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Abstract: Crohn’s disease (CD) is a multifactorial incurable chronic disorder. Current medical
treatment seeks to induce and maintain a state of remission. During episodes of inflammation,
monocytes infiltrate the inflamed mucosa whereupon they differentiate into macrophages with a
pro-inflammatory phenotype. Here, we sought to characterize the circulating monocytes by profiling
their DNA methylome and relate it to the level of CD activity. We gathered an all-female age-matched
cohort of 16 CD patients and 7 non-CD volunteers. CD patients were further subdivided into
8 CD patients with active disease (CD-active) and 8 CD patients in remission (CD-remissive) as
determined by the physician global assessment. We identified 15 and 12 differentially methylated
genes (DMGs) when comparing CD with non-CD and CD-active with CD-remissive, respectively.
Differential methylation was predominantly found in the promoter regions of inflammatory genes.
Comparing our observations with gene expression data on classical (CD14++CD16-), non-classical
(CD14+CD16++) and intermediate (CD14++CD16+) monocytes indicated that while 7 DMGs were
differentially expressed across the 3 subsets, the remaining DMGs could not immediately be associated
with differences in known populations. We conclude that CD activity is associated with differences in
DNA methylation at the promoter region of inflammation-associated genes.
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1. Introduction

Crohn’s disease (CD) is a debilitating disorder belonging to the family of inflammatory bowel
disease (IBD). CD is characterized by episodes of transmural inflammation that can affect any part
of the entire gastrointestinal tract. Inflammatory episodes typically manifest as a disproportionate
immune response against the commensal microbiota [1], which is accompanied by infiltration of
leukocytes into the inflamed intestinal mucosa [2]. Despite the extensive research performed on CD,
it remains an incurable disease whose etiology and pathogenesis is not fully understood. Treatment
regimens therefore aim to reduce inflammation by inducing and subsequently maintaining a state
of remission.

Genome-wide association studies (GWAS) have made it clear that genetics alone does not fully
explain heritability in CD [3–5]. As such, CD has been classified as a complex disorder whose
etiology is likely to be a combination of genetic [4], epigenetic [6,7] and other environmental factors.
Epigenetics pertain to mitotically heritable changes that affect the readability of the genome that are
not caused by changes to the genetic sequence. DNA methylation is one of the most studied epigenetic
marks and represents the presence of a methyl group on a cytosine [8]. Functionally, the presence
of DNA methylation in the promoter area is often inversely correlated with gene expression [9–11],
which in certain cases was found to be a causal relationship [12,13]. Previous epigenetic studies
reported differences in the DNA methylome of peripheral blood or peripheral blood mononuclear
cells (PBMCs), with differentially methylated loci occurring in genes associated with inflammatory
pathways [14–16]. Here, we sought to build on the previous studies by focusing on an individual
immune cell type: monocytes.

Monocytes can differentiate into macrophages or dendritic cells (DCs), which altogether are
known as the mononuclear phagocyte system (MPS) [17]. Blood monocytes are typically identified
by their cell-surface expression of CD14, a pattern recognition receptor that acts as a co-receptor for
detecting bacterial lipopolysaccharides [18]. Further sub-classification based on the expression of CD16,
a type III Fcγ receptor, led to the definition of classical (CD14++CD16-), non-classical (CD14+CD16++)
and intermediate (CD14++CD16+) monocytes [19–21]. Where classical monocytes were typified by
their phagocytic behavior and innate immune response, intermediate monocytes were found to be
involved in cytokine secretion, antigen presentation and apoptosis, while non-classical monocytes
were associated with adhesion, complement and Fc gamma-mediated phagocytosis [22–24].

Circulating monocytes alongside the intestinal macrophages and DCs have been implicated in
the pathogenesis of IBD [25–31], with a recent study indicating that 170 CD-associated loci obtained
from GWAS coincide with the gene co-expression networks from monocytes [32]. Relative to non-CD
individuals or CD patients in remission, blood monocytes obtained from CD patients with active
disease were more prone to secrete the inflammatory cytokines IL6 [33], CCL2 [34], and IL1β [34].
Subsequent flow cytometry studies identified fewer non-classical monocytes, but increased classical
and intermediate monocytes among CD patients relative to healthy individuals [28,31]. The same
held true when comparing CD patients with active disease (CDAI > 150) versus CD patients with
quiescent disease (CDAI < 150) [28,31]. It has been suggested that the classical monocytes infiltrate the
mucosa during inflammatory episodes of IBD [35] whereupon they differentiate into macrophages
that display an inflammatory phenotype [36]. Among IBD patients, such an increased presence of
inflammatory macrophages has been observed in the gut, which was more prominent in patients with
active CD [27,28,37].

In this study, we characterized the DNA methylome of CD14+ monocytes in CD patients.
We identified differences in methylation between female CD patients and non-CD volunteers as well as
between active and remissive CD patients, and associated them with differences in cellular composition
observed in monocytes.
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2. Experimental Section

2.1. CD14 Cells Isolation

The assembly of this cohort was approved by the medical ethics committee of the Academic
Medical Hospital (2014_178#C20142104, dated 7 November 2014). Written informed consent was
obtained from both the CD patients and control subjects.

Peripheral blood was collected in heparin tubes (BD Vacutainer, Plymouth, United Kingdom) after
which peripheral blood mononuclear cells (PBMCs) were obtained by density gradient centrifugation
using Ficoll (Invitrogen, Thermo Fisher Scientific, Grand Island, New York, United States of
America). CD14+ cells were positively selected from PBMCs using CD14 Microbeads according
to the manufacturer’s instructions (Miltenyi Biotec, Leiden, The Netherlands). Resulting PBMCs were
then stored in PBS (Fresenius Kabi, Graz, Austria) at −80 ◦C until the cohort was fully assembled.

2.2. DNA Isolation and Methylation Analysis

Genomic DNA was extracted using the QIAamp DNA Mini Kit (Qiagen, Venlo, The Netherlands)
according to the manufacturer’s instructions and stored at 4 ◦C. Subsequent bisulfite conversion of the
DNA was performed using the Zymo EZ DNA Methylation™ kit (Zymo Research, Irvine, California,
United States of America) according to the manufacturer’s protocol prior to hybridization onto the
Illumina HumanMethylation 450k BeadChip array for whole-genome DNA methylation profiling.

Raw methylation data was imported into the R statistical programming environment (v3.6.2) [38]
using the Bioconductor (v3.10) package minfi (v1.30) [39] after which quality control was performed
using MethylAid (v1.18) [40] and shinyMethyl (v1.20) [41]. For statistical analyses, M-values were
used (1), whereas for visualization purposes β-values (percentage methylation) were used (2).

M = log2

 max
(
methylatedi

)
+ 1

max
(
unmethylatedi

)
+ 1

, (1)

β =
max

(
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)
max

(
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)
+ max

(
methylatedi, 0

) , (2)

where methylatedi and unmethylatedi represent the signal intensity obtained from the green and red
channel, respectively, as described in [42].

Differential methylation analyses were performed using limma (v3.36) [43] and DMRcate
(v1.16) [44] to identify differentially methylated probes (DMPs) and regions (DMRs), respectively.
DMPs were defined as probes with a Benjamini–Hochberg (BH)-adjusted p-value < 0.05. DMRs were
defined as regions with a Stouffer statistic < 0.05. Probes were annotated using the annotation file
provided by Illumina (v1.2). We constructed two separate linear models where we compared CD with
non-CD and the CD-active with CD-remissive while correcting for age (3).

∼ CDstatus + age (3)

Comparisons included CD patients against non-CD controls, and CD patients with active
disease against CD patients in remission. Reported chromosomal coordinates were based on the
genome build GRCh37. Differentially methylated genes (DMGs) were identified by aggregating
p-values of the individual probes associated per gene using Brown’s method [45] as implemented in
EmpiricalBrownsMethod (v1.14.0) [46] and identifying the genes with a BH-adjusted p-value < 0.05.
Briefly, Brown’s method aggregates p-values and is therefore used frequently in meta-analyses [45].
Unlike the related Fisher’s combined probability test, which assumes independence between the
individual tests, Brown’s method accounts for the dependence between the individual tests [47]. Given
the correlated nature of CpGs within close proximity [48], Brown’s method was deemed more suitable
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than Fisher’s method. Visualizations were generated using the ggplot (v3.2.1) [49] and ggbio (v1.32) [50]
packages with gene features obtained from TxDb.Hsapiens.UCSC.hg19.knownGene (v3.2.2) [51] and
CpG island features obtained from AnnotationHub (v2.18.0) [52], both of which were sourced from the
University of California, Santa Cruz (UCSC) Genome Browser [53].

2.3. Monocyte Gene Expression Data

Gene expression data was obtained from the Gene Expression Omnibus [54] dataset GSE107011 [55],
which contained a paired-ended RNA-sequencing data from different cell types isolated from peripheral
blood from two male and two female healthy individuals. We downloaded the raw reads on the
classical (CD14++CD16-), non-classical (CD14+CD16++), and intermediate (CD14++CD16+) monocytes
from the Sequence Read Archive (SRA) [56] and aligned them against the human genome (GRCh37)
using the STAR short read mapper (v2.7.1a) [57]. Subsequent post-processing was done using SAMtools
(v1.9) after which reads mapped per gene were counted using featureCounts (v1.6.4) from the Subread
package [58,59]. Raw counts were imported into the R statistical programming environment after
which normalization and statistical analysis was performed using DESeq2 (v1.24) [60]. To test for
difference across monocyte subsets, we therefore utilized a likelihood ratio test as implemented in
DESeq2 where we defined the full model and the reduced model as (4) and (5):

∼ individual + monocyte, (4)

∼ individual, (5)

where individual represents the donor and monocyte subset. Subsequent comparative analyses
were done using the default Wald test as implemented in DESeq2 where we compared classical with
non-classical, classical with intermediate and intermediate with non-classical monocytes.

3. Results

3.1. CD-Associated Differential Methylation

A cohort of 23 female individuals were assembled, consisting of 16 CD patients and 7 non-CD
healthy volunteers. CD patients were selected to include 8 active and 8 remissive CD patients that
visited the outpatient clinic at the IBD department in Amsterdam UMC, The Netherlands. Active
CD was determined by a physician global assessment [61], where the assessment was based on
clinical, such as the Harvey Bradshaw Index (HBI), endoscopic or magnetic resonance imaging
(MRI), and biochemical parameters, such as C-reactive protein (CRP; median CRP > 12) and/or fecal
calprotectin (Table 1).

3.2. CD-Associated Differential Methylation

We first compared the CD with non-CD samples but found no probes that passed the threshold
for statistical significance (Table S1). Notably, the 50 most differentially methylated probes revealed
visual, albeit minor, differences between CD and non-CD patients (Figure 1a). Systematically
searching for differentially methylated regions (DMRs) yielded no statistically significant DMRs
either. However, visualizing the DMR with the lowest Stouffer statistic (chr7:51,470,953-51,471,981;
Stouffer-statistic = 0.50) displayed continuous hypermethylation among the CD samples relative to
the non-CD samples for 8 CpGs (Figure S1). Trying to annotate this DMR to a particular gene proved
inconclusive due to its large distance (> 100 kb) to the nearest gene, Cordon-Blue WH2 Repeat
Protein (COBL).
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Table 1. Summarized patient characteristics. p-values were calculated through two-sided Fisher tests
for binomial data and two-way ANOVAs for continuous data. Fisher tests among the medications
were only performed between active and remissive CD patients. ** p-value < 0.01.

Characteristics Non-CD (n = 7) CD (n = 16)
Active (n = 8) Remissive (n = 8) p-Value

Female (n) 7 8 8 1
Age (mean years ± sd) 31.4 ± 8.34 35.7 ± 12.0 39.8 ± 4.25 0.21

CD duration (mean years ± sd) - 9.42 ± 10.1 16.2 ± 8.54 0.169
C-reactive protein (mean mg/L ± sd) - 22.9 ± 12.0 0.825 ± 0.79 0.00994 **
Harvey Bradshaw Index (mean ± sd) - 6.8 ± 2.77 1.29 ± 1.8 0.00182 **

Montreal Classification (n)
A1 A2

-

2 6 1 7 1
L1 L2 L3 L2+4 3 2 3 0 2 3 2 1 1
B1 B2 B3 6 2 0 6 1 1 1
P 1 3 0.5692

Any concomitant medication (n) - 6 8 0.4667
Anti-TNF - 2 6 0.1319

Corticosteroid - 2 0 0.4667
Thiopurine - 0 3 0.2
Questran - 1 0 1
Celcoxib - 1 0 1

Pantoprazole - 1 0 1
Mercaptopurine - 0 1 1

We searched for genes that were enriched for CpGs with low p-values. To that end, we annotated
the CpGs to their respective genes and aggregated the p-values by means of the Brown’s method [45].
This approach yielded 15 statistically significant differentially methylated genes (DMGs) (Figure 1b).
Visualization of the difference in methylation suggested visually consistent, yet minor, differences in
methylation (Figure 1c). MPIG6B, GSTT1, SLFN13, SPI1, ZNF572, LOC150381, and G0S2 displayed
hypomethylation in the region surrounding the transcription start site (TSS), which we considered
the promoter region, whereas ZADH2, DRD4, MPEG1, and SLC26A4 displayed hypomethylation
within the gene body. Conversely, PDCD1 and MPEG1 displayed promoter hypermethylation with
SLC17A9 and LOC286002 displaying hypermethylation within the gene body. Notably, MPIG6B, GSTT1,
ZADH2, DRD4, SLFN13, SLC17A9, SLC26A4, SPI1, and LOC150381 displayed the largest difference in
methylation within a densely populated region of CpGs, which the UCSC annotated as a CpG island.

3.3. Differential Methylation Associated with Disease Activity in CD Monocytes

As we had more granular information on CD activity, we investigated the intra-CD differences
by comparing CD patients with active disease against CD patients in remission (Table S2). Like the
previous comparisons, none of the individual probes or continuous regions of probes were statistically
significant after correcting for multiple testing. However, visualizing the top 50 most differentially
methylated probes suggested again visible but minor differences (Figure 2a). Utilizing the Brown’s
method for aggregating p-values, we identified 12 DMGs that were significantly associated with CD
activity (Figure 2b). Hypomethylation was observed for NNAT, TRIP6, and LOC387647 in the promoter
and for HCP5 in the gene body (Figure 2c). By contrast, hypermethylation was observed for MPIG6B,
KRT3CAP, FAM24B, ZNF153 and PRAP1 in the promoter (Figure 2c). For NNAT, MPIG6B, KRTCAP3,
TRIP6, LOC387647, SSTR4, FAM24B, and ZNF154 the largest differences in methylation were found in
regions annotated as CpG islands.
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Figure 1. Comparing Crohn’s disease (CD) (n = 7) with non-CD (n = 16). (a) Heatmap organized by
hierarchical clustering of the 50 most differentially methylated probes (DMPs) annotated with Illumina
probe IDs. (b) Barplot depicting the –log10(p-value) obtained from Brown’s method for the differentially
methylated genes (DMGs). Significant DMGs are indicated in black, while non-significant genes are
indicated in grey. (c) Visualization of the significant DMGs by plotting the difference in percentage
methylation relative to the position on the chromosome and the gene (“Gene”) and CpG island (“CGI”)
features as obtained from UCSC. Dots represent probes on the Illumina HumanMethylation 450k
BeadChip array. The blue trend line represents the loess-smoothed average across all methylation
probes for the indicated region with surrounding grey area representing the standard error.
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Figure 2. Comparing CD-active (n = 8) with CD-remissive (n = 8). (a) Heatmap organized by
hierarchical clustering of the 50 most DMPs annotated with Illumina probe IDs. (b) Barplot depicting
the −log10(p-value) obtained from Brown’s method for the DMGs. Significant DMGs are indicated in
black, while non-significant genes are indicated in grey. (c) Visualization of the significant DMGs by
plotting the difference in percentage methylation relative to the position on the chromosome and the
gene (“Gene”) and CpG island (“CGI”) features as obtained from UCSC. Dots represent probes on the
Illumina HumanMethylation 450k BeadChip array. The blue trend line represents the loess-smoothed
average across all methylation probes for the indicated region with surrounding grey area representing
the standard error. (d) Principal component analysis performed on the probes associated to the DMGs
for the CD patients only.
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While all CD-remissive samples were obtained from patients on some kind of medication (anti-TNF,
corticosteroid, thiopurine, mercaptopurine, celecoxib, or questran), two CD-active samples were
obtained from patients that were not on any medical treatment at the time of sampling. We therefore
investigated whether a medication effect was observable for the aforementioned DMGs by means
of principal component analysis. We observed no separate clustering of the samples on medication
relative to the other samples, suggesting that any effect of the medication did not manifest visibly in
the methylome of the DMGs (Figure 2d).

Taken together, we have identified in total 26 genes that were differentially methylated between
CD and non-CD or between CD-active and CD-remissive (Table 2). When comparing the DMGs from
the CD with non-CD comparison with the DMGs obtained from the active with remissive comparison,
we identified one gene that was present in both comparisons, namely MPIG6B (Figure 3a). Somewhat
surprisingly, visualizing the methylation pattern of MPIG6B for all three groups, indicated that CD
patients with active disease displayed a methylome more similar to non-CD patients as compared to
CD patients in remission (Figure 3b).

Table 2. Overview of all the DMGs found in this study alongside the relevant statistics. In short, p-values
were obtained using Brown’s method and adjusted for multiple testing using the Benjamini–Hochberg
method against all genes.

CD vs. Non-CD CD-Active vs. CD-Remissive
Differentially

Methylated Gene p-Value BH-Adjusted p-Value p-Value BH-Adjusted p-Value

MPIG6B (C6orf25) 4.63 × 10−15 9.19 × 10−11 1.08 × 10−9 2.15 × 10−5

PDCD1 4.05 × 10−10 8.04 × 10−6 0.905923 1
GSTT1 3.60 × 10−9 7.16 × 10−5 0.317294 1
ZADH2 4.54 × 10−9 9.02 × 10−5 0.028386 1
MS4A3 6.90 × 10−9 0.000136924 0.873469 1
DRD4 3.15 × 10−8 0.000625727 0.283934 1

SLFN13 3.27 × 10−8 0.000649811 0.010163 1
SLC17A9 1.67 × 10−7 0.003305914 0.14758 1
MPEG1 2.00 × 10−7 0.003965532 0.498594 1

SLC26A4 2.66 × 10−7 0.005275024 0.612185 1
SPI1 5.95 × 10−7 0.011817048 0.007133 1

LOC286002 8.54 × 10−7 0.016951922 0.578701 1
ZNF572 1.09 × 10−6 0.02165659 0.3022 1

LOC150381 1.72 × 10−6 0.034101222 0.935613 1
G0S2 1.74 × 10−6 0.03460972 0.560081 1

NNAT 1.88 × 10−5 0.372484 2.98 × 10−12 5.91 × 10−8

SERPINF1 0.204451 1 1.13 × 10−10 2.24 × 10−6

TRIOBP 0.634584 1 9.00 × 10−9 1.79 × 10−4

KRTCAP3 0.992178 1 1.31 × 10−8 2.61 × 10−4

TRIP6 0.036528 1 3.64 × 10−8 7.22 × 10−4

LOC387647 0.998103 1 5.43 × 10−8 1.08 × 10−3

HCP5 0.809063 1 7.04 × 10−8 1.40 × 10−3

SSTR4 0.873458 1 2.34 × 10−7 4.64 × 10−3

FAM24B 0.071767 1 9.33 × 10−7 0.018513
ZNF154 0.003772 1 2.16 × 10−6 0.042834
PRAP1 0.901922 1 2.24 × 10−6 0.044415
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Figure 3. Comparison of the DMGs across the two comparisons. (a) Visualization of the Fisher’s
combined probability test p-values from CD vs. non-CD on the x-axis and CD-active vs. CD-remissive
on the y-axis. Colors represent the genes found to be significant in the different comparisons.
(b) Visualization of the percentage MPIG6B methylation for non-CD, CD-active and CD-remissive
separately with an enlarged visualization below.

3.4. Differences in Methylation may be Associated with Disease Dynamics in Monocyte Populations

From previous studies we know that CD patients compared with non-CD individuals, as well as
CD patients with active disease compared with CD patients in remission, present an increased classical
and intermediate monocyte population and a reduced non-classical monocyte population in peripheral
blood [28,31]. We therefore sought to identify which DMGs were potentially due to differences in
monocyte populations. To investigate this, we analyzed the expression of the DMGs for all the three
monocyte subsets using an external RNA-sequencing dataset (GSE107011 [55]).

Monocyte gene expression data was available for 9 CD-associated DMGs, namely MPEG1,
G0S2, ZNF572, ZADH2, SLFN13, PDCD1, SPI1, SLC17A9, and MS4A3, and 7 CD-activity associated
DMGs, namely SERPINF1, HCP5, TRIOBP, KRTCAP3, ZNF154, TRIP6, and FAM24B. By performing a
likelihood ratio test, we identified that the CD-associated DMGs MPEG1, G0S2, ZNF572 and ZADH2
(Figure 4a) and the CD-activity associated DMGs SERPINF1 and HCP5 (Figure 4b) were significantly
differentially expressed among the monocyte populations. Classical monocytes were characterized by
high MPEG1 and ZNF572 expression, intermediate monocytes were characterized by high ZADH2
expression, and non-classical monocytes were characterized by low G0S2 and HCP5. Notably, all three
subsets expressed SERPINF1 in a different fashion. By contrast, CD-associated DMGs SLFN13, PDCD1,
SPI1, SLC17A9, and MS4A3 and CD-activity associated DMGs TRIOBP, KRTCAP3, ZNF154, TRIP6,
and FAM24B were not significantly differentially expressed.
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Figure 4. Gene expression of the (a) CD vs. non-CD and (b) CD-active vs. CD-remissive DMGs across
the different monocyte subsets. Visualization of the log2(counts) with standard error for classical,
intermediate and non-classical annotated with the p-value as obtained from the likelihood ratio test.

4. Discussion

In this study, we investigated the DNA methylome of CD14+ monocytes and its relation to CD
activity. To that end, we performed two analyses. First, we compared CD14+ monocytes from CD
patients with non-CD volunteers and second, we compared CD patients with active disease against
those in remission. At a genome-wide level, we identified no statistically significant DMPs and DMRs
for both comparisons, suggesting minor differences methylation across the three groups. Despite the
lack of genome-wide statistical significance, our search for genes that were enriched for low nominal
p-values yielded 15 and 12 genes for the CD vs. non-CD and CD-active vs. CD-remissive comparisons,
respectively. Notably, most of the CD-associated (9 out of 15) and the CD-activity associated (8 out
of 12) DMGs presented the largest differences in CpG islands. Cross-referencing our observations
with differences in gene expression among monocyte subpopulations suggested that while 4 out of
9 CD-associated and 2 out of 7 CD-activity associated were potentially associated to changes in the
underlying monocyte populations, 5 CD-associated and 5 CD-activity were not.

Several DMGs have been associated with CD or ulcerative colitis (UC) or phenotypes thereof.
We reported previously that SERPINF1 was differentially methylated and expressed when comparing
ileal fibroblasts obtained from stenotic tissue with non-inflamed tissue from CD patients [62]. Similarly,
PRAP1 was found to be hypermethylated and downregulated in mucosal biopsies obtained from
treatment naïve UC patients relative to control patients [63]. At the level of genomics, a meta-analysis
suggested that the GSTT1 null mutation was significantly associated with susceptibility to IBD [64].
Unaffected ileal samples obtained from carriers of the NOD2 CD-risk allele displayed increased gene
expression of DRD4 [65], whereas Nod2 double knockout mouse macrophages displayed a higher
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Ms4a3 expression relative to wildtype after lipopolysaccharide treatment [66]. Transcription-wise, G0S2
gene expression in mucosal biopsies was found to be predictive of clinical response to infliximab [67].

Functionally, the DMGs were not found to be overrepresented for gene sets using the STRING
database [68], indicating that the DMGs do not represent clear functional modules or cellular pathways.
Nonetheless, CD-associated DMGs PDCD1, SPI1, SLC26A4, MPEG1 and MPIG6B as well as CD-activity
associated DMGs TRIP6, SSTR4, HCP5, and SLC17A9 have been implicated in immunological functions.
The PDCD1 protein is involved in the programmed cell death pathway [69], whose inhibition benefits
sepsis-associated microbial clearing in murine macrophages [70,71]. SPI1 (also known as PU.1) is a
known regulator of myeloid and B-lymphoid cell development [72] but has also been described as
pro-inflammatory as it is capable of upregulating the cytokine IL6 in the presence of lipopolysaccharides
(LPS) [73]. SLC26A4 encodes pendrin, an anion exchange protein whose clinical relevance is mostly
described within the context of hearing impairment [74]. Nonetheless, whole genome bisulfite
sequencing and RNA-sequencing analysis of mucosal biopsies of UC patients with non-UC patients
indicated promoter hypomethylation and upregulated expression [63], which is in agreement with
the observations made in this study. MPEG1 encodes Perforin-2, which is a protein expressed in
phagocytes involved in the innate immune response by forming pores in bacteria [75,76]. MPIG6B
expression in platelets has been associated with a decreased aggregative capability in vitro [77]. Platelet
count is typically positively correlated with CD activity [78] or colonic inflammation [79]. Notably,
our results show hypomethylation of a CpG island in the MPIG6B promoter when comparing CD
with non-CD, yet hypermethylation when comparing CD-active with CD-remissive. This observation
would require further mechanistic studies to investigate the role of MPIG6B methylation on the
inflammatory phenotype in monocytes. TRIP6 encodes a member of the RIP kinase family involved in
inflammation through the NOD-like receptor signaling [80]. NOD-like receptors remain an interesting
target for auto-inflammatory diseases due to their role in the assembly of the inflammasome [81]
and autophagy [82]. Similarly SSTR4 has been implicated in inflammation and nociception in the
gastrointestinal tract [83]. SLC17A9 encodes a vesicular nucleotide transporter whose primary function
is the export of ATP [84]. Knockdown of SLC17A9 was found to suppress the production of IL6 in THP-1
cells even after LPS stimulation suggesting an amelioration of the pro-inflammatory phenotype [85].
Notably, SLC17A9 has been found to be associated with bone marrow monopoiesis [86]. We also
identified DMGs that were functionally involved in alcohol reduction (ZADH2), DNA-binding (ZNF572
and ZNF154), RNA-processing (SLFN13), cytoskeletal reorganization (TRIOBP), brain development
(NNAT), and keratinocytes (KRTCAP3), whose relation with CD is not immediately evident.

By comparing our observations with gene expression data generated by Monaco et al. [55],
we found that several DMGs were differentially expressed among the three monocyte subsets,
suggesting that the observed difference in methylation might have been a reflection of a difference in
monocyte populations. However, the correlation between gene expression and promoter methylation
is not unequivocally true, nor is the effect size of the correlation known. A more direct approach would
be to compare the DNA methylome of the DMGs between non-CD, CD-active and CD-remissive
for the three monocyte populations separately. While the dataset GSE73788 [87] does contain such
methylation profiles, we found the results incompatible due to the availability of only a single profile
per monocyte subtype, coupled with the different DNA methylation platform used.

Taken together, our observations provide interesting but preliminary insights into the
manifestations of CD in the DNA methylome of circulating monocytes. We acknowledge the
limited sample size of the current study. Future confirmatory studies, through for example targeted
bisulfite sequencing, are necessary to validate the observations made. Additionally, mechanistic studies
are required to investigate whether the differences in methylation are correlated with differences in
expression, as well as whether CD activity is associated with differences in methylation of the separate
monocyte subsets.
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5. Conclusions

We have provided evidence that the DNA methylome of CD14+ monocytes are different between
non-CD patients and CD patients, as well as between CD patients with active disease and those
in remission. While the differences in DNA methylation among CD activity states are minute and
the current sample size is too small to properly identify DMPs and DMRs, we observed concordant
differences in methylation particular gene promoters. Future studies on the DNA methylome in
circulating monocytes would have to take this into consideration when estimating the sample size
necessary for a properly powered study. Our observations can to that end serve as a stepping stone in
subsequent research on monocyte characteristics in CD.
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