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Abstract Centres of avian colonies are usually associated
with reduced predation risk and, thus, attract individuals of
high quality, while poor-quality individuals are relegated to
peripheral zones. Assuming that the incidence of extra-pair
paternity (EPP) is dependent on individual quality, we could
expect lower incidence of extra-pair offspring in the central
parts of colonies. On the other hand, central pairs often nest in
higher densities, which might increase EPP rate. To test these
hypotheses, we sampled 124 great cormorant Phalacarocorax
carbo sinensis chicks from 30 broods from different zones of a
colony and genotyped them at seven highly polymorphic mi-
crosatellite loci. Sibship reconstruction confirmed the pres-
ence of at least one extra-pair chick in 30.0 % of broods. We
found that EPP varied significantly between the zones of the

colony, with higher incidence of extra-pair broods in the pe-
ripheral zone (53.3 vs. 6.7 % of broods). Centre-edge differ-
ence in EPP was consistent with the expected distribution of
pair quality and suggested that poor-quality peripheral females
were more likely to solicit extra-pair interactions, possibly to
gain ‘good genes’ for their offspring. By contrast, we found no
evidence for density dependence in EPP rate, indicating that
likelihood of raising extra-pair offspring was not constrained
by limited availability of local males. The results indicate that
spatial randomization of sampling within avian colonies is
critical to obtain robust estimations of EPP for non-solitary
species. To our knowledge, this study provides the first evi-
dence for the centre-edge difference in EPP within a breeding
colony of birds.

Communicated by C. R. Brown

Significance statement Females often seek extra-pair copulations with
males of higher genetic quality than their mates to gain indirect genetic
benefits for their offspring (‘good genes’ hypothesis). As poor-quality
pairs usually occupy low-quality breeding sites, we might expect more
extra-pair paternity (EPP) in less attractive territories. There is scant in-
formation on EPP distribution in avian colonies. We predicted that the
incidence of EPP should (1) decrease in the attractive, better protected,
central parts of the colonies and (2) increase with nesting density. To test
these predictions, we molecularly assessed occurrence of EPP within a
colony of great cormorants. We showed that the incidence of EPP was
higher in the peripheral zone of the colony, while it was not related to the
local nesting density. The study provides the first evidence for the centre-
edge difference in EPP within a breeding colony of birds.
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Introduction

Extra-pair paternity (EPP) has been recorded in about 90 % of
all bird species, demonstrating that a large majority of socially
monogamous birds show varying degrees of promiscuity
(Griffith et al. 2002; Neudorf 2004). Variation in EPP between
major avian lineages is best explained by differences in fun-
damental life history traits (Møller 2000; Arnold and Owens
2002), while variation between closely related species or pop-
ulations is usually explained by contemporary ecological fac-
tors (Stutchbury and Morton 1995; Petrie et al. 1998; Gohli
et al. 2013). However, within populations, the frequency of
solicited extra-pair copulations and resulting fertilizations
may also depend on individual quality. The ‘good genes’ hy-
pothesis assumes that females seek extra-pair copulations
(EPCs) with males of higher genetic quality than their mates
to gain indirect genetic benefits (viability genes or genes for
attractiveness) for their offspring (Kempenaers et al. 1992;
Strohbach et al. 1998). Under this scenario, poor-quality fe-
males, which usually mate assortatively with poor-quality
males (Andersson et al. 1998; García-Navas et al. 2009),
would be more likely to raise extra-pair offspring. As poor-
quality pairs are likely to occupy low-quality nest sites (Sergio
et al. 2009), we might expect more EPP in less attractive
territories or nest sites, providing that high-quality males are
available in the neighbourhood as potential extra-pair sires
(Schlicht et al. 2015).

While some information exists on the spatial patterns of
EPP in territorial birds (Bollinger and Gavin 1991; Freeman-
Gallant et al. 2005; Westneat and Mays 2005), very little is
known about how extra-pair offspring are distributed within
colonies. In many colonial species, especially those that breed
in relatively homogeneous habitats (Minias 2014), central
parts of the colonies are most attractive and offer the highest
benefits in terms of fitness. Centrally located nests are usually
less susceptible to predation due to the following: (1) lower
accessibility for most types of predators and (2) more efficient
detection and deterrence of predators in the colony centre
(Götmark and Andersson 1984; Yorio and Quintana 1997).
For this reason, individuals of higher quality are likely to
occupy safer central nest sites and individuals of lower quality
are relegated to less attractive edge sites, resulting in a so-
called central-periphery gradient of pair quality (Velando
and Freire 2001). Central-periphery gradients in pair quality
have been reported for many colonial species from diverse
taxonomic groups, such as cormorants, larids, pelicans, pen-
guins and procellarids (reviewed in Minias 2014). One of the
first studies to demonstrate a central–periphery gradient found
that central breeding pairs of Black-legged Kittiwakes Rissa

tridactyla were in better physical condition and had higher
fledging success than peripheral pairs (Coulson 1968).
Further research on this species showed that centrally nesting
individuals had higher survival rates than conspecifics occu-
pying peripheral nest sites (Aebischer and Coulson 1990). In
many colonial species, central pairs have been reported to
breed earlier (Côté 2000; Gibbs et al. 2000), lay larger
clutches (Montevecchi 1978; Gochfeld 1980) and raise chicks
in better condition (Minias et al. 2012b). These patterns were
often attributed to older birds with more experience (Blus and
Keahey 1978; Pugasek and Diem 1983; Vergara and Aguirre
2006) or individuals with higher genetic quality (Minias et al.
2015a) nesting in the centre of colonies. Thus, under the as-
sumptions of the good genes hypothesis, it might be expected
that central-periphery patterns in pair quality should produce
similar gradients in the incidence of extra-pair offspring and,
thus, a greater proportion of extra-pair offspring in the periph-
eral parts of the colonies.

On the other hand, EPP rate may also be density-depen-
dent, as both sexes are expected to havemore opportunities for
EPCs at higher breeding densities (Mougeot 2004). While the
positive impact of local breeding densities on EPP has been
demonstrated for some territorial passerines (Charmantier and
Perret 2004; Stewart et al. 2010; Mayer and Pasinelli 2013), it
is often debated whether EPP is related to density in most
avian populations (Westneat and Sherman 1997; Tarof et al.
1998; Rätti et al. 2001). For example, it has been suggested
that density effects are more likely if males control extra-pair
fertilizations and females are passive targets of insemination
(Dunn et al. 1994). While this may be the case in many colo-
nial birds (Nelson 2005), there is scarce information onwheth-
er local breeding densities may affect EPP in species that
breed in aggregations. Also, since central parts of the colonies
are often associated with higher breeding densities (e.g.,
Becker 1995), the effects of central-periphery nest position
and local density may easily be confounded.

The aim of this study was to investigate spatial patterns in
EPP within a colony of the great cormorant Phalacrocorax
carbo sinensis. A number of fitness-related traits follow a
central-periphery gradient in great cormorant colonies, consis-
tent with higher quality of central breeding pairs (e.g.,
Andrews and Day 1999; Minias et al. 2012a, b; Minias and
Kaczmarek 2013). Also, unlike most colonial waterbirds with
slow life histories, the great cormorant has a relatively high
rate of EPP, averaging 16 % across several populations
(Piertney et al. 2003). These characteristics make the great
cormorant a suitable species to test hypotheses on the
within-colony spatial variation in EPP. We predicted that the
distribution of EPP within a colony would show the follow-
ing: (1) lower incidence of extra-pair offspring in the central
parts of the colony in comparison to the peripheral zone (con-
sistent with the good genes hypothesis) and (2) higher inci-
dence of extra-pair offspring in higher nesting densities. To
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test these predictions, we used a set of highly polymorphic
microsatellite loci to identify extra-pair offspring and, then,
conducted a spatial analysis which separated the effects of nest
location and density on the rate of EPP.

Material and methods

Study site and species

The study was conducted in a colony of great cormorants at
Jeziorsko reservoir (51° 73′ N, 18° 63′ E), central Poland, in
2010–2011. The colony was located in the area of riparian
willow woodland dominated by the white willow Salix alba
and the grey willow Salix cinerea in the vicinity of
Proboszczowice village (51° 43.39′ N, 18° 38.61′ E) at the
western shore of the reservoir. Great cormorants started to
breed at Jeziorsko reservoir in 1991, when 90 nesting pairs
were recorded at the site. Since then, the location and spatial
organization of the colony have changed over time, and in
2010–2011, birds bred in two separate colonies at the reser-
voir. The colony chosen for this study was established in 2005
by ca. 40 cormorant pairs and held ca. 150 pairs in 2010–
2011.

This subspecies of the great cormorant breeds colonially at
a wide spectrum of inlandwaters throughout Europe and Asia.
European populations are mostly migratory, and courtship and
pair formation takes place shortly after arrival on the breeding
grounds, usually in March. Breeding is relatively synchro-
nized (peak laying in April–May in Europe), and pairs only
have one brood per season. Replacement clutches may occur
if the first clutch is lost but are unlikely after the loss of young
(Nelson 2005).

Nest site location and nesting density

Each year, all active nests were mapped with a handheld
Global Positioning System (GPS) unit (Garmin GpsMap
60Cx, Olathe, KS, USA) with European Geostationary
Navigation Overlay Service (EGNOS) ensuring accuracy of
1–1.5 m. Collected coordinates were used to calculate dis-
tances between all the nests in the colony. On the basis of
the nest-distance matrices, we calculated two measures of
nesting density: (1) small-scale nesting density (nest density
within a radius of 5 m of each nest) and (2) large-scale nesting
density (nest density within a radius of 15 m of each nest). All
the nests were also assigned to either the central or peripheral
zone of the colony. Since the shape of the colony was irregular
and all the pairs clustered around a central open-water pond,
the nests located within a distance of 20 m from the pond were
considered central, while all other nests were considered pe-
ripheral (Fig. 1). Using a threshold distance of 20 m allowed
us to obtain a roughly equal division of nests between the

zones, with 43.6 and 46.0 % of all nests assigned to the central
zone in 2010 and 2011, respectively.

Field procedures

The colony was visited from mid-March, when first pairs ini-
tiated laying. Laying dates and clutch sizes were recorded for
50 broods per year. Laying was relatively synchronized, and
the large majority of clutches were laid by the end of April in
both years. For the purpose of paternity analyses, we random-
ly selected at hatching 30 broods with 124 offspring (14
broods in 2010, 16 broods in 2011; all hatched between 14
April and 09 May). Only broods where all eggs hatched suc-
cessfully were selected. Broods were equally distributed
among the central and peripheral zones of the colony (15
broods per zone), and the mean size of the sampled broods
was 4.13±0.11 [SE] (range 3–6) offspring. Within each zone,
we sampled broods from a wide spectrum of nesting densities
(large-scale nesting density range 1–15 vs. 1–13 nests/15-m
radius in the central and peripheral zone, respectively), which
allowed us to separate the effects of nesting density and
central-periphery nest location on EPP rate. As a result of this
sampling design, our set of selected broods showed no signif-
icant differences in an average nesting density between the
central and peripheral zones of the colony (small-scale nesting
density 1.53±0.50 vs. 1.60±0.35 nests/5-m radius, t=0.11,
df=28, p=0.91; large-scale nesting density 5.53±1.08 vs.
6.73 ± 1.04 nests/15-m radius, t= 0.80, df= 28, p = 0.43).
Peripheral nests from the south-eastern part of the colonywere
excluded from sampling (Fig. 1), as they were largely inac-
cessible to researchers. To minimize the problem of non-inde-
pendence, we avoided selecting the same nest sites in both
seasons. Great cormorants have high nest site fidelity
(Schjørring et al. 2000), so this likely excluded repeated mea-
surements of the same pairs. Blood samples (ca. 10 μl) were
collected soon after hatching by puncturing the ulnar vein of
nestlings. The samples were immediately suspended in 96 %
ethanol and stored until laboratory analyses.

Genetic analysis

For genotyping, we used seven microsatellite loci previously
developed for the great cormorant (Piertney et al. 1998).
Forward primers were labelled with fluorescent dyes (D2,
D3, D4, Sigma-Aldrich, Poland). We used a multiplex PCR
Kit (Qiagen) in 15-μL total volume to simultaneously amplify
five loci (PcD 4, PcD 6, PcT 1, PcT 3, PcT 4). A separate PCR
was used to amplify the two other loci (PcD 2, PcD 5) using
Polimerease mix (Sigma-Aldrich) in 25-μL total volume. We
used a 55 °C annealing for both types of reactions. We geno-
typed the PCR products using a Beckman Coulter CEQ 8000
capillary automated sequencer at the Museum and Institute of
Zoology, Polish Academy of Science (Warsaw, Poland). We

Behav Ecol Sociobiol (2016) 70:369–376 371



scored alleles visually using the Beckman Coulter Fragment
Analysis Software. The mean number of alleles per locus was
26.3 (10–53 alleles), and observed heterozygosity ranged
from 0.57 to 1.00 (details for larger dataset in Minias et al.
2015b). The combined non-exclusion probability for sib iden-
tity was 4.17×10−4, as calculated in Cervus 3.0.3 (Kalinowski
et al. 2007).

Estimating EPP

We did not collect DNA from parents, so to determine the
number of extra-pair young, we used two methods of sibship
reconstruction among the nestlings. Firstly, we used a maxi-
mum likelihood method implemented in the program
COLONY v2.0 (Wang 2004) to partition nestlings into full-
and half-sib clusters. Maximum likelihood partitioning is con-
sidered more powerful than the pairwise approach because
more information on entire families rather than just pairs of
individuals is extracted and utilized (Wang and Santure 2009).
In the analysis, the error rate of genotyping was set to 0.025 as
suggested by Wang (2004). We did not allow for multiple
maternity within broods, as despite a large body of molecular
paternity studies in Phalacrocorax genus and other genera
from Suliformes order (Graves et al. 1993; Baumgarten et al.
2001; Dearborn et al. 2001; Anderson and Boag 2006; Baião
and Parker 2009; Calderón et al. 2012), no sound empirical
evidence was found for either conspecific brood parasitism or
quasi parasitism in this group of birds (reviewed in Yom-Tov
2001; Griffith et al. 2004). Secondly, we tested for full-sibling
relationships using likelihood ratio tests based on Queller and
Goodnight’s r (Queller and Goodnight 1989; Goodnight and
Queller 1999) implemented in KINGROUP v2 (Konovalov
et al. 2004). To identify extra-pair chicks within broods, a
primary hypothesis of full siblings was tested against a null

hypothesis of half siblings. Ten thousand simulations were
carried out to assess the significance of likelihood ratios
(p< 0.05). Only the chicks for which the results of both
methods matched (indicated half-sib relationships with nest
mates) were considered to result from extra-pair fertilizations.

Statistical analyses

We used a generalized linear model with a binomial distribu-
tion and logit link function to test for the effects of nest site
location (binary response: central vs. peripheral zone) and
nesting density on the occurrence of extra pair paternity.
Broods were used as the unit of the analysis, and binary codes
were assigned for each response category of the dependent
variable (0—no extra-pair offspring, 1—at least one extra-
pair offspring). Small- and large-scale nesting densities were
log-transformed prior to the analysis to improve normality.
Both measures of density showed only moderate correlation
(r=0.48, n=30, p=0.007) and, thus, were included as covar-
iates into one model without violating the assumption of little/
no multicollinearity (|r| < 0.8) in the data. The effect of year
was entered as a fixed factor, and laying date was entered as a
covariate in the models. Stepwise procedures of backward
removal were used to select for significant independent vari-
ables, and their significance was determined using the Wald
χ2 statistic. All statistical analyses were performed with
STATISTICA 10.0 (StatSoft, Tulsa, OK, USA).

Results

Based on the sibship reconstruction, 30.0 % of broods were
classified as containing at least one extra-pair offspring
(n=30), and in total, 10.5 % of chicks were identified as

N

50 meters

Fig. 1 A map of the great
cormorant colony at Jeziorsko
reservoir, central Poland. Dark-
shaded area marks the central
pond, light-shaded areas mark
riparian willow woodland, and
the dashed line bounds the central
zone of the colony. Nests sampled
for paternity are marked with
large squares, where opened
squares indicate broods with no
extra-pair chicks and filled
squares indicate broods with at
least one extra-pair chick. Dots
mark active nests not sampled for
paternity analyses
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resulting from extra-pair fertilizations (n=124). In five out of
nine extra-pair broods, only one chick per brood was classi-
fied as extra-pair, while in the other four broods, two chicks
per brood were classified as extra-pair.

The occurrence of EPP differed significantly between the
zones of the colony, and there was a higher incidence of extra-
pair broods in the peripheral compared to the central zone
(53.3 vs. 6.7 %; Wald χ2=5.60, df=1, p=0.018; Fig. 1). By
contrast, the EPP rate did not vary with nesting density.
Neither small- nor large-scale nesting density had significant
effects on the occurrence of EPP (small-scale density: Wald
χ2 =0.39, df=1, p=0.53; large-scale density: Wald χ2=0.66,
df=1, p=0.42; Fig. 2). Consistently, we found no effect of
nesting density on the occurrence of EPP when the analysis
was restricted to the peripheral zone, where nearly 90 % of
extra-pair broods were recorded (small-scale density: Wald
χ2 = 0.07, df = 1, p = 0.79; large-scale density: Wald
χ2 = 1.57, df=1, p=0.21; Fig. 2). Occurrence of EPP did

not differ between years (Wald χ2 = 0.95, df=1, p= 0.33)
and did not vary with laying date (Wald χ2 = 0.00, df=1,
p=0.99).

Discussion

In this study, we confirmed the occurrence of the centre-edge
difference in EPP within a colony of great cormorants. Most
of the broods with extra-pair offspring were recorded in the
peripheral part of the colony, while incidence of EPP in the
central zone was negligible. By contrast, we found no effect of
density on the level of EPP.

Although estimates of EPP are available for many colonial
waterbirds, spatial analyses of EPP distribution within colo-
nies are scarce, and we are aware of no study that tested for the
central-periphery pattern of EPP distribution within a breeding
colony of birds. A recent study of the colonial blue-footed
booby Sula nebouxii showed that the spatial variation of
EPP across a colony was determined by habitat structure
(number of obstacles to locomotion) and was quadratically
related to breeding density (Ramos et al. 2014). It was pro-
posed that individuals nesting at intermediate density were
most likely to be accessed by males foraying for EPCs, while
obstacles in the vicinity of a female’s nest constrained the
access of foraying males (Ramos et al. 2014). These patterns
have been attributed to habitat complexity (forest floor with
embedded boulders and remains of dead trees) that restricted
birds’ movements throughout the colony.

While the centre-edge difference in EPP has not been tested
in the blue-footed booby, there was some indication for the
good genes hypothesis in this species, as extra-pair courtship
was more common in females with younger mates (Kiere and
Drummond 2014). Strong support for the good genes hypoth-
esis was also found for the European shag Phalacrocorax
aristotelis. It has been shown that the reproductive success
of females is correlated negatively with the number of
solicited EPCs and that the most successfully reproducing
males attracted more females to their territories for EPCs
(Graves et al. 1993). Although we had no direct information
on the quality of adult birds in our colony, there is relatively
strong empirical evidence for the poorer quality of peripher-
ally nesting pairs. Previous studies in the same colony indicat-
ed that peripheral pairs started breeding later and raised fewer
fledglings than central pairs (Minias et al. 2012a; Minias and
Kaczmarek 2013). Peripheral pairs were also younger (Minias
2012), and they invested more in female offspring, which are
smaller and, thus, less expensive to rear (Minias et al. 2014b).
Taking all of these previous results into account, we suggest
that the centre-edge difference in EPP rate is due to poor-
quality peripheral females seeking genetic benefits for their
offspring via extra-pair matings.
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Fig. 2 Nesting density of broods with no extra-pair chicks (no EPP) and
with extra-pair chicks (EPP) in the colony of the great cormorant; shown
separately for the peripheral zone of the colony (white bars) and for the
entire colony (shaded bars) at small- (a) and large-scale (b) nesting
densities. Means ± 95 % confidence intervals are shown
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We also found that the EPP rate in the great cormorant was
not related to local nesting density. This may suggest that
females do not engage in EPCs with closest neighbours but
seek interactions with males from more distant, possibly cen-
tral, parts of the colony. A similar mechanism has been de-
scribed in the blue-footed booby, where extra-pair chicks were
not sired by neighbours (Ramos et al. 2014). Spatial patterns
of EPP in other colonial birds seem to support a general lack
of density effects, although there is limited information avail-
able. No relationship between local nesting density and indi-
vidual numbers of EPCs has been reported for a colonial white
ibis Eudocimus albus (Frederick 1987), and the number of
extra-pair fertilizations was not related to nesting density in
a mixed colony of Ross’s geese Chen rossi and lesser snow
geese Chen caerulescens (Dunn et al. 1999). Lack of density
effects in geese has been attributed to the ability of females to
resist EPCs and control the success of extra-pair fertilizations.
Under this mechanism, greater density may not increase the
benefits of EPP to females, because adding more potential
mates will not necessarily increase opportunities for extra-
pair matings, at least above a minimum level of density
(Dunn et al. 1999). We hypothesize that a similar mechanism
may explain the lack of relationship between EPP and nesting
density in the great cormorant.

Our estimation of EPP rate in the great cormorant (ca. 10%
of offspring) is among the highest ever recorded in colonial
waterbirds. More extra-pair offspring per brood have been
reported only in two species, the waved albatross
Phoebastria irrorata (Huyvaert et al. 2000) and the black-
headed gull Chroicocephalus ridibundus (Ležalová-Piálková
2011). High EPP rate in the great cormorant is surprising, as
this species is characterized by relatively slow life history.
Adult survival rate was estimated at 0.88–0.90 for the Ph. c.
sinensis subspecies (Frederiksen and Bregnballe 2000;
Hénaux et al. 2007), which translates into an average lifespan
of 6 years (Schjørring et al. 2000). It is predicted that in such
long-lived species, abandonment of a reproductive event is
likely to be adaptive under uncertainty of paternity (Mauck
et al. 1999), thus, constraining the evolution of a high EPP
rate. Nevertheless, some other life history traits of the great
cormorant do not clearly fit into the pattern of slow life history.
Most importantly, great cormorants have relatively high fe-
cundity driven primarily by a large clutch size (on average,
three to four eggs), which distinguishes this species frommost
seabirds (Bregnballe 2006). As large clutch size decreases the
risk of retaliation via divorce, it could possibly facilitate the
occurrence of elevated EPP rate (Arnold and Owens 2002).

To our knowledge, this study provides the first evidence for
the centre-edge difference in EPP within a breeding aggrega-
tion of birds. The spatial distribution of EPP was consistent
with the expected distribution of pair quality within the colony
and suggested that poor-quality peripheral females were more
likely to solicit extra-pair interactions to gain good genes for

their offspring. The results may have important practical con-
sequences for further research on EPP in colonial species,
indicating that spatial randomization of brood samplingwithin
the colonies is critical to obtain robust estimations of EPP.
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