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Abstract
Cavernous hemangiomas, or cavernomas, are vascular malformations that affect about 0.1-0.5% of the
population and usually result from sporadic or familial mutations of genes involved with endothelial cell
junctions. They are histologically described as dilated vascular clusters, and they may occur in various areas
of the body. Cavernomas of the central nervous system can generate localizing symptoms, including focal
neurological defects, headaches, seizures, and hemorrhage. Radiation-induced cavernomas (RICs) have been
described in the literature since 1994 and have been more frequently described in children. Although there
has been speculation about the pathophysiology of RICs, no consensus exists in the literature, and
pathological evaluation of RICs remains sparsely reported. We present the case of a 63-year-old patient who
underwent stereotactic radiosurgery for treatment of an intracranial arteriovenous malformation (AVM) and
subsequently developed a symptomatic RIC seven years later that required microresection. Clinicians should
exercise diligence when monitoring patients with a history of intracranial radiation because of growing
evidence supporting cavernomas as potential late-stage sequelae.
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Introduction
Cavernous hemangiomas (i.e., cavernomas, cavernous angiomas, or cavernous malformations) are vascular
malformations characterized by dilated vascular channels and frequent infiltration into deep structures.
Microscopic evaluation of cavernomas reveals a nonencapsulated structure with stroma infiltrated by large,
thin-walled vascular spaces. Endothelial cell junctions are often abnormal to absent, suggesting a possible
pathogenesis involving atypical cell-cell adhesion, cell polarity, and cell-extracellular matrix interaction [1].
Cavernomas affect 0.1-0.5% of the general population, with both sporadic mutations and familial forms
having been identified. Inheritance is typically autosomal dominant, with a familial incidence rate of about
20% [1]. Loss-of-function mutations of ankyrin repeat-containing/cerebral cavernous malformation
(KRIT1/CCM1), CCM2, and CCM3 gene loci on chromosome 7 have been indicated in the pathophysiology of
cavernomas, possibly via a two-hit mechanism [2].

In patients with a cavernoma, symptoms may vary or be absent. Symptomatic clinical presentation of
intracranial cavernomas correlates with the site of the lesion, often causing focal neurological deficits,
partial or generalized seizures, cerebral hemorrhage, or headaches. Familial cavernomas may also affect the
retina or skin, resulting in visual or cutaneous findings. Angiography is classically unable to identify
cavernomas. Magnetic resonance imaging (MRI) is the most sensitive study for the detection of cavernomas
within the neuraxis [2]. Management is typically driven by clinical status, with symptomatic patients usually
undergoing resection and asymptomatic patients being monitored with observant management.

Reports of radiation-induced cavernomas (RICs) have been increasing [3-13]. Neoplasia after radiation
exposure has been described for more than a century and is likely due to the proliferative effects of
deoxyribonucleic acid (DNA) damage. Radiation has many molecular and biological effects linked to DNA
changes, including nucleotide alterations, single- and double-strand breaks, and cross-linking. Ron et al.
described radiation-induced neoplasms in a large retrospective cohort of nearly 11,000 subjects that had
received broad scalp irradiation as children. The 30-year risk of developing a secondary neoplasm for these
patients was 0.8%, with a mean interval of nearly 18 years after therapy until diagnosis. More recently,
neoplasms induced by stereotactic radiosurgery (SRS) have been studied. In comparison to the low-dose,
wide-field delivery of irradiation in traditional radiation therapy, SRS provides a high-dose pulse of
radiation to a confined space of tissue. A review in 2013 estimated the risk of a patient developing a
secondary neoplasm from SRS at 0.1-0.2% [14]; however, the correlation between SRS and cavernomas is less
well quantified. The literature reports cavernomas after whole-brain radiotherapy (WBRT) and SRS, but
analysis regarding radiation delivery method and dose is lacking [6, 10]. Herein, we present a case to add to a
growing literature of RICs, with the intent to highlight the current understanding of RIC pathophysiology
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and histology, especially with regard to SRS.

Case Presentation
History and physical examination
A sixty-three-year-old, right-handed woman presented to the emergency department with chief complaints
of progressive confusion and expressive aphasia over three days. Her past neurological history was
significant for a Spetzler-Martin grade 2 left temporal arteriovenous malformation (AVM) that was treated
seven years earlier with stereotactic radiosurgery using Novalis Tx (Varian Medical Systems Inc., Palo Alto,
CA). The SRS therapy delivered a prescription dose of 20 Gy to the nidus of the lesion (Figure 1). Follow-up
imaging demonstrated complete obliteration of the AVM (Figure 2); however, a non contrasted computed
tomography scan of the head and MRI of the brain revealed a new left temporal hemorrhagic lesion (Figure
3).
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FIGURE 1: T1-weighted post-contrast magnetic resonance imaging axial
(A) and coronal (B) scans from a patient before stereotactic
radiosurgery (SRS) for arteriovenous malformation, superimposed with
the radiotherapy doses (arrows)
The left temporal lesion was targeted with a prescription dose of 20 Gy. The red ovoid line demonstrates the
target of SRS. Isodense lines surrounding the target lesion represent a gradient of dose dissipation: 20 Gy
(brown), 12 Gy (emerald), and 8 Gy (turquoise).

2022 Patterson et al. Cureus 14(1): e21635. DOI 10.7759/cureus.21635 3 of 9

https://assets.cureus.com/uploads/figure/file/78874/lightbox_2dfdfd20d99711e9876907f819e9c8b5-Figure-1-arrows.png


FIGURE 2: Serial T1-weighted post-contrast magnetic resonance
imaging (MRI) scans indicating original presentation of left temporal
arteriovenous malformation (AVM) and involution of lesion after
stereotactic radiosurgery (SRS) (arrows)
(A) MRI of the patient at the time of presentation for AVM. (B) MRI from 15 months post-SRS showing decreased
size of AVM. (C) MRI from four years post-SRS with the resolution of AVM.
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FIGURE 3: Head computed tomography scan and magnetic resonance
imaging (MRI) scans
(A) Non-contrast head computed tomography scan, (B) T1-weighted postcontrast enhanced magnetic resonance
imaging (MRI), (C) T2 fluid-attenuated inversion recovery MRI demonstrating significant edema (arrows), and (D)
T1-weighted precontrast MRI revealing 2.9-cm hyperdensity representing hemorrhagic mass (arrow) in the left
temporal lobe found seven years after stereotactic radiosurgery.

Operation
A diagnostic cerebral angiogram revealed no discernible vascular malformation and confirmed the
obliteration of the AVM. Given the suspicion that the cause of the intraparenchymal hemorrhage was a
cavernoma, the patient was counseled regarding open surgical options. She decided to undergo an image-
guided left temporal craniotomy under general anesthesia. Intraoperatively, a hemorrhagic mass was
encountered with clear delineation between it and the surrounding brain tissue. The lesion was resected en
bloc.

Pathological evaluation
A pathological evaluation identified the hemorrhagic lesion as a cavernoma (Figure 4). A matrix of thin-
walled blood vessels without elastin was present throughout the lesion without intervening brain tissue.
Masson’s trichrome stain demonstrated areas of granulation tissue related to prior injury from radiation.
Hemosiderin-containing macrophages (siderophages) were seen on hematoxylin and eosin staining. Iron
staining demonstrated florid positivity.
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FIGURE 4: Histopathological evaluation of surgical specimen
(A) Masson’s trichrome (10× magnification) demonstrating organized granulation tissue (arrows), probably
secondary to prior radiation. (B) Hematoxylin and eosin (40× magnification) demonstrating thin-walled blood
vessels (arrows) without intervening brain tissue. (C) Iron staining (40× magnification) demonstrating deposits of
iron from multiple prior hemorrhages (arrows). (D) Hematoxylin and eosin (40× magnification) demonstrating
siderophages (hemosiderin-containing macrophages) (arrows).

Postoperative course
The patient was discharged to rehabilitation on postoperative day three with significant improvement in her
speech. She remains neurologically intact with no speech difficulties or seizures.

Discussion
Cavernomas are often thought to be the result of sporadic mutation or familial inheritance of the
KRIT1/CCM1, CCM2, and CCM3 genes. In this case, we report a symptomatic cavernoma occurring seven
years after stereotactic radiosurgery, which supports a growing collection of literature describing
cavernomas as a distinct, late pathological consequence of intracranial radiation therapy. Ciricillo et al. [12]
were among the first to describe cavernomas secondary to radiation while discussing “cryptic vascular
malformations” in 1994. The pathophysiology is poorly understood, although parenchymal changes
secondary to radiation have been described. Radiation injury to the brain broadly refers to a spectrum of
findings, including but not limited to edema, demyelination, necrosis, and induced neoplasm [9].
Specifically, intracranial radiation injury is characterized by three periods of injury. Acute injury occurs in
the immediate period surrounding the radiotherapy and is primarily attributed to edema caused by blood-
brain barrier dysfunction [15]. The second period is referred to as early-delayed injury, which occurs from
weeks to months after injury [15, 16]. This type of injury is thought to be caused by transient demyelination
[15]. Late radiation injury effects occur months to years after radiation exposure. These late effects are
typically the most profound and can be progressive, irreversible, and even fatal [16]. The changes
surrounding the late phase include glial atrophy, vascular changes, and necrosis, which can be both focal
and diffuse in nature [15, 16].

Radiation-induced neoplasms are a well-described phenomenon detailed as the delayed formation of
meningiomas, central nervous system sarcomas, gliomas, and vascular proliferative lesions [7, 17, 18]. A set
of criteria has been proposed to characterize radiation-induced neoplasms: 1) the lesion must occur in the
field of previous radiation; 2) a prolonged (but undefined) period separates irradiation from lesion detection;
and 3) the pathological characterizations of the primary and secondary lesions differ [18]. Formation of
these neoplasms and vascular changes occur in the late phase after radiation. Although the mechanisms
driving these changes are poorly understood, pathological examination of late radiation injury reveals
arteriolar changes, including hyalinization and fibrinoid necrosis [16]. It has therefore been proposed that
radiation-induced vascular changes may lead to vasculopathies, including the development of
telangiectasias and cavernomas [9].
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Several models have been put forth to describe the specific cause of cavernomas after radiotherapy.
Radiation likely causes direct vascular damage and necrosis, with a delayed neovascular response. Tsao et al.
[19] found that rats exposed to radiation experienced elevations in vascular endothelial growth factor
(VEGF) expressivity, resulting in vascular changes manifested as a breakdown in the blood-spinal cord
barrier. In 2002, Heckl et al. [11] published findings indicating that children exposed to radiation were at a
greater risk than adults for developing cavernomas, noting that VEGF and hypoxia-inducible factor 1 (HIF-1)
are more highly expressed in children. Thus, it is possible that the vasogenic factors VEGF and HIF-1 may be
partially responsible for inducing vascular changes that result in cavernomas.

Another possible pathogenesis may be radiation-induced damage directly to DNA [9]. The identification of at
least three genes involved in familial cavernomas supports the possibility that genetic damage from
radiation therapy generates vascular changes resulting in a cavernoma. A study published in 2017 by Russo
et al. [20] supported this theory by finding a novel KRIT1/CCM1 loss-of-function mutation in a patient
presenting with microbleeds who was found to have RICs. The report highlights the role of the KRIT1 gene
in cavernoma pathophysiology, suggesting radiation may induce and/or augment a predisposition for
cavernomas. Carrier status for mutations in the CCM1, CCM2, or CCM3 genes might predispose patients
receiving radiation therapy to developing cavernomas. In a study of the natural history of cavernomas,
Moriarity et al. noted that patients with a positive family history of cavernomas more frequently had
multiple lesions. Future avenues of study might examine whether RICs in patients with a positive family
history also result in multiple lesions, which could further suggest a genetic component to the pathogenesis.

Interestingly, RICs in adults are less frequently described than RICs in children. In 2014, Ruggeri et al. [6]
presented 86 cases of RICs. The mean age for presentation with RIC was 11.7 years old, and just seven
patients (8.2%) were more than 40 years old. A 2015 article found only 23 adults among 146 identified cases
of RIC, meaning pediatric cases accounted for 84% of those discussed [5]. Reports have noted that radiation-
induced neoplasms demonstrate more profound effects in tissues with higher levels of proliferation, which
are expectedly more widespread in pediatric tissue [17]. This might offer an explanation for the higher
incidence of pediatric RICs. Alternatively, an increased VEGF expression in children compared with adults
potentially results in a higher proportion of reported cases among younger individuals. Simpler mechanisms
may instead underlie discrepancies in the age-related manifestation of RICs. Rates of survival length and
adequate follow-up have the potential to mask the true incidence of RIC in the adult population. The time to
lesion development is poorly defined as well. Ciricillo et al. [12] first reported a range of 1.5-16 years
between radiation and detection of the lesion. Others suggest that the mean interval time is approximately
10-12 years, but wide variation in the interval time exists in the literature [3, 20]. Since the progression of
RICs remains an unclear process, a slow-growing lesion may go undetected in the current monitoring of
radiotherapy-treated adults who subsequently die of other causes. This may blur the incidence of this
pathologic phenomenon.

Further factors remain to be explored. One such variable is the dose of radiation with regard to tissue
damage and subsequent neoplasm. A positive, linear relationship has been demonstrated for Gy between
0.15 and 1.5 that correlates intracranial radiation with secondary lesions. It is well accepted that higher
doses similarly induce pathological growth, although the extent is less clearly defined. In the case presented
here, a prescribed dose of 20 Gy was delivered via SRS, which resulted in a secondary cavernoma. We do not
currently know where this dose stands within the spectrum of those associated with other RICs, and thus it is
still to be determined what dose is required to develop a RIC. In fact, our search found reports of inciting
doses ranging from 1 to 60 Gy [3, 6, 14]. With so much variation in reported dosage, it is hard to pinpoint a
threshold where radiation induces lesion development, so despite a suspected dose-dependent relationship,
the precise correlation between dose and incidence in the context of RICs remains unknown.

Another component to consider is the use of SRS compared with WBRT. That is to say, the mechanism of
delivery also likely contributes to lesion induction. Nagy et al. [3] recently reported that the estimated
incidence of RIC after conventional radiotherapy is 3-4% at 10 years and 7-14% at 20 years, with a median
detection time of 8-12 years after radiation. RIC after SRS is a less well-described phenomenon. A handful of
reports have discussed RIC secondary to SRS, but the paucity of literature on this subject has previously
hindered epidemiological study [8]. Only recently has the incidence of RIC after SRS been estimated. In a
study of 425 patients receiving SRS, three patients developed subsequent RIC, producing an incidence of
0.9% at 15 years [3]. WBRT might increase the risk of RICs because of more parenchymal exposure to the
radiation compared with SRS. The current literature does not describe a threshold dose or effectively
compare SRS with WBRT. With few exceptions, the histopathology of RICs has rarely been discussed in the
literature. Kleinschmidt-DeMasters and Lillehei [4] noted that two distinct pathological forms of RICs had
previously been described: “cavernoma-like” and “coagulum-like” malformations. The cavernoma-like
lesions appear histologically similar to spontaneous cavernomas. Coagulum-like lesions appear to result
from organized hematomas and demonstrate interspersed thin-walled vessels and fibrinoid deposits [3].
These findings lead to a couple of notable conclusions. First, without previous uniform evaluation, the body
of reported RICs may be misrepresentative of the true incidence. Additionally, because two subtypes have
been described, multiple morphological changes are possible due to radiation. Whereas Kleinschmidt-
DeMasters and Lillehei explain the “coagulum-like” subtype as a product of fibrinoid necrosis, the
pathophysiology underlying the “cavernoma-like” lesions was not clear [4]. Analysis also failed to reveal any
correlation between histological subtype and delivery method of radiation-WBRT versus SRS. These
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findings further highlight the uncertainty of both the incidence and mechanism regarding RICs.

Conclusions
We present the case of a 63-year-old patient who underwent stereotactic radiosurgery for treatment of an
intracranial arteriovenous malformation (AVM) and subsequently developed a symptomatic RIC seven years
later that required microresection. RICs are increasingly acknowledged as a late consequence of radiation
therapy. Because of the lack of consensus regarding interval time between radiotherapy and lesion
presentation, a firm recommendation for standardized practice cannot be confidently established at this
time. Regardless of the current understanding, clinicians should exercise diligence when monitoring
patients with a history of intracranial radiation because of growing evidence that supports cavernomas-
among other lesions-as potential late-stage sequelae with additional intervention required.
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