III clinical trial
in sickle cell disease [24]. Arginine metabolism also plays a key role in pain in sickle cell disease [10].
In effect, arginine supplementation has been shown to reduce pain via increased blood NO levels in
a double-blind clinical trial [25]. Interestingly, citrulline given orally during steady states in a pilot
phase II clinical trial also showed dramatic improvements in symptoms of well-being, while increasing
plasma arginine levels [26].

Future clinical trials such as these could take advantage of metabolomics because our study shows
that key metabolites could be analyzed and thus implemented for patient monitoring. This growing
interest in metabolomics has been highlighted recently by two studies performed before and after red
blood cell exchange transfusion in sickle patients, showing a reduction of hypoxia and an improvement
of glycolysis together with modifications in amino acids and acyl-carnitine concentration [27,28].
Obviously, it is not possible to exclude the possibility that analgesic treatments taken by patients during
the crisis may also contribute this metabolic signature.

5. Conclusions

The present study is, to our knowledge, the first report of a metabolomics signature of the
vaso-occlusive crisis in sickle cell patients. When compared to the steady state, some metabolite
changes were amplified, whereas others were suppressed or remained unaltered (summarized in
Figure 6). In the plasma, a striking feature of the metabolic signature was the alteration of NO
metabolism and thus potential relationships with pain. In red blood cells, changes in phospholipids
were considerable, showing strong membrane remodeling during the crisis. Our study further
highlights the involvement of metabolites that have not been found to be involved in sickle cell
disease before. In particular, this was the case for hexoses, acyl-carnitines, and α-aminoadipate, which
contribute to explaining how the sickle cell disease relates to energetic metabolism.
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Figure 6. Overview of the metabolomic signature, with potential functional links, of the vaso-occlusive
crisis, in plasma and red blood cells. The changes in metabolite concentrations during the crisis
observed in our study were compared to the changes reported in the literature during the steady state.
↑: increased concentrations; ↓: decreased concentrations.
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