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Abstract: In zebrafish (Danio rerio), iridophores are specified from neural crest cells and represent a
tractable system for examining mechanisms of cell fate and differentiation. Using this system, we
have investigated the role of cAMP protein kinase A (PKA) signaling in pigment cell differentiation.
Activation of PKA with the adenylyl cyclase activator forskolin reduces the number of differentiated
iridophores in wildtype larvae, with insignificant changes to melanophore number. Inhibition
of PKA with H89 significantly increases iridophore number, supporting a specific role for PKA
during iridophore development. To determine the effects of altering PKA activity on iridophore and
melanophore gene expression, we examined expression of iridophore marker pnp4a, melanophore
marker mitfa, and the mitfa repressor foxd3. Consistent with our cell counts, forskolin significantly
decreased pnp4a expression as detected by in situ hybridization and quantification of pnp4a+ cells.
Forskolin had the opposite effect on mitfa and foxd3 gene activity, increasing the area of expression.
As mitfa/nacre mutants have extra iridophores as compared to wildtype larvae, we examined the
function of mitfa during PKA-sensitive iridophore development. Forskolin treatment of mitfa/nacre
mutants did significantly reduce the number of iridophores but to a lesser extent than that observed in
treated wildtype larvae. Taken together, our data suggests that PKA inhibits iridophore development
in a subset of iridophore precursors, potentially via a foxd3-independent pathway.
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1. Introduction

Chromatophores, or pigment/light-reflecting cells, develop from neural crest cells, a population
of cells that arise near the dorsal aspect of the developing vertebrate neural tube. Five types of
chromatophores have been characterized in different organisms, including several species of fish.
These cell types include black melanophores, yellow xanthophores, silver iridescent iridophores, white
reflective leucophores, and red erythrophores (reviewed in [1]). Chromatophores promote temporary
or permanent color change and are thus critical for an aquatic organism’s ability to evade predators,
to blend into their environments, or to find mates. Zebrafish have a subset of these chromatophores,
including melanophores, xanthophores, and iridophores. Each cell type represents an excellent system
for understanding cell fate decisions and subsequent differentiation. Melanophores are the best
characterized and loss of function mutations in zebrafish microthalmia-associated transcription factor
(mitfa), kit, oculocutaneous albinism 2 (oca2), and vacuolar protein sorting 11 (vps) genes promote
phenotypes similar to those found in mammalian knockouts (i.e., loss of pigment cell precursors or
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under/hypopigmented melanocytes; [2–9]). Some pathways affecting melanocyte development also
impact iridophore development, offering a separate system for understanding the activity or function
of these pathways during cell differentiation. For example, the number of iridophores is impacted by
several loss of function mutations in genes previously characterized in melanocytes, including oca2
(increased iridophores), vps11 (decreased iridophores), and mitfa (increased iridophores) as compared to
age-matched wildtype larvae. Additionally, Forkhead transcription factor foxd3 regulates the expression
of mitfa and nucleoside phosphorylase gene, pnp4a, in a bipotent melanophore/iridophore precursor cell,
suggesting that a population of cells exists with the capability of becoming either pigment cell type [10].
It remains unclear as to which intracellular signaling proteins control iridophore differentiation decisions.
Here, we propose a role for protein kinase A (PKA) in inhibiting the iridophore differentiation program.

PKA signaling is tightly controlled by regulation of cAMP gradients. Adenylyl cyclases generate
cAMP and phosphodiesterases—the latter degrades cAMP (reviewed in [11]). Upon activation
by cAMP (via regulatory unit binding), protein kinase A catalytic units phosphorylate target
proteins involved in several cellular processes, including cell differentiation and growth [12–15].
PKA signaling also functions in organelle trafficking within chromatophores. Melanophore
melanin-producing organelles, melanosomes, are trafficked towards the cell periphery (dispersion) or
nucleus (aggregation) in response to hormones such as cAMP-dependent melanocyte-stimulating and
melanocyte-concentrating hormones, respectively [16]. Similarly, xanthophore pigment-producing
organelles, xanthosomes, internalize their pigment granules in response to changes in light in a cAMP-
and phosphodiesterase-dependent manner [17]. Last, PKA signaling also regulates transcriptional
programming important for neural crest cell fate choice in quail cell cultures, resulting in the
induction of the melanocyte differentiation gene Mitf while simultaneously inducing expression
of the RE-1 silencing transcription factor, a neuron-specific transcriptional repressor. These results
were duplicated in zebrafish models where involvement of the Wnt signaling responsive transcription
factor, CtBP2, was required for increased melanophore differentiation [18], suggesting a cross-talk
between Wnt and PKA signaling. Thus, there is previous evidence of PKA serving as a switch to
encourage differentiation of one lineage at the expense of a second. We explored a function for PKA
signaling during iridophore development. Our data suggests that PKA signaling inhibits iridophore
differentiation while promoting differentiation of melanophores in zebrafish larvae.

2. Materials and Methods

2.1. Fish Rearing and Crosses

Zebrafish work is approved by Washington State University Institutional Animal Care and Use
Committee, Animal Subject Approval Form 03848. Wildtype fish were of the AB (ZDBGENO-960809-7)
strain. Adult zebrafish were maintained on a 14/10 h light/dark cycle at 28.5 ◦C. Adult fish were
maintained on a recirculating water system, fed dried/live diets, and checked daily. Embryos were
acquired from natural crosses and grown at 28.5 ◦C in embryo media until analysis. Embryos were staged
according to characterized morphological criteria [19]. The following mutant alleles were used: nacre [7].

2.2. Production of BACfoxd3::GFP Transgenic Zebrafish

We modified a foxd3-containing bacterial artificial chromosome (BAC) clone by Escherichia coli-based
homologous recombination [20]. BAC clone 137512 contains around 130 kb of sequence upstream and
40 kb downstream of foxd3 (http://www.sanger.ac.uk/Projects/D_rerio/mapping.shtml). BAC clone
137512 was inserted into pTAR BAC 2.1. Following recombination, the modified BAC clone contained an
egfp gene positioned at an endogenous start site. The accuracy of recombination was evaluated by PCR,
sequencing, and by transient expression assays. BACfoxd3::EGFP faithfully recapitulated endogenous
foxd3 expression in neural crest and other organs. To obtain a germline, we linearized BAC DNA with Not
1, injected linearized BAC DNA into zebrafish embryos, raised injected fish to adulthood, and screened
their progeny for reporter gene expression. The germline transmission rate was 2%.

http://www.sanger.ac.uk/Projects/D_rerio/mapping.shtml
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2.3. Forskolin and H-89 Treatments

Stocks of forskolin and H-89 were prepared in dimethyl sulfoxide (DMSO) at concentrations of 2.4
and 9.6 mM, respectively, and stored at −20 ◦C until use. Zebrafish were treated with 5 µM forskolin
(Sigma, St. Louis, MO, USA) diluted in embryo media beginning at 17–20 h post fertilization (hpf) unless
otherwise indicated. At 48–50 hpf, forskolin-containing medium was removed, and fish were rinsed
twice in fresh embryo media and incubated at 28.5 ◦C until fixation. At the indicated timepoint, fish were
fixed in 4% paraformaldehyde (4% PFA, diluted in phosphate-buffered saline, PBS), rinsed in PBS +0.01%
Tween (PBTw), and stored in PBTw (pre-in situ) until in situ hybridization/quantification or PBS +0.01%
Triton X-100 (PBTx) until antibody staining. Samples were stored in 50% glycerol/PBS for analysis and
to preserve fluorescence of antibody-stained samples. For H-89 (Sigma, St Louis, MO, USA) treatment,
fish were treated with 25 µM or 50 µM H-89 in embryo media beginning at 17–20 hpf unless otherwise
indicated. AT 48–50 hpf, H-89-containing media was removed, and fish were rinsed twice in fresh embryo
media and incubated at 28.5 ◦C until fixation for quantification. H-89 treated fish were fixed using 4%
PFA and stored in PBTw until in situ hybridization analysis or 50% glycerol/PBS until quantification.

2.4. Cell Quantification and Statistics

For iridophore quantification, a fiber optic light source was used to illuminate iridophores. Iridophores
were counted using Nikon SMZ-1500 (Nikon Inc., Melville, NY, USA) or Leica M80 (Leica Microsystems,
Inc., Buffalo Grove, IL, USA) stereomicroscopes. Unless otherwise indicated, cell counts include all (dorsal
and ventral) trunk and tail iridophores. Fixed fish were used for quantification and 6% methyl cellulose
was used to position fish for counting. Fish were rotated in methyl cellulose as necessary for viewing
individual stripes/locations. For in situ hybridization analysis, fish were divided into “anterior body”,
“posterior body”, and “tail” regions (see Figure D’ for additional information). Anterior regions include
tissue dorsal to rostral and caudal yolk boundaries, while posterior regions include tissue posterior to the
caudal yolk boundary, ending at the end of the yolk extension. The tail region included tissue posterior
to the yolk extension. Statistical tests performed for each experiment were the Student’s t-test (Microsoft
Excel 2007) or ANOVA (one- or two-way ANOVA; GraphPad Prism, San Diego, CA, USA). Data reported
include a minimum of 8–10 samples per time point, with at least three replicates per experiment.

2.5. In Situ Hybridization

Embryos were fixed in 4% paraformaldehyde in phosphate-buffered saline at pH 7.2, and
processed using standard protocols [21]. Digoxigenin-labeled probes for mitfa [7], foxd3 [22,23],
and pnp4a [10] have been previously described. All imaging was done using a Nikon SMZ-1500
stereomicroscope equipped with a Digital Sight DS-Ri1 Digital Camera. All images were processed for
contrast, brightness, and color using Adobe Photoshop CS3 Extended Version 10.0 (Adobe Corporate
Headquarters, San Jose, CA, USA).

2.6. Antibody Staining and Confocal Imaging

The following antibodies were used for immunohistochemistry at the indicated dilutions: mouse
monoclonal anti-Green Fluorescent Protein (Invitrogen/ThermoFisher Scientific, Waltham, MA, USA),
1:500; rabbit anti-beta catenin (Pharmingen, San Diego, CA, USA), 1:100; anti-mouse (Alexa 488) and
anti-rabbit (Alexa 568) secondary antibodies (Molecular Probes, Eugene, OR, USA) 1:500 or 1:750.
Brightfield or incident lighting (epi-illumination from a fiber optic/ectopic light source) images were
obtained on a Nikon dissecting microscope with a Spot RT Slider digital camera (Diagnostic Instruments,
Grand Island, NY, USA) or a Nikon SMZ-1500 stereomicroscope with a Digital Sight DS-Ri1 Digital camera.
Fluorescent confocal images were obtained on LSM 5 Pascal (Zeiss, Thornwood, NY, USA) or Olympus
FV1000 laser scanning confocal microscopes. Images were equivalently processed for color balancing
and brightness/contrast using Photoshop CS3 or CS4 (Adobe, San Jose, CA, USA) and formatted with
Illustrator CS4 (Adobe, San Jose, CA, USA).
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3. Results and Discussion

3.1. Effects of Protein Kinase A Activity Alter the Number of Differentiated Iridophores

To examine the role of protein kinase A during iridophore development, we treated zebrafish
embryos with forskolin, an adenylyl cyclase activator. Treatments commenced at 17–20 h post
fertilization (hpf) when iridophores are specified from neural crest cells [10]. Following washout
of forskolin at 2 days post fertilization (dpf), larvae were grown until 4 dpf when they were fixed
for iridophore quantification. At this timepoint, iridophores are positioned ~one cell per somite,
making them easy to quantify. Using an incident light source, we were able to illuminate and
observe individual iridophores in the dorsal and ventral stripes, beginning at the anterior trunk level.
Imaging analysis indicates fewer iridophores in forskolin-treated individuals, especially in the ventral
stripes (Figure 1A,B; white arrowheads indicate the ventral stripe). Quantification of iridophores in
dorsal and ventral stripes confirms a significant reduction in both stripes, and a 38.4% reduction in
total iridophores (Figure 1C, p < 0.05 via Student’s t-test). To ensure this reduction was not due to
developmental delay of the larvae, we also quantified melanophores which develop at a similar time
to iridophores in zebrafish (Figure 1D). Statistical analysis suggests that while melanophore number
is slightly higher with forskolin treatment (as compared to controls), this increase is not significant
(Student’s t-test, p > 0.05; we also noted no significant differences in dorsal or ventral stripe numbers).
Normal somite shape and yolk extension patterning/development further suggest minimal impact on
other tissues in forskolin-treated larvae.
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Figure 1. Forskolin treatment reduces iridophore number in zebrafish larvae at 4 days post fertilization
(dpf). (A,B) Lateral images (using an incident lighting source) of larvae at 4 dpf treated with 0.1%
dimethyl sulfoxide (DMSO) or 5 µM forskolin in embryo media. Forskolin-treated individuals have
fewer iridophores, especially in the ventral stripe (arrowheads). Scale bar = 200 um and applies to
panels A and BC) Quantification of total, dorsal stripe, and ventral stripe iridophores (n = 8–10 larvae
per condition). Forskolin treatment leads to a 38.4% reduction in differentiated iridophores (62.6%
of control number). (D) Quantification of melanophores following 0.1% DMSO or 5 µM forskolin
treatment. Total melanophores include dorsal, lateral, and ventral stripes (n = 8–10 larvae per condition),
showing no significant change following forskolin treatment.
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To confirm that forskolin effects were specific to protein kinase A, we analyzed the effects of the
protein kinase A inhibitor, H-89 dihydrochloride (H-89), on iridophore number. We tested several
concentrations to best understand the effects of distinct doses on iridophore development (Figure 2).
Inhibition of protein kinase A via 25 µM and 50 µM H-89 treatment significantly increases iridophore
number (one-way ANOVA with Bonferroni multiple comparison (* p < 0.05 or ** p < 0.01)), consistent
with our forskolin data. We do see a lower than expected number of iridophores at 100 µM, most likely
due to developmental delay or toxicity with this dose. Taken together, this data suggests that protein
kinase A functions to regulate the number of differentiated iridophores in developing zebrafish.
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Figure 2. H89 treatment increases iridophore number in zebrafish larvae at 4 dpf. Quantification of
iridophores following treatment of wildtype embryos with varying doses of the protein kinase A (PKA)
inhibitor H89. One-way ANOVA with Bonferonni multiple comparison post-test indicates that doses
of 25 µM and 50 µM are statistically significant (* p < 0.05 or ** p < 0.01).

3.2. PKA Modulation Inhibits Iridophore Gene Expression

Zebrafish iridophores are specified and then differentiate beginning at 20 h post fertilization (hpf),
as detected by purine nucleoside phosphorylase (pnp4a) expression [10]. As PKA signaling functions
during neuron differentiation [22], we hypothesized that PKA signaling regulates differentiation of the
iridophore precursors, iridoblasts. To test this hypothesis, we examined pnp4a expression in forskolin
and H89-treated larvae. Embryos were treated with forskolin, H89, or control (0.1% DMSO) embryo
medium beginning at 22 hpf. Larvae were fixed at 2 dpf and analyzed via in situ hybridization for
pnp4a expression. Forskolin treatment reduced the amount of pnp4a+ signal at 2 dpf (posterior body;
Figure 3A,B). Conversely, H89 individuals showed an increase in pnp4a signal (compare Figure 3C
to Figure 3A). To determine if the number of pnp4a+ cells had significantly changed, we quantified
the number of pnp4a+ cells in the anterior body, posterior body, and tail. The number of pnp4a+
cells in posterior body/trunk regions of forskolin-treated larvae is significantly lower as compared
to DMSO-treated controls (Figure 3D; *** p < 0.0001 via two way ANOVA with Bonferroni multiple
comparisons analysis) and significantly higher with H89 treatment (** p < 0.01 via two way ANOVA
with Bonferroni multiple comparisons analysis) at 2 dpf. This data suggests that PKA activity inhibits
iridophore differentiation by reducing pnp4a expression.
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Figure 3. Forskolin treatment reduces iridoblast marker pnp4a expression. (A–C) Lateral brightfield
images of larvae at 2 dpf processed for in situ hybridization using pnp4a probes, following treatment
with 0.1% DMSO (A), 5 µM forskolin (B), or 25 µM H-89 (C) in embryo media. Activation of
adenylyl cyclase (and PKA signaling) reduces the levels of pnp4a expression, whereas inhibition
of PKA has the converse effect (increased pnp4a expression). Scale bar = 200 um andapplies to all
images. (C’) Representative image with black arrows showing blue/purple pnp4+ cells included in
panel D quantification. Brown melanophores were not included in counts. (D) Quantification of pnp4a+
cells confirms a significant reduction and increase in the number of pnp4a+ cells following forskolin
and H-89 treatment, respectively (** p < 0.01 and *** p < 0.0001 via two-way ANOVA and Bonferonni
multiple comparison analysis). (D’) The quantified regions are labeled.

3.3. mitfa Is Partially Required for the Forskolin-Dependent Reduction in Iridophore Number

mitfa is required and sufficient for melanophore specification as indicated by nacre/mitfa zebrafish
mutants, which do not develop melanophores [7]. Additionally, iridophores are present in excess in
mitfa mutants as compared to wildtype control zebrafish [7,10], suggesting that mitfa is critical for
establishing correct iridophore number. Examination of simultaneous pnp4a and mitfa expression
indicates co-expression of these gene products at 24 hpf (but loss of co-expression by 50 hpf [10]).
To examine the requirement of mitfa during PKA-sensitive iridophore differentiation, we first observed
mitfa expression with or without PKA activation (forskolin treatment). Forskolin-treated larvae showed
larger regions of mitfa expression posterior to the eye and in the dorsal tail as compared to DMSO
treated controls (Figure 4A,B).

We next examined the effects of forskolin treatment on pnp4a expression in the dorsal trunk region
of nacre/mitfa mutants. Again, treatment of wildtype embryos with forskolin caused a reduction in
pnp4a expression at 2 dpf as compared to controls (Figure 5A,B; consistent with previous results in
Figure 3). Conversely, pnp4a expression was similar in DMSO/control and forskolin-treated nacre larvae
at 2 dpf (Figure 5C,D). To confirm that iridophore number was less impacted by PKA activity in nacre
mutants with forskolin treatment, we quantified the number of iridophores in untreated and forskolin
treated mitfa/nacre larvae at 4 dpf (following a washout at 2 dpf). While wildtype/AB larvae at 4 dpf
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showed a 38.4% (See Figure 1) reduction in iridophores as compared to DMSO treated controls, nacre
larvae showed a 22.2% reduction in iridophores (Figure 5E). Furthermore, only the forskolin-treated
nacre mutant iridophore number was close to control numbers by 7 dpf (control, 46.6 ± 4.4; forskolin
43.2 ± 4.8). Taken together, this data suggests that zebrafish larvae have a population of iridophores
that are not sensitive to PKA in the absence of mitfa expression.
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Figure 5. A subset of mitfa negative iridoblasts is resistant to PKA signaling. (A–D) Brightfield images
of dorsal trunks of wildtype or nacre/mitfa mutant larvae at 2 dpf treated with 0.1% DMSO or 5 µM
forskolin and processed for in situ hybridization using a pnp4a probe. A reduction in pnp4a is detected
in wildtype (as previously observed) but not in nacre/mitfa larvae. Scale bar = 100 um and applies to
all images. (E) Quantification of differentiated iridophores in 0.1% DMSO or 5 µM forskolin-treated
nacre/mitfa larvae. We note a significant, yet attenuated reduction in iridophores with mitfa loss of
function (22.2% reduction in iridophores or 77.8% of control). The reductions are significant via
Student’s t-test (p < 0.05).
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3.4. Activation of PKA Expands Neural Crest Marker foxd3 Expression

Forkhead box transcriptional repressor foxd3 activity is important for specification of specific
neural crest derivatives, including iridophores [23,24] and melanophores [25]. foxd3 is a well
characterized marker for neural crest cells and presumptive iridophores. Consistently, foxd3 is
co-expressed with the iridophore marker pnp4a [10]. Additionally, evidence suggests that foxd3
represses its own transcription [23,24]. foxd3 intersects with several signaling pathways—including the
ERBB3 signaling pathway in melanoma cells—via upregulation of specific signaling genes involved
in cell proliferation and apoptosis [26,27] and directly represses mitfa expression—likely a necessary
step in cells destined to become iridophores. Additionally, foxd3 is required for pnp4a expression by
developing iridophores [10]. We hypothesized that PKA inhibits foxd3, leading to increased mitfa
expression/melanophore differentiation and decreased pnp4a expression/iridophore differentiation.
To test this hypothesis, we used transgenic zebrafish expressing GFP under the control of the foxd3
promoter (about 130 kb from BAC clone 137512) and conducted in situ hybridization using a probe
against foxd3. Analysis of GFP transgenics at 3 dpf (Figure 6A–E) shows GFP expression in the
expected foxd3-dependent locations, including the pineal gland (Figure 6B, arrowhead) and the skin
(Figure 6B,C), with presumptive iridophores indicated by arrows [23,24,28]. Higher magnification
(20×) confirms that GFP colocalizes with iridophores (Figure 6D–E). To determine the effects of
forskolin treatment on foxd3 expression, we treated embryos with forskolin or DMSO control embryo
media from 19 to 25 hpf, fixed them in 4% PFA, and probed them using anti-GFP and anti-beta
catenin antibodies. The analysis of beta catenin was added to better visualize cell boundaries.
Unexpectedly, forskolin expanded the area(s) of foxd3 expression as detected by the GFP reporter
(Figure 6F–G; arrowheads indicate neural crest positive pharyngeal arches) and in situ hybridization
(Figure 6H–I). Dorsal head and trunk skin also showed a wider domain of foxd3 expression following
forskolin treatment (arrows, Figure 6H–I). We also note similar locations of foxd3 expression, eye
size, and pharyngeal arch development in forskolin-treated embryos as compared to control treated
embryos, suggesting that 5 µM forskolin has minimal impact on other developing tissues at this stage.
Taken together, this data suggests that PKA does not inhibit iridophore differentiation by regulating
foxd3 expression.

In summary, we have presented data supporting a role of PKA signaling in pigment cell
differentiation. Specifically, we propose a model where PKA inhibits iridophore development while
simultaneously promoting the development of a small subset of melanophores. PKA may also regulate
melanin content as we noted changes in melanophore appearance and/or apparent melanin content
with both treatments. Because the number of melanophores is so much greater than iridophores
at the stages investigated, future studies will use a combination of qualitative and quantitative
approaches to characterize the temporal and spatial requirements for PKA activity during iridophore
and melanophore development. Although PKA does not inhibit foxd3 expression, it is possible that
foxd3 protein activity is altered or that different mechanisms are at work in caudal versus trunk foxd3+
neural crest cells. Alternatively, PKA may activate foxd3 in cells not destined to become iridophores
or melanophores (i.e., glia, neurons or other foxd3-dependent cells). Future studies will investigate
the fate of these PKA-activated foxd3+ cells as well as the localization and phosphorylation status of
Foxd3 protein.
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Figure 6. Forskolin increases expression of the mitfa transcriptional repressor foxd3. (A–C) 10×
magnification of Bacfoxd3::GFP transgenic larvae at 2 dpf. Transgenic zebrafish express GFP in
foxd3-dependent cells including the pineal gland (arrowhead) and presumptive iridophores (arrows).
Scale bar in panel C = 200 um and applies to panels A–C. (D–E) 20× magnification of BACfoxd3::GFP
zebrafish. Arrows indicate cells co-expressing GFP and iridescence typically observed in iridophores.
The scale bar in panel E = 100 um and applies to panels D and E. (F,G) 20× magnification of 25 hpf 0.1%
DMSO or 5 µM forskolin-treated BACfoxd3::GFP transgenic fish processed for immunocytochemistry
using anti-GFP and anti-beta catenin antibodies (red). Forskolin treatment leads to an increase in GFP
(arrowheads indicate pharyngeal arches), indicating expanded domains of foxd3 expression. Scale bar
in panel F = 100 um and applies to panels F and G. (H,I) 0.1% DMSO and 5 µM forskolin-treated
wildtype embryos processed for in situ hybridization using the foxd3 probe. Forskolin expands the
areas of foxd3 expression, notably in the dorsal head and trunk regions (arrows) which are locations of
presumptive iridophores, and in pharyngeal arch neural crest streams (arrowheads). Scale bar in panel
H = 100 um and applies to panels H and I.

4. Conclusions

Specification and differentiation of neural crest cells is a highly regulated process, relying on
expression (or inhibition) of specific transcription factors and cell differentiation genes in response
to environmental signals. Our work suggests that protein kinase A signaling turns on melanophore
specific programming at the expense of iridophore programming in a subset of chromatophore
precursor cells. This is the first study to implicate PKA signaling as an intracellular regulator of
iridophore development.
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