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Machine learning (ML) methods have shown promising results in identifying genes
when applied to large transcriptome datasets. However, no attempt has been made to
compare the performance of combining different ML methods together in the prediction
of high feed efficiency (HFE) and low feed efficiency (LFE) animals. In this study, using
RNA sequencing data of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle,
and pituitary) from nine HFE and nine LFE Nellore bulls, we evaluated the prediction
accuracies of five analytical methods in classifying FE animals. These included two
conventional methods for differential gene expression (DGE) analysis (t-test and edgeR)
as benchmarks, and three ML methods: Random Forests (RFs), Extreme Gradient
Boosting (XGBoost), and combination of both RF and XGBoost (RX). Utility of a subset
of candidate genes selected from each method for classification of FE animals was
assessed by support vector machine (SVM). Among all methods, the smallest subsets
of genes (117) identified by RX outperformed those chosen by t-test, edgeR, RF, or
XGBoost in classification accuracy of animals. Gene co-expression network analysis
confirmed the interactivity existing among these genes and their relevance within the
network related to their prediction ranking based on ML. The results demonstrate a great
potential for applying a combination of ML methods to large transcriptome datasets to
identify biologically important genes for accurately classifying FE animals.

Keywords: residual feed intake, Bos indicus, co-expression network, RNA-seq, Random Forest, Extreme Gradient
Boosting, supporting vector machine

INTRODUCTION

As farm practices around the world are continuously challenged to minimize environmental
footprint, there is a growing need for livestock producers to identify and select superior animals for
efficiency-related traits (Hayes et al., 2013). Among those, feed efficiency (FE) is one of the traits that
can be used to increase productivity while decreasing both pollutant production and competition
for high-quality grains with human nutrition (Banerjee et al., 2020; Yang et al., 2020). However, FE
is a complex trait, not only regulated by several biological processes, but also presented a moderate
heritability in beef cattle (Archer et al., 1997; Arthur et al., 2018; Higgins et al., 2019), suggesting
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a great influence of environmental effects (e.g., diet and
management). Considering that diverse mechanisms are involved
in FE regulation, it is often difficult to develop molecular markers
that accurately differentiate animals between high FE (HFE)
and low FE (LFE), when using a traditional case-control study
method. That is because, unlike healthy vs diseased or treated
vs non-treated contrasts, differences between HFE and LFE
are subtle and often related to intrinsic metabolic processes
(Cantalapiedra-Hijar et al., 2018). For instance, animals from
both groups can be healthy, of the same age, same breed,
under the same management and nutritional conditions, only
differing in the amount of food they consume ad libitum
(Alexandre et al., 2015; Russell et al., 2016). Therefore, the
development and application of accurate methods to identify
predictor molecules of polygenic traits, such as FE, are essential
for the implementation of an effective genomic selection program
in livestock species.

Decreasing costs and increased accessibility to high-
throughput sequencing technologies have enabled the generation
of larger RNA sequencing (RNA-seq) datasets aiming to
investigate predictor genes of complex traits, such as FE. In this
context, machine learning (ML) has been shown to outperform
other approaches when analyzing large RNA-seq datasets,
and selecting subsets of candidate genes for the prediction
or classification of phenotypes (Thompson et al., 2016; Choi
et al., 2018; Wang et al., 2018). To date, several studies have
reported the application of different ML methods in prediction
for FE. For example, Messad et al. (2019) successfully tested the
reliability of gradient tree boosting (XGBoost) in identifying
molecular predictors of FE in pigs; Yao et al. (2013) found that
Random Forest (RF) could be used effectively to identify additive
predictors associated with FE in cattle; and support vector
machine (SVM) had also been proven to be a reliable method in
genomic prediction of FE in dairy cattle (Yao et al., 2016). Piles
et al. (2019) found that out of four ML methods used [RF, SVM,
Elastic Net (ENET), and nearest shrunken centroid], ENET
produced the best classification accuracy of residual feed intake
(RFI) in pigs using 200 selected genes from liver. However, in all
these studies, ML methods were evaluated individually, and none
has focused on the comparison of the performance of combining
different ML methods together in the prediction of HFE and
LFE animals. In other words, the full advantage of joint forces of
different ML methods has not been thoroughly investigated.

In this study, using RNA-seq data of five tissues from nine
HFE and nine LFE Nellore bulls, we aimed to evaluate the
prediction accuracies of six analytical methods in classifying
animals as either HFE or LFE. For comparison purposes, these
included four ML methods [RF, XGBoost, combination of both
RF and XGBoost (RX), and SVM] and two conventional methods
for differentially expressed genes (DEG) identification (t-test
and edgeR). Furthermore, co-expression network and functional
enrichment analyses were conducted to ascertain the biological
relevance of the potential predictor genes identified from the
methods with strongest prediction accuracy. This study enhances
our current knowledge about the performance of different ML
methods in identifying predictor genes for assigning animals
to phenotype groups. Most importantly, it demonstrates that a

combination of ML methods is the best approach to investigate
traits of economic and environmental relevance.

MATERIALS AND METHODS

Transcriptome Dataset
The transcriptome dataset used in this study is publicly
available in the European Nucleotide Archive under the
study ID PRJEB27337.1 Detailed information about animals’
management, phenotypic measurements, RNA-seq libraries, and
initial processing can be found in Alexandre et al. (2015, 2019).
In brief, RNA was extracted from samples of adrenal gland,
hypothalamus, liver, skeletal muscle, and pituitary of 18 Nellore
bulls including nine from each extreme of FE (evaluated by
residual feed intake, Koch et al., 1963). They were part of a feeding
trial containing 98 steers (16–20 months old). Of 18 bulls from
eight sires and 18 dams, 14 were half-sibs from four sires. Eighty-
six RNA libraries were sequenced using an Illumina HiSeq2500
equipment (2 × 100 pb). Reads were aligned to the new bovine
reference genome (ARS-UCD1.2) using STAR 2.2.1 (Dobin et al.,
2013). Secondary alignments, duplicated reads, and reads failing
vendor quality checks were removed using Samtools (Li et al.,
2009). Then, featureCounts v.3 (Liao et al., 2014) was used to
generate gene read counts. EdgeR R package (Robinson et al.,
2010) was used to normalize the counts by TMM (trimmed mean
of M-values) and, for each tissue, only genes presenting at least
1 CPM (counts per million) in at least half of the samples were
considered for the analysis. Across all five tissues, a total of 16,423
genes passed the quality check, comprising as follows: 14,158 in
adrenal gland; 14,581 in hypothalamus; 12,090 in liver; 11,391 in
skeletal muscle; and 13,912 in pituitary. Among them, 9,950 genes
were expressed in common across all five tissues.

Identification of Differentially Expressed
Genes
Two conventional methods (t-test and edgeR) and three ML
methods (RF, XGBoost, and RX) were used to identify subsets of
potential predictor genes in individual tissues of HFE and LFE
cattle. A threefold cross-validation scheme was applied within
each tissue. That is, all 18 bulls (nine HFE and nine LFE) were
randomly separated into three equal-size groups and each group
had six cattle (three HFE and three LFE). Each group was in turn
used as a testing dataset. For t-test and edgeR, two (12 animals)
of three groups were used to derive DEG. Then the third group
was used for SVM.

For RF, XGBoost, and RX, the 18 animals were randomly
divided into three groups, training, validation, and testing groups
(six animals each). Within each fold, six animals were left out
as the testing dataset for SVM, while other two groups (six for
training and six for validation) were used for RF or XGBoost or
RX to select a subset of genes. The hyperparameter tuning for
individual ML methods was performed with the training dataset;
optimal parameters were applied to the validation dataset. Once
the subsets of potential predictor genes were selected by five

1https://www.ebi.ac.uk/ena/data/view/PRJEB27337
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aforementioned methods (t-test, edgeR, RF, XGBoost, and RX)
in each of five tissues, then these genes were evaluated for their
prediction accuracy for classifying HFE and LFE animals in the
testing datasets using SVM.

All analyses were performed with the R program (v3.6.1). The
details of individual methods are described as follows.

Benchmark Tests
In this study, t-test and edgeR (Robinson et al., 2010) were
conducted as the benchmarks to compare the performance
of individual ML methods in identifying subsets of DEG for
classification of HFE and LFE animals. A gene was declared DEG,
if the difference in gene expression values between high (HFE)
and low (LFE) groups resulted in a P-value < 0.05.

Random Forest
Random Forest is a tree-based ensemble learning method for
regression or classification of multiple variables (Breiman, 2001).
In general, the RF algorithm generates a multitude of individual
decision trees from different bootstrap samples (i.e., subsets
with replacements in both predictors and response variables),
for the split (root node) in each tree. RF produces variable
important measures (VIMs) for individual predictor variables. In
classification problems, one way to derive the VIM for a predictor
variable can be based on how much the accuracy decreases when
the variable is excluded from an out-of-bag (OOB) sample of a
decision tree by using a random shuffling method. The average
decrease in accuracy across all trees that contain that predictor
variable will be the measure of VIM value. The larger the VIM
value is, the more important the variable is in the classification.
All genes can be ranked with VIM values. The RF library in R
software was applied for the RF analysis.

There are two crucial parameters in RF that need to be
determined prior to the final RF analysis: the number of the
decision trees (Ntree) in a forest and the number of predictor
variables (mtry) randomly sampled as candidates for splitting
at each tree node. To derive minimum hyperparameter values
required, we systematically examined a range of Ntree and mtry
values using training datasets of a threefold CV scheme. These
included Ntree = 100,000, 200,000, 300,000, . . . 2,000,000 (i.e.,
interval = 100,000), and mtry = 1, sqrt (M), or 0.1 × M, where
M is the total number of genes in each tissue. We used the
error rate curve to determine the appropriate parameters for
final analysis. When the error rate reaches a steady state in
which its value is not affected by the increase in Ntree, then
the corresponding parameter values for Ntree and mtry are
determined for the RF analysis.

Extreme Gradient Boosting
Gradient boosting machine (GBM; Friedman, 2001) is another
ensemble ML method similar to RF but with a great improvement
in the prediction error. It builds a predictive model in the
form of an ensemble of lots of weak learners (i.e., small subsets
of predictor variables to form decision trees) in a stage-wise
way. The loss function can be optimized in the function space
by iteratively selecting functions that are most correlated with
the negative gradient. That is, each subsequent decision tree is

generated to minimize the prediction error made by the previous
decision tree until no further improvements can be made.

Extreme Gradient Boosting (XGBoost; Chen et al., 2016) is
very similar to GBM in principle, but it has several optimizations
in the algorithm including a novel tree learning algorithm for
handling sparse data, and a parallel and distributed computing
which makes it more than 10 times faster and with better
performance in controlling prediction errors and over-fitting
problems than GBM. Similar to other decision trees methods,
such as RF, XGBoost produces a VIM rank for the genes. VIM
value that XGBoost produces is the “Gain.” In the current
study, the Gain value of individual variable (gene) denotes the
relative contribution of the gene for each tree in the model, the
higher the “Gain” value is, the more important the gene is for
generating a prediction.

The XGBoost library (Chen et al., 2016) in R software was
applied in this study. The details of XGBoost can be seen in the
guide for XGBoost (Chen and Guestrin, 2016). Two crucial tree
parameters were evaluated prior to final XGBoost analysis: eta
and colsample. Eta determines the learning rate, i.e., the rate at
which a model learns patterns from decision trees. In general,
the bigger the eta value is, the faster to learn a pattern, a higher
chance to have an overfitting problem. Therefore, a smaller eta
value is preferred but a trade-off between a smaller eta value and
extreme high computational time needs to be considered. The
colsample specifies the proportion of genes to be subsampled for
a decision tree. A range of values examined in this study included:
colsample = 0.1, 0.05, 0.03, and 0.01 for the three cross-validation
datasets, and eta = 0.01, 0.05, 0.1, and 0.2. Again, the error
rate curve was used for determining the appropriate parameters
for final analysis.

Combination of Random Forest and XGBoost
The RX model is a two-step method of applying RF and XG.
First, RF was applied to select the subset of genes with positive
values of the mean decrease in accuracy, and then these selected
genes from RF were further assessed by XGBoost for their
associations with FE.

Classification of HFE and LFE Animals Using Subsets
of Genes and Support Vector Machine
Support vector machine, also known as support vector networks,
is a powerful supervised learning classification tool (Cortes and
Vapnik, 1995). It identifies a decision boundary (hyperplane) or
set of decision boundaries between two unlabeled categories in a
high- or infinite-dimensional space that enables the prediction of
labels from multiple features, intuitively. A perfect separation is
achieved by generating the hyperplanes with the largest margin
between different categories. The R library e1071 (Meyer et al.,
2019) is used for the SVM analysis.

Four metrics, overall accuracy, precision, recall, and F1-score,
were used for assessing the performance of SVM. They are
calculated as follows:

Overall accuracy =
true positive + true negative

true positive + false positive
+ false negative + true negative
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Precision =
true positive

true positive+ false positive

Recall =
true positive

true positive+ false negative

F1-score = 2×
precision× recall
precision+ recall

where true positive is the number of animals correctly classified
by the SVM to the first category with truly observed phenotype
(e.g., HFE); true negative is the number of animals correctly
classified to the second category (i.e., LFE); false positive is the
number of animals incorrectly assigned to the first category
they do not belong (e.g., LFE animals to HFE group); and false
negative is the number of animals incorrected assigned to the
second category (e.g., HFE animals to LFE group). The overall
accuracy is the most common metric to use and the F1-score is
useful when there is an uneven distribution of different classes.

Gene Co-expression Network Analysis
To identify significant gene to gene associations among the
subsets of genes selected by the RX method with the highest
classification accuracy, gene co-expression network analysis was
conducted using the Partial Correlation and Information Theory
(PCIT) algorithm (Reverter and Chan, 2008). The results from
PCIT were visualized using Cytoscape software Version 3.7.1
(Shannon et al., 2003).

There were two types of networks constructed in the current
study: within tissue and across tissues. In the within tissue
approach, the expression data of the genes selected by RX in
each tissue were used for the PCIT analysis. Then the correlations
were calculated between the VIM values (“Gain” values) of the
genes selected by RX with the values of seven major network
centrality measures including betweenness, degree, closeness,
clustering coefficient, neighborhood connectivity, radiality, and
topological coefficient. For a detailed definition of centrality
measures, see Table 1 in Junker et al. (2006). These centrality

TABLE 1 | Hyperparameter values used in the Random Forest and XGBoost
analyses.

RF (threefold CV) XGBoost (threefold CV)

Adrenal gland Mtry = 0.1 × M Colsample = 0.01

Ntree = 2,000,000 Eta = 0.5

Hypothalamus Mtry = sqrt (M) Colsample = 0.01

Ntree = 2,000,000 Eta = 0.5

Liver Mtry = sqrt (M) Colsample = 0.01

Ntree = 1,000,000 Eta = 0.01

Muscle Mtry = sqrt (M) Colsample = 0.01

Ntree = 1,000,000 Eta = 0.01

Pituitary Mtry = 0.1 × M Colsample = 0.03

Ntree = 2,000,000 Eta = 0.01

M, total number of genes in individual tissue; Ntree, number of trees; Mtry, number
of genes for forming a decision tree; colsample, proportion of genes subsampled
for a decision tree; eta, learning rate; CV, cross validation.

measures were computed using the Network Analyzer plugin of
Cytoscape (Assenov et al., 2008).

In the across tissues approach, the expression data of all the
genes selected by the RX and expressed in all five tissues were
selected and separated into two groups (HFE and LFE) according
to the animals for PCIT algorithm. The genes were considered
as group-specific if the average gene expression level in one tissue
was higher than those of the remaining tissues. A comparison was
then performed between the gene co-expression networks of two
groups, mainly focused on the group-specific connections and the
differential connectivity of each gene from LFE to HFE.

Enrichment Analysis
To further understand the biological relevance of the potential
predictor genes, functional enrichment was performed using
GO enrichment analysis and KEGG pathway analysis. GO
enrichment analysis was performed using the program
PANTHER (protein annotation through evolutionary
relationship; Mi et al., 2013), and KEGG pathway analysis was
performed using the program KOBAS (KO-Based Annotation
System; Wu et al., 2006). A total of 16,423 genes obtained after
QC were used as background, the number of genes enriched
in GO and KEGG was counted, followed by Fisher’s exact test
with FDR multiple test correction to assess statistical significance
(adjusted P < 0.05).

RESULTS

Hyperparameter Determination for
Individual ML Methods
The final parameters used for RF and XGBoost analyses of
different tissues were chosen based on a systematic evaluation of
a range of values using a threefold CV and can be seen in Table 1.
Different tissue datasets require different fine-tuned parameters.

Identification of Differentially Expressed
Genes Using t-Test, edgeR, RF, XGBoost,
and RX
Using a threefold cross-validation scheme for each gene
expression dataset of five tissues, we identified different numbers
of DEG by t-test, edgeR, RF, XGBoost, and RX (Table 2). Among
five methods applied, the RF produced the largest number of
genes while the RX had the smallest number of genes. The
number of DEG identified by t-test and edgeR was similar in liver,
but substantially different in other four tissues (adrenal gland,
hypothalamus, muscle, and pituitary gland), in which the edgeR
identified more DEG than the t-test except for pituitary gland
where the opposite was true. When comparing the selected genes
by RF, XGBoost, and RX with those from t-test and edgeR, we
found that the RF selected almost all DEG identified by t-test
and edgeR as well as new genes (91.5 and 93.7% of the genes
identified by t-test and edgeR were identified by RF, respectively),
while the XGBoost and RX only picked up the top-ranked DEG
by t-test and edgeR.
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TABLE 2 | Number of potential predictor genes for feed efficiency identified by t-test, edgeR, Random Forest (RF), Extreme Gradient Boosting (XGBoost), and the
combination of Random Forest and Extreme Gradient Boosting (RX) in individual five tissues.

Tissue Total no genes CV dataset Method

t-Test edgeR RF XGBoost RX

Adrenal gland 9,581 1 115 157 2,283 72 7

2 428 640 2,202 63 20

3 103 252 2,369 42 6

Total 586 941 4,993 171 33

Hypothalamus 9,810 1 46 194 1,902 88 13

2 280 592 1,848 70 17

3 182 290 1,812 81 8

Total 473 908 4,041 222 33

Liver 5,005 1 50 121 905 109 17

2 129 182 957 74 4

3 299 294 999 66 10

Total 421 486 2,092 227 30

Muscle 6,580 1 200 269 1,408 68 6

2 295 322 1,676 69 9

3 491 619 1,304 68 12

Total 874 950 3,294 199 23

Pituitary 9,726 1 200 239 1,906 78 12

2 684 356 1,902 58 15

3 1,850 1,303 2,454 48 15

Total 2,492 1,625 4,869 180 41

CV, cross-validation; total, total number of genes identified from threefold cross-validation datasets.

Using SVM to Evaluate the Classification
Performance of DEG Selected by Five
Methods
Table 3 presents the overall accuracies and F1-scores of
classification performance of different sets of DEG identified by
each individual method, when applying SVM for classification.
It can be seen that the classification performance varied with
the genes from different tissues and different selecting methods.
Regardless of the metrics used (overall accuracy or F1-score),
all subsets of genes selected from five methods produced a
good classification accuracy (>90% in both overall accuracy
and F1-score in Table 3). When comparing the results within
individual tissues, among five methods, the genes chosen by
the RX showed the highest overall classification accuracy for
HFE and LFE animals in hypothalamus (95.4%), liver (93.6%),
muscle (96.0%), and pituitary gland (97.9%). The only exception
was in the adrenal gland for which the genes selected by edgeR
produced the best classification performance with 96.1% accuracy
(Table 3). When comparing the average classification accuracy
of five methods across all tissues (see the overall average values
in Table 3), the RX outperformed the other four methods with
the highest accuracy value of 95.2%. This was closely followed
by t-test (94.8%) and edgeR (94.3%). The results for F1-score
(the bottom part of Table 3) that were the weighted average of
Precision and Recall values (Supplementary Table 1) showed
a similar trend to that of overall accuracy values, except that
the t-test gave the highest F1-score among all methods in the
pituitary gland (F1 score, Table 3).

Given that RX identified the smallest subsets of potential
predictor genes across all tissues with the highest classification
accuracy for nine HFE and nine LFE animals, a further
investigation in gene expression pattern was carried out for the
160 genes selected by the RX from different tissues (i.e., 33,
33, 30, 23, and 41 genes from adrenal gland, hypothalamus,
liver, muscle, and pituitary, respectively). Figure 1 illustrates
the cluster analysis heatmaps of 18 animals using the 23 genes
from muscle (Figure 1A) and 41 genes from pituitary gland
(Figure 1B), respectively. It can be seen the distinguishable
pattern between the HFE and LFE animals in both tissues even
with the very small sets of genes (Figure 1), especially in muscle
(Figure 1A). The heatmaps for other tissues can be seen in
Supplementary Figure 1.

Gene Co-expression Networks
Gene Co-expression Network Within Individual
Tissues
The five individual co-expression networks (Figure 2) were
composed of 29, 49, 51, 21, and 23 potential predictor genes
and 179, 285, 489, 135, and 133 connections in adrenal gland
(Figure 2A), hypothalamus (Figure 2B), liver (Figure 2C),
muscle (Figure 2D), and pituitary (Figure 2E), respectively.

Pearson correlation coefficient (PCC) analysis was conducted
between the “Gain” values from RX and seven major centralities
in the gene co-expression network; the results are shown in
Table 4. Across all five tissues, betweenness (the degree to
which nodes stand between each other) had the highest average

Frontiers in Genetics | www.frontiersin.org 5 February 2021 | Volume 12 | Article 619857

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-619857 February 10, 2021 Time: 18:42 # 6

Chen et al. Machine Learning for Feed Efficiency

TABLE 3 | Comparison of classification performances (overall accuracy and F1-score) of subsets of selected genes from different methods, when applying SVM.

Tissue Source of subset genes Best

t-Test edgeR RF XGBoost RX

Overall accuracy

Adrenal gland 0.937 (0.0719) 0.961 (0.0320) 0.902 (0.0836) 0.931 (0.0783) 0.937 (0.0768) edgeR

Hypothalamus 0.950 (0.0278) 0.939 (0.0454) 0.945 (0.0483) 0.952 (0.0428) 0.954 (0.00641) RX

Liver 0.932 (0.0711) 0.907 (0.0605) 0.933 (0.0387) 0.918 (0.0679) 0.936 (0.0534) RX

Muscle 0.945 (0.0312) 0.937 (0.0446) 0.942 (0.0245) 0.925 (0.0518) 0.960 (0.0414) RX

Pituitary 0.978 (0.00789) 0.973 (0.0204) 0.978 (0.00581) 0.972 (0.00554) 0.979 (0.00701) RX

Overall average 0.9484 0.9434 0.9400 0.9396 0.9532 RX

F1-score

Adrenal gland 0.949 (0.0551) 0.956 (0.0396) 0.915 (0.0714) 0.937 (0.0702) 0.949 (0.0598) edgeR

Hypothalamus 0.948 (0.0289) 0.945 (0.0469) 0.947 (0.0440) 0.948 (0.0482) 0.951 (0.00871) RX

Liver 0.930 (0.0732) 0.886 (0.0845) 0.927 (0.0457) 0.897 (0.0931) 0.932 (0.0575) RX

Muscle 0.948 (0.0367) 0.940 (0.0442) 0.945 (0.0298) 0.924 (0.0577) 0.957 (0.0442) RX

Pituitary 0.988 (0.0195) 0.973 (0.0205) 0.978 (0.0161) 0.958 (0.0197) 0.977 (0.00518) t-Test

Overall average 0.9526 0.9400 0.9424 0.9328 0.9532 RX

Values in brackets are standard deviations.

FIGURE 1 | Heatmap of cluster analysis using DGE identified by the RX in muscle (A) and pituitary gland (B). H refers to HFE bulls and L refers to LFE bulls.

correlation coefficient (0.21) and all above 0.10, followed by
degree (number of the connections of each node) (0.18).

Gene Co-expression Networks Across Five Tissues
for HFE and LFE Groups
When considering the five tissues altogether, two gene co-
expression networks were constructed, one for LFE animals
(Figure 3A) and one for HFE animals (Figure 3B), based on
the genes present in different tissues with the highest expression
values among five tissues. Of the 84 genes, 31 were from adrenal
gland, 16 from hypothalamus, 12 from liver, 11 from muscle, and
14 from pituitary.

The LFE and HFE specific networks were composed of
1,056 and 1,129 connections, respectively. When comparing
the connections within tissues, there were 45.31, 40.32, and

15% more connections created for hypothalamus, adrenal gland,
and pituitary of the HFE network than those in LFE network.
Conversely, there were 95.3 and 35.31% less connections created
in HFE than connections lost in LFE in muscle and liver.

Regarding the connections of each gene (Figure 4), the top five
most connected regulators were TGFBRAP1, RAB28, PACSIN2,
XRCC6, and UPF1, varying from 84 to 78 connections in two
groups, the top five regulators with the biggest change in the
number of connections were EEF1D, CHUK, PSMD1, RPUSD4,
and SUMO1 varying from 18 to 11.

Enrichment Analysis
Table 5 presents the results from the GO enrichment analyses
of the genes selected by RX in all five tissues, using the Bos
taurus reference from the PANTHER program. A total of 21
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FIGURE 2 | Co-expression network of predictor genes identified by the RX in adrenal gland (A), hypothalamus (B), liver (C), muscle (D), and pituitary (E). Deep color
(blue) and bigger circles indicate the genes with stronger control power (higher betweenness value) over the network.

TABLE 4 | Correlations between ML “Gain” values from RX analysis and network centrality parameters.

Betweenness Closeness Clustering Degree Neighborhood Radiality Topological

Adrenal gland 0.10 0.30 0.11 0.30 0.27 0.29 0.03

Hypothalamus 0.23 0.09 −0.14 0.09 −0.04 0.08 −0.13

Liver 0.23 0.25 −0.08 0.29 0.06 0.23 −0.03

Muscle 0.29 −0.01 −0.10 0.00 −0.13 0.02 −0.19

Pituitary 0.21 0.25 −0.11 0.24 −0.09 0.23 −0.13

AVERAGE 0.21 0.17 −0.06 0.18 0.01 0.17 −0.09

GO terms were significantly enriched and the top five enriched
GO terms included metabolic process (GO:0008152), cellular
metabolic process (GO:0044237), organic substance metabolic
process (GO:0071704), primary metabolic process (GO:0044238),
and nitrogen compound metabolic process (GO:0006807).

Table 6 presents the top 20 enriched pathways from the KEGG
analyses of genes selected by RX in all five tissues, using the
Bos taurus reference from the KOBAS program. The top five
enriched pathways were metabolic pathways (hsa01100), MAPK
signaling pathway (hsa04010), Ras signaling pathway (hsa04014),
T cell receptor signaling pathway (hsa04660), and Parkinson’s
disease (hsa05012).

DISCUSSION

Feed efficiency is a complex phenotype, regulated by several
biological processes, such as feed intake, digestion, metabolism,
physical activity, and thermoregulation (Herd and Arthur, 2009).
Therefore, accurately predicting FE and related traits from

molecular datasets is not straightforward. So far, several studies
have explored the feasibility of identifying molecular predictors
for FE using different ML algorithms [e.g., Clemmons et al.,
2019 (Beef cattle), Messad et al., 2019 (pigs), and Piles et al.,
2019 (pigs)]. However, none of these attempted to compare
the prediction performance of combining two ML methods
together. In this study, using SVM, we evaluated classification
performance for FE based on the subsets of selected genes by
five different methods including RF, XGBoost, RX, edgeR, and
t-test. The reason why RF, XGBoost, and SVM were applied
in this study not ENET is that RF, XGBoost, and SVM are
the most commonly used decision-trees-based ML methods
for regression or classification; they are easier to apply than
ENET. In addition, for proof of concept of combining ML
methods together, we chose to apply RX (combining RF and
XGBoost). SVM was used as the judge because the similar results
were observed with SVM to that of RF when initially testing
individual methods.

Across five methods in all tissues, higher average accuracy
and F1-score values obtained in pituitary indicate that the
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FIGURE 3 | Co-expression networks in LFE (A) and HFE (B), colors are relative to the tissue of maximum expression: yellow represents liver, green represents
muscle, orange represents pituitary, purple represents hypothalamus, and blue represents adrenal gland. The results are based on the genes selected by the RX.

FIGURE 4 | Connections of each shared gene in LFE and HFE. The results are based on the genes selected by the RX.
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TABLE 5 | GO enrichment analysis based on genes selected by RX.

GO biological process complete Number of
genes

P-value

Metabolic process (GO:0008152) 86 1.47E-07

Cellular metabolic process (GO:0044237) 75 2.89E-07

Organic substance metabolic process (GO:0071704) 73 2.51E-05

Primary metabolic process (GO:0044238) 69 3.94E-05

Nitrogen compound metabolic process
(GO:0006807)

64 6.74E-05

Biosynthetic process (GO:0009058) 35 1.39E-06

Organic cyclic compound metabolic process
(GO:1901360)

35 1.97E-05

Cellular biosynthetic process (GO:0044249) 34 6.62E-07

Organic substance biosynthetic process
(GO:1901576)

34 1.67E-06

Cellular aromatic compound metabolic process
(GO:0006725)

32 6.66E-05

Phosphate-containing compound metabolic process
(GO:0006796)

27 6.85E-05

Response to oxygen-containing compound
(GO:1901700)

22 2.71E-06

Macromolecule biosynthetic process (GO:0009059) 22 6.20E-05

Cellular response to oxygen-containing compound
(GO:1901701)

19 1.08E-06

Positive regulation of intracellular signal transduction
(GO:1902533)

17 2.14E-05

Organic cyclic compound biosynthetic process
(GO:1901362)

17 7.40E-05

Regulation of anatomical structure morphogenesis
(GO:0022603)

17 8.20E-05

Response to oxidative stress (GO:0006979) 10 3.17E-05

Cellular response to oxidative stress (GO:0034599) 8 3.11E-05

Cellular response to cadmium ion (GO:0071276) 5 1.32E-06

Response to cadmium ion (GO:0046686) 5 2.96E-06

genes identified in pituitary produced clear expression pattern
difference between HFE and LFE animals. To date, many studies
of FE focused on liver tissue; our results suggest that pituitary
could be an important tissue to investigate as well. Although
the subsets of genes chosen by all methods produced good
overall classification accuracy (>90%), the number of genes
varied significantly. The RX method produced the highest value
of prediction accuracy yet with the smallest subsets of genes
(117) that were biologically relevant to FE. This is in stark
contrast with the other methods in this study that require large
number of genes to achieve similar accuracy values. This has great
implication in future when considering the efficiency and the
cost of determining the number of genes required for classifying
animals of different FE. In addition, the reasons why the RX
performed the best can be explained as follows:

A prediction error from a supervised learning algorithm
consists of two parts: a bias and a variance (James et al., 2013).
A bias is “the persistent or systematic error that the learning
algorithm is expected to make when trained on training sets
of size m” (Dietterich and Kong, 1995). It is the difference
between predicted values using training sets and the expected
true value. A variance refers to the variation of predicted values
for all individuals of a given dataset (Olaru and Wehenkel,

TABLE 6 | KEGG enrichment analysis based on genes selected by RX.

Pathways Number of genes P-value

Metabolic pathways (KEGG:01100) 16 2.29E-05

MAPK signaling pathway (KEGG:04010) 9 7.79E-07

Ras signaling pathway (KEGG:04014) 7 3.23E-05

T cell receptor signaling pathway
(KEGG:04660)

6 4.17E-06

Parkinson’s disease (KEGG:05012) 6 2.17E-05

mTOR signaling pathway (KEGG:04150) 6 3.36E-05

Chemokine signaling pathway
(KEGG:04062)

6 9.50E-05

PI3K-Akt signaling pathway (KEGG:04151) 6 2.11E-03

Pathways in cancer (KEGG:05200) 6 4.32E-03

Renal cell carcinoma (KEGG:05211) 5 8.01E-06

TGF-beta signaling pathway (KEGG:04350) 5 2.26E-05

Chagas disease (KEGG:05142) 5 5.98E-05

Osteoclast differentiation (KEGG:04380) 5 1.76E-04

Influenza A(KEGG:05164) 5 6.32E-04

Epithelial cell signaling in Helicobacter pylori
infection (KEGG:05120)

4 1.62E-04

B cell receptor signaling pathway
(KEGG:04662)

4 2.10E-04

Prostate cancer (KEGG:05215) 4 4.32E-04

Toll-like receptor signaling pathway
(KEGG:04620)

4 8.12E-04

TNF signaling pathway (KEGG:04668) 4 9.28E-04

Apoptosis (KEGG:04210) 4 2.19E-03

2004). In other term, it indicates the amount by which the fitted
model would change when different training sets were applied.
Prediction errors of different boosting and bagging decision
tree methods have different characteristics. In general, boosting
methods (such as XGBoost), based on ensemble of weak learners
(i.e., lots of decision trees with small numbers of predictor
features), produce the results with a high bias but a low variance.
In contrast, bagging trees (such as Random Forest), produce
an outcome with a low bias and high variance (Podgorelec
et al., 2015; Liam et al., 2018). Given the individual method’s
shortcomings, by analyzing the gene expression data first by RF
to choose the features with positive VIM values (>0) and then
applying XGBoost to select final subsets of predictor genes for
classification using SVM, we were able to take full advantages of
what each method can offer to minimize the prediction error.
This explains why our combined method, the RX, had the
best performance among all methods. Furthermore, our results
confirmed the findings by Xiong et al. (2019) that combining ML
models could provide a better accurate assessment model than
individual ML model alone, particularly in the context of complex
animal production traits.

Of the five methods tested, surprisingly Random Forest had
the worst performance in terms of overall accuracy of classifying
HFE from LFE animals when comparing with the results from
t-test and edgeR, despite the fact that RF identified the largest
number of potential predictor genes. Fernandez-Delgado et al.
(2014) evaluated the accuracy of 179 ML methods including
Bayesian approaches, neural networks, SVM, boosting, bagging,
and others in 121 datasets at both large and small scales for bio
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and non-bio problems. For multi-class datasets, RF was found to
outperform all other methods and achieved on average 94.1% of
the accuracy. For two-class datasets, their study showed that SVM
was the best (95% of the accuracy) followed closely by the RF
(94.3%). One explanation for our results is that using the simple
criteria of VIM > 0, the majority of the subset of genes chosen
by RF were not significant DEG, by including these genes in the
classification prediction model presented a larger prediction error
than those significant DEG genes chosen by t-test and edgeR
using P < 0.05.

For validating the biological reliability of RX results, we
conducted co-expression network analyses using the DE genes
selected by RX and calculated the PCCs between the “Gain”
values from RX and seven major centrality measures of the
gene co-expression network in each of the five tissues. Among
those, betweenness centrality, a measure that shows the status of
a gene in connecting two or more groups of genes, presented
the highest PCCs. This suggests that the genes with higher
“Gain” also have more control over the network, because more
information passes through them (Godini and Fallahi, 2018).
These bottle-neck nodes in the network reflect an important
regulatory role for the phenotype under study, providing a good
connection between the genes identified by RX for FE. This is
the first study to combine ML and gene co-expression network
analysis to confirm the interactivity existing among these genes
and their relevance within the network related to their prediction
ranking based on ML.

When comparing co-expression network differences between
LFE and HFE groups, although the number of connections in
both groups was similar, there were more connections in HFE
than in LFE. At tissue level, the number of connections between
genes with maximum expression in skeletal muscle represented
the biggest change between HFE and LFE networks, with more
connections being created in the HFE network. Our results
imply that there may be more FE-related pathways activated in
HFE, particularly at the level of skeleton muscle. Regarding the
connections of each gene, the topmost connected regulator was
TGFBRAP1 (transforming growth factor beta receptor associated
protein 1), which encodes a protein that binds to transforming
growth factor-beta (TGF-beta) receptors and plays a key role in
TGF-beta signaling pathway. TGFB1 has been previously found
as a key regulator of FE using this same dataset and a multi-tissue
co-expression network comprised of 1,335 relevant genes for this
trait (Alexandre et al., 2019) and using a completely different
phenotype-metabolome-genome integrated dataset (Widmann
et al., 2015). The regulator with the biggest change in the number
of connections between HFE and LFE was EEF1D (eukaryotic
translation elongation factor 1 delta), a crucial activator of Akt-
mTOR signaling pathway (Cheng et al., 2018).

To further understand the function of the genes identified
by RX (Supplementary Table 2), we performed GO and KEGG
enrichment analyses. The most enriched terms were metabolic
process and metabolic pathways in GO and KEGG, respectively.
These complex biological processes are related with FE, among
which, metabolic pathways are known to play an important role
in controlling of FE. Previous studies have revealed that variation
in metabolic pathways leads to variation of FE (Abo-Ismail et al.,
2013; Saatchi et al., 2014; Abasht et al., 2019). Furthermore,

pathways and processes related to metabolic pathways were also
found enriched in previous FE studies in cattle (Santana et al.,
2014) and pig (Onteru et al., 2013). Other pathways worth citing
include mTOR signaling pathway, PI3K-Akt signaling pathway,
and TGF-beta signaling pathway which have been reported to be
highly related to FE in other studies (Hill and Azain, 2009; Sartin,
2013). These results further demonstrate the additional value of
using RX in generating biological insights.

It is cautionary to mention the limitations of our study,
regarding the number of ML methods tested and the sample
size of the RNA-seq dataset. The small number of animals
(18) and close relationship between them (half-sibs) in the
training, validation, and testing datasets could explain why high
classification accuracy values achieved for all the methods. The
results could be different if the training, validation, and testing
groups are not closely related, especially in the case where
a population is small and there is large individual variation.
To minimize the influence of small population size and large
individual variation on prediction accuracy of ML methods,
one of the methods is to apply Leave-One-Out Cross-Validation
scheme (Sammut and Webb, 2011). The utility of combining
different ML methods needs to be further validated considering
other traits with different heritability values, livestock species,
and populations.

CONCLUSION

In summary, using expression data of 16,432 genes in five tissues
from 18 Nellore bulls, we demonstrate that: (1) combining
Random Forest and XGBoost (RX), a two-step ML method,
has great potential in identifying small subsets of biologically
important genes for accurately classifying FE animals and (2)
a correlation exists among the genes identified by RX in their
relevance to the networks and their prediction ranking by RX.
The findings from this study are not only relevant to FE, but also
have great potential implications to the study of other important
complex traits in cattle as well as in other livestock species.
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