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The performance models are the critical step for condition monitoring and fault diagnosis of diesel 
engines, and are an important bridge to describe the link between input parameters and targets. 
Large-scale experimental methods with higher economic costs are often adopted to construct 
accurate performance models. To ensure the accuracy of the model and reduce the cost of the test, 
a novel method for modeling the performances of marine diesel engine is proposed based on deep 
neural network method coupled with virtual sample generation technology. Firstly, according to the 
practical experience, the four parameters including speed, power, lubricating oil temperature and 
pressure are selected as the input factors for establishing the performance models. Besides, brake 
specific fuel consumption, vibration and noise are adopted to assess the status of marine diesel 
engine. Secondly, small sample experiments for diesel engine are performed under multiple working 
conditions. Moreover, the experimental sample data are diffused for obtaining valid extended data 
based on virtual sample generation technology. Then, the performance models are established 
using the deep neural network method, in which the diffusion data set is adopted to reduce the cost 
of testing. Finally, the accuracy of the developed model is verified through experiment, and the 
parametric effects on performances are discussed. The results indicate that the overall prediction 
accuracy is more than 93%. Moreover, power is the key factor affecting brake specific fuel consumption 
with a weighting of 30% of the four input factors. While speed is the key factor affecting vibration and 
noise with a weighting of 30% and 30.5%, respectively.

Diesel engines have been widely used in ships and automobiles due to their large power range, high thermal 
efficiency, and low fuel consumption  rate1–3. The status of the diesel engine is intrinsically linked to the controlled 
parameters during the running process of the diesel engine. To understand the relationships between diesel 
engine performance and control parameters, many studies have focused on modeling methods based on large 
sample experiments, theory, and simulation. Recently developments have attracted more scholars to concentrate 
their studies on this  field4–6.

Nowadays, numerical simulation method has been applied to deal with complex nonlinear problems of 
diesel engine. As for the performance prediction of diesel engine, Nahim et al.7 presented a numerical simu-
lation model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic 
equations. This model can accurately predict the pressure, temperature, and emissions of diesel engines. Gosala 
et al.8 used a phase-angle approach to build a vibration prediction model. It is demonstrated that the weighted 
phase-angle approach can accurately and quickly predict the frequencies and relative amplitudes of the vibration. 
The proposed model can be further used for online, real-time selection of ignition modes under steady-state 
operating conditions. In terms of parametric optimization of diesel engine, Muse et al.9 simplified the in-cylinder 
combustion process of a diesel engine and developed a 1-dimensional large two-stroke low-speed diesel engine 
model. Diesel engine characteristics were analyzed by changing the model injection parameters, and optimiza-
tion of injection characteristics and exhaust timing was achieved, resulting in a 9% reduction in  NOX emissions. 
Besides, based on the GT-SUITE, the simulation models of diesel engines were also established to predict and 
optimize fuel consumption, noise and  emissions10,11. The optimization process was carried out through numerical 

OPEN

1School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China. 2Shaanxi 
Diesel Heavy Industry, LTD, Xi’an, China. *email: kaochao_017@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-96259-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16709  | https://doi.org/10.1038/s41598-021-96259-x

www.nature.com/scientificreports/

simulation with suitable objective functions aimed at minimizing BSFC while not exceeding the target  NOx emis-
sion levels. Recently, the numerical simulation method has also been used for fault diagnosis of diesel engine. 
Rubio et al.12 built a one-dimensional thermodynamic model using AVLBoost software. This model was able 
to effectively simulate 15 typical thermodynamic faults such as turbine failure, exhaust manifold leakage and 
intake valve seat failure, which provided information for the development of a diesel engine failure simulator. 
Overall, the numerical simulation approach reduces the amount of expensive experimental trials required to 
evaluate the performance of the engines. However, as diesel engine systems become increasingly complex, the 
time for model calculation and optimization increases. This approach becomes gradually unsuitable for large 
marine diesel engine modeling.

With the development of algorithm theory, intelligent algorithms have been applied to diesel engine perfor-
mance studies. Aghbashlo et al.13 designed a novel method to estimate the exergetic performance of a DI diesel 
engine based on extreme learning machine with a wavelet transform algorithm. The method allows estimating, 
optimizing, and controlling the operating performance of a diesel engine in real time under known engine oper-
ating conditions and fuel characteristics. Similarly, an adaptive neuro-fuzzy inference system tuned by particle 
swarm algorithm was used to predict diesel engine performance and emissions by Atarod et al.14. The effective 
prediction of  CO2, CO, and  NOx emissions was achieved after the continuation of the modeling system based 
on experimental data, which provides a reference for the next optimization of diesel engines. The intelligent 
algorithm could predict the diesel engine operating parameters very well. Moreover, it also provides ideas and 
directions to optimize the diesel engine operating parameters and fuel  composition15. Shin et al.16 combined 
the deep neural network and Bayesian method to optimizing the diesel engine parameters and predicting the 
NOx transient emission, which enhanced the model stability and accuracy significantly. Dinesha et al.17 incor-
porated cerium oxide  (CeO2) nanoparticles into diesel for effectively reducing diesel emissions and improving 
diesel engine performance. Besides, intelligent algorithms are also applied for the fault diagnosis. Zhang et al.18 
proposed a convolutional neural network-based (CNN) method for diesel engine misfire fault diagnosis. The 
results showed that the CNN method can accurately detect a complete misfire in one or two cylinders when the 
diesel engine is operating under steady-state conditions.

From the various literature, it can be observed that many modeling approaches were proposed to discuss 
diesel engine performance prediction and fault diagnosis. Much research had focused on software simulations 
or intelligent algorithms based on large samples. However, models obtained by simulation methods often lack 
the necessary experimental information, resulting in models that fail to fully reflect the effects introduced by 
interfering factors. Besides, extensive experimental information is necessary to obtained accurate performance 
models using intelligent algorithms. Therefore, it is necessary to propose a modeling approach that includes a 
small amount of experimental information to construct an accurate model.

In this paper, a novel method is proposed to establish the performance models of marine diesel engines 
based on the Deep Neural Network (DNN) method coupled with Virtual Sample Generation (VSG). First, the 
predicted performances are analyzed, and an experiment is designed. Then, the diffusion trend of experimental 
data is mined and analyzed based on VSG technology. Finally, the marine diesel engine performance model is 
established by deep neural network for guaranteeing the accuracy of prediction. Here, the innovation points 
of this paper are summarized in Table 1 below. In addition, in order to better understand the article, Table 2 of 
abbreviations and symbol nations of terms has been added.

Experimental set-up and design
Experimental equipment. In this paper, the experimental tests are conducted using a 20-cylinder, four-
stroke, water-cooled diesel engine, which is provided by Shaanxi Diesel Heavy Industry, LTD. The detailed 
parameters of experimental equipment are shown in Table  3. During the experimental process, the hydro 
dynamometer is mounted on the diesel engine to provide different load conditions. Meanwhile, the diesel engine 
speed is adjusted to achieve different test conditions by controlling the throttle position lever.

Experimental design. It is well known that the performances of diesel engines are sensitive to power and 
speed, which could be used for reflecting the operating  conditions19. Moreover, the oil pressure and temperature 
are also important to analyze the combustion of the diesel  engine20. Therefore, power, speed, oil temperature, 
and pressure are selected as input factors to study parametric effects on the diesel engine in this paper. Mean-
while, three critical parameters including brake specific fuel consumption, vibration, and noise are adopted as 
the outputs. In the design of experiment, eleven working conditions based on the propulsion characteristic line 
of the diesel engine are designed to completely investigate the status of the diesel engine during the entire opera-
tion. According to the practice experience, the diesel engine speed varies from 600 to 1500 rpm, the lubricating 

Table 1.  Innovation points.

No. Innovation points

1
In order to reducing the cost of experimental modeling, the DNN coupled with VSG technology is proposed to establish the accurate 
performance models of the diesel. The models achieved in this paper could reflect the relationship of parameters using small experi-
ment samples

2
The influence law of diesel engine parameters on the performance is obtained based on the proposed models. Moreover, the 
parametric sensitivity is determined based on impact factors analysis. These would provide a guideline for engineer to optimize and 
assess performance in practice
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oil temperature range is 77–95 °C, the power range covers 260–4380 kW and lubricating oil temperature range 
covers 0.3–0.7 MPa. The designed tests are shown in Table 4.

Experimental measurement. As shown in Fig. 1, the 1A307E vibration sensor is attached to the cylinder 
head of the diesel engine for measuring the vibration signal. The noise signal is obtained by a BSWA 308 sound 

Table 2.  Abbreviation and symbol notations.

Abbreviation

DNN Deep neural network

VSG Virtual sample generation

TSA Trend similarities among attributes

IQR Interquartile range

MIV Mean influence value

BSFC Brake specific fuel consumption (g/kWh)

Symbol notations

aw Weighted acceleration

T Measurement time

atotal Total vibration acceleration

L,U Lower limit and upper limit

MF Sample distribution value

g(i)p, q Sample trend value

Sp,q Strength of correlation

v Evaluation symbol

θp, q Offset

v−Xp,v
+

Xp
Possible virtual value

Rimax, Rimin Predicted results after expanding samples

Table 3.  Marine diesel engine specifications.

Parameter Value

Engine type 4 cycle-20 cylinder

Bore and stroke 230 mm × 230 mm

Type of ignition Compression ignition

Total working volume 191.2 L

Compression ratio 12:1

Rated power 3750 kW

Rated speed 1455 rpm

Cooling system Water cooling

Table 4.  Experimental design.

No. Speed (rpm) Power (kW) Lubricating oil temperature (°C) Lubricating oil pressure (MPa)

1 600 260 77 0.41

2 750 500 79 0.48

3 920 940 84 0.56

4 1150 1875 87 0.55

5 1320 2810 88 0.70

6 1455 3750 92 0.69

7 1455 3750 92 0.69

8 1455 3750 92 0.68

9 1455 3750 92 0.67

10 1455 3990 92 0.66

11 1500 4380 94 0.65
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level meter at 1 m from the cylinder head. The fuel consumption rate is collected by the fuel consumption meter. 
During the experiment, the speed and load are controlled to achieve the expected working conditions. Then the 
speed, power, lubricating oil temperature and pressure are measured by the speed sensor, hydraulic dynamome-
ter, temperature sensor and pressure sensor, respectively. The experimental details of the diesel engine are shown 
in Fig. 2.

Figure 3 shows the noise and vibration results measured in the experiment process. These results are con-
tinuous and vary too fast so that it is hard to express the continuous values through a certain model. Thus, the 
root mean square value is proposed to characterize the state of the diesel engine. The root mean square can be 
calculated as  follows21,

where aw represents the weighted acceleration and T represents measurement time.
Due to the presence of vibration in three directions, the total vibration acceleration is used to evaluate the 

vibration state of the diesel engine. The acceleration equation is presented in Eq. (2),

where total vibration acceleration (atotal) is the value to show the combined acceleration of vertical (ax), lateral 
(ay) and longitudinal (az).

Uncertainty analysis. In laboratory experiments, uncertainty analysis deals with evaluating the uncer-
tainty in any measurements. It allows the estimation of the numerical value of a physical variable and how it 
is affected by errors due to instrumentation. In the present work, the uncertainty of a dependent variable is 
calculated using errors involved in measuring independent parameters such as power, speed, and lubricating oil 
temperature. The uncertainty value can be derived by Eq. (3)17,22.

The uncertainty values for various parameters are listed in Table 5

(1)aw =

√

1

T

∫ T

0

a2w(t)dt,

(2)atotal =
√

a2x + a2y + a2z ,

(3)WR =

(

[

∂R

∂x1
w1

]2

+

[

∂R

∂x2
w2

]2

+ · · · +

[

∂R

∂x1
wn

]2
)1/2

.

Figure 1.  The detailed schematic of the experimental set up.
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Modeling method
Compared with other algorithms, the DNN method has a strong advantage for modeling nonlinear complex 
systems. However, the DNN algorithm requires a large amount of sample data to ensure accuracy of  model23. 
To reduce the cost of the diesel experiment, virtual sample generation technology is adopted to diffuse the 
experimental samples. The virtual sample generation technique is also a current sample diffusion method with 
high accuracy, and has been used in conjunction with various intelligent algorithms with good results. To clearly 
illustrate the proposed approach, the flowchart of DNN coupled with VSG is displayed in Fig. 4. Firstly, the target 
data is achieved through conducting the experiments. Then the sample distribution is determined by dealing 
with experimental samples. By comparing the magnitude of the values, calculate the trend similarities among 
attributes (TSA), and the virtual sample data is generated further. Finally, the performance model is obtained 
by training and validating the sample based on DNN method.

Virtual sample generation. Build sample distribution. In order to achieve the virtual sample, the sample 
distribution should be firstly determined according to the experimental data. The procedure is given as follows,

Step 1: The test data are collected and divided into input parameters and output parameters of the diesel 
engine. As for the diesel engine system, the input parameters include speed, power, lubricating oil temperature 
and pressure. The output parameters are brake specific fuel consumption, total vibration acceleration and noise.

Step 2: Based on the small data sets obtained from the above experiments, seven sample domain boundaries 
are estimated. For obtaining the boundaries, the range should be achieved firstly. Here the interquartile range 
(IQR) is used to describe the range, which can be derived as follows,

where Q1 is the first quartile of each sample set, and Q3 is the third quartile of each sample set.

(4)IQR = Q3 − Q1,

Figure 2.  The performances measurement for the multicylinder engine in experiment.
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Step 3: The lower limit (L) and upper limit (U) of the sample domain boundary should be obtained. The 
reasonable bounds [L, U] can be calculated by the following Eqs. (5) and (6),

where min and max are the minimum and maximum values of the observations, respectively.
Step 4: Determine the sample distribution MF. When the domain bounds of observations are determined, 

a triangular MF based on L, Q2 (Me, taken as the location center of sample range as depicted in Fig. 5), and U 
could represent the estimated sample distribution. MF is formulated as  follows24,25,

(5)L =

{

Q1 − 1.5× IQR, L ≤ min

min, Q1 − 1.5× IQR > min,

(6)U =

{

Q3 + 1.5× IQR, U ≤ max

max, Q3 + 1.5× IQR < max,

Figure 3.  Measurement results of vibration and noise.

Table 5.  Uncertainty analysis of the measured parameters.

Measured quantity Percentage uncertainty

Speed 0.64

Power 1.3

Lubricating oil temperature 0.11

Lubricating oil pressure 0.36

BSFC 0.21

Vibration 0.37

Noise 0.17
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Based on the above formula and the measured small data set, the shape of the parameter distribution is plot-
ted and shown in Fig. 5.

Calculate trend similarities among attributes. In this section, the trend similarities between attributes are meas-
ured according to a non-parametric  process24,25. First, two parameters Xp and Xq are selected in two related 
attribute domains. Here Xp is the rotational speed, and Xq is an arbitrary parameter. Then the trend assessment 
function g(i)p,q of the i-th observation between Xp and Xq can be formulated as,

The strength of the trend similarity between Xp and Xq is derived as the average of all available observations, 
as shown in Eq. (9).

(7)MF(x) =







(x − L)/(Me − L), L ≤ x < Me

(U − x)/(U −Me), Me ≤ x < L

0, otherwise.

(8)g(i)p,q =















1, if
�

xp,i −MeXP

��

xq,i −MeXq

�

> 0

0, if
�

xp,i −MeXP

��

xq,i −MeXq

�

= 0

−1, if
�

xp,i −MeXP

��

xq,i −MeXq

�

< 0.

Figure 4.  The flowchart of DNN method coupled with VSG.

Figure 5.  The shapes of attribute sample distribution.
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Based on the experimental data, the values of |Sp,q| are obtained as shown in Table 6. Here, the larger this value 
is, the stronger the correlation between Xp and Xq.

Virtual sample generation. Based on the value g(i)p,q obtained above, a value interval is projected to produce a 
suitable virtual value. The specific steps are given as  follows24,25:

Step 1: Determine the value of vXp, and then produce vXq. Randomly select one temporary value (tv) from U 
(LXp, UXp), and then calculate the MFXp(tv). Choose a random seed (rs) from U(0,1) to assess whether tv can be 
kept as a suitable virtual value vXp.

Step 2: The cumulative distribution function value F(rs) of the uniform distribution represents the cumulative 
probability of rs. The probability that rs is lower than MFXp(tv) is the possibility of the value of MFXp(tv) itself 
occurring. When rs is lower than MFXp(tv), tv will thus be kept as vXp, otherwise, tv will be discarded. Therefore, 
if MFXp(tv) is larger, tv will have a higher probability of being vXp. The evaluation criteria are Eq. (10):

Select the vXp value that meets the criteria, and further calculate the offset as given in Eq. (11)

The interval bounds 
[

v−Xp, v
+

Xp

]

 are given in Eqs. (12) and (13)

Then substitute the value v−Xp and v+Xp into the following equation. The calculation of MF(x) is given in Eq. (14):

Step 3: Sample generates. Based on the above formula, the interval 
[

v−Xp, v
+

Xp

]

 is determined, and the random 
value vXq from the interval is selected. The schematic diagram is shown in Fig. 6. According to the above method, 
all dummy samples are generated in turn.

Deep neural network model. The deep neural network model is widely used to predict various applica-
tion results with high accuracy. The basic structure of the deep neural network model comprises one input 
layer, one output layer, and more than two hidden layers. The DNN algorithm trains internal parameters such 
as weights and matrix biases according to relationships between input features and output results. The training 
procedure results in a higher accuracy comparing with the equation-based  modeling26,27. In this paper, the deep 
neural network prediction model is built by the following steps.

Step 1: Input/output parameters. The input parameters of the network are the operating parameters of the diesel 
engine, which includes diesel engine speed, power, lubricating oil temperature and pressure. The output param-
eters of the network are brake specific fuel consumption, vibration, and noise in this paper.

Step 2: Normalization process. Since the neural network is a parallel processing system, the network weights are 
parallel in order of magnitude during its training and prediction. If the difference in the order of magnitude of 
the input/output parameters of the network is too large, the influence of a smaller order of magnitude parameter 
on the network weight may be masked by a larger order of magnitude parameter. This would cause a degrada-

(9)Sp,q =
1

n

n
∑

i=1

g(i)p,q, p, q ∈ {1, 2, . . . ,m}, p �= q.

(10)v = tv, if rs ≤ MFXp (tv).

(11)θp,q = −0.8×
∣

∣Sp,q
∣

∣+ 0.9.

(12)v−Xp
=

{

vXp − θp,q
(

UXp − LXp

)

, v−Xp
≥ LXp

LXp , vXp − θp,q
(

UXp − LXp

)

< LXp ,

(13)v+Xp
=

{

vXp + θp,q
(

UXp − LXp

)

, v+Xp
≤ UXp

UXp , vXp + θp,q
(

UXp − LXp

)

> UXp .

(14)vXq =











LXq +MF
�

vXP

��

MeXq − LXq

�

, LXq ≤ vXq ≤ MeXq

UXq −MF
�

vXP

��

UXq −MeXq

�

, MeXq ≤ vXq ≤ UXq

0, otherwise.

Table 6.  The relation strengths of trend similarities among attributes.

Relation strength Absolute value of S(|S|)

Low [0,0.3)

Medium [0.3,0.7)

High [0.7,1]
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tion of the network prediction performance. Therefore, it is necessary to normalize the input/output parameters 
before training the network. The selected normalization function is given as,

where x is the vector to be normalized, xmax is the maximum value of the sample, xmin is the minimum value of 
the sample, and x is the normalized vector.

Step 3: Network structure and network training. Compared with traditional feed-forward neural networks, 
DNNs have multiple implicit layer structures. Each hidden layer requires the input vector of the previous layer, 
and performs a nonlinear transformation using the activation function of the hidden layer. Then, the obtained 
vectors are passed from inputs to the next layer of neurons. Finally, the output is passed to the network through 
the iterate method. To determine the best network structure, the predicted performance under different num-
bers of neurons in the hidden layer is first compared. Then, the best network structure is selected for further 
optimization. In this paper, the training and testing are set to 3:1. The hidden layer is determined to be 4 layers, 
the number of nodes is 10, and the weight matrix W is expressed as,

The connection weight matrix W1 between the input layer and the hidden layer neurons, and the connection 
weight matrix W5 between hidden layer and output layer neurons are as follows,

Result and discussion
Model accuracy analysis. Correlation analysis. Based on the large amount of data generated by VSG, the 
deep neural network model was trained and tested for prediction accuracy. The residual plots of the brake specif-
ic fuel consumption, vibration and noise prediction models are shown from Figs. 7, 8, 9. From the plots, it can be 
found that the coefficients of determination  (R2) between the predicted and sample values of fuel consumption 
rate, vibration and noise are 0.90, 0.94 and 0.91, respectively. That indicates a high correlation between predicted 
model and experiment data. Besides, the observed and predicted values of the three responses are concentrated 
around the zero-error line, which fully indicates that the DNN model has a good correlation.

(15)x = −1+
2(x − xmin)

xmax − xmin

,

(16)W =
[

W1 W2 W3 W4 W5
]

.

(17)W1
=
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1
1,2 W

1
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1
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.

.
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(18)W5
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W5
1,1 W
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1,2 · · · W5
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5
2,2 · · · W5
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W5
3,1 W

5
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Figure 6.  Estimating the possible attribute ranges based on TSA.
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Experimental verification. In order to further experimentally verify the reliability of the performance model 
proposed in this paper, the brake specific fuel consumption, total vibration acceleration, and noise are measured 
under five working conditions including the speed at 750 rpm, 920 rpm, 1150 rpm, 1320 rpm and 1455 rpm. 
Figure 10 describes the comparison of the brake specific fuel consumption between experimental and predic-
tive values. As can been seen, the maximum error occurs at 750 rpm, and the error between the predicted and 
experimental values is close to 7%. When the rotational speed rises to 1300 rpm, the error between the predicted 
and experimental values is close to 3.9%. Moreover, the trend of experimental and predicted values is generally 
consistent. Figure 11 depicts the results of vibration. It is found that the trends of the experimental and pre-
dicted values of vibration are similar. When the speed increases to 1150 rpm, the error between the predicted 
and experimental values of the total vibration acceleration is the largest, close to 7%. While the speed reaches 
1450 rpm, the error is the smallest, close to 1%. The noise of marine diesel is demonstrated as shown in Fig. 12. 
It is observed that the predicted results roughly overlap with the experimental values. It means the prediction 
model is accurate. The maximum error occurs at a speed of 750 rpm, which is close to 2%. The minimum error 
occurs at a speed of 1150 rpm, which is close to 1%. This result shows the model is very accurate and fully com-
pliant with engineering requirements.

Effect of input parameters. For the marine diesel engines, the main reason of vibration and noise are 
piston movement and parts wear. Rotational speed and power are closely related to piston motion. Higher speed 
and power lead to faster piston motion and increased inertia forces such as crankshaft speed. This leads to high 
fuel consumption, vibration and noise. As for the oil pressure and temperature, they are related to the wear of 

Figure 7.  Residual comparison of brake specific fuel consumption between predictive and experimental values.

Figure 8.  Residual comparison of vibration between predictive and experimental values.
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parts. When the lubricating oil pressure and temperature are too low, the lubricating oil will not flow smoothly 
and the diesel engine will not work properly. High oil pressure and temperature will make the oil pump parts 
overload, the friction surface is not easy to form oil film, resulting in unreliable lubrication, increase parts wear, 
oil consumption increases. This causes an increase of vibration, noise, and fuel consumption. Therefore, in order 
to reveal the influence of diesel engine operating parameters on its performance, the diesel engine mechanism is 
discussed below in conjunction with the prediction model.

Brake specific fuel consumption. Brake specific fuel consumption is one of the important economic index of 
diesel engines. In order to improve the power and economy of diesel engines, the effect of parameters on brake 
specific fuel consumption needs to be studied. Figure 13 shows the effect of input parameters on brake specific 
fuel consumption. It is found that the brake specific fuel consumption decreases moderately for all parameters 
as the input parameters increase. That is due to the losses of the low mechanical efficiency and increased leak-
age at the start of the diesel engine, which results in higher brake specific fuel consumption values. The trend in 
brake specific fuel consumption is generally consistent with that in the previous  literature28. However, the brake 
specific fuel consumption drops slowly after 1000 rpm. It can be explained that the brake specific fuel consump-
tion is relatively low as the diesel engine gradually reach near rated operating conditions. When the diesel engine 
speed reaches 1350 rpm, fuel consumption is minimal. Subsequently, the fuel consumption increases and shows 
an upward trend.

Figure 9.  Residual comparison of noise between predictive and experimental values.

Figure 10.  Comparison of brake specific fuel consumption between predictive and experimental values.
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Vibration of the engine. Figure 14 shows the effect of all input parameters on the vibration based on the model 
data. From the Fig. 14, it can be observed that the total vibration is smaller during the starting phase of the 
diesel engine, with a minimum value of 29 m/s2. As the diesel engine runs to the rated condition, the vibration 
increases to the maximum value of 54.8 m/s2. Besides, the output parameters are overall positively correlated 
with the variation of vibration. This is attributed to the gradual increase in lubricant temperature and pressure 
as the speed of the diesel engine increases. Moreover, the torque become progressively larger with the rise of the 
inertia force. This situation makes the piston motion more violent currently, which is the main vibration source 
of the diesel engine. The trend in vibration was also found in the Ref.29.

Sound pressure level of the engine. The variation of noise with the input parameters is shown in Fig. 15. It can 
be seen from the graph that the sound pressure level of diesel engine rises with increasing speed, power, and 
lubricating oil temperature. The sound pressure level is basically the same as that of vibration. This trend in brake 
specific fuel consumption is also validated in Ref.21. Meanwhile, it is found that the minimum noise is 100 dB 
which presents at 460 rpm of speed. The maximum value is 113 dB at the maximum speed. This is attributed to 
the fact that the decay of sound pressure level may be related to the vibration decay of the diesel engine.

Impact factors analysis. Although the parametric effect on the performance of diesel engines has been dis-
cussed, the rank of input parameters on performances is still ambiguous. In this paper, the mean influence value 

Figure 11.  Comparison of vibration between predictive and experimental values.

Figure 12.  Comparison of noise between predictive and experimental values.
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(MIV) is used to determine the magnitude of the influence of input neurons on output neurons. The MIVi can 
be derived as  following30,31,

where Rimax and Rimin are new samples by adding and subtracted by KI on the basis of the original samples. Here 
KI represents the increment of input parameters.

In this study, four adjustment rates of MIV are set, which include K1 = 5%, K2 = 10%, K3 = 15%, and K4 = 20%, 
respectively. For each adjustment rate, multiple test trials are conducted to achieve the mean value. Finally, the 
|MIV| of each variable is calculated. The detailed results are listed in Table 7.

Figure 16 shows the |MIV| weight ratio of input parameters on performances of diesel engine. It can be seen 
from Fig. 16 that the weight ratios of speed on vibration and noise are relatively larger, followed by power. While 
the weight ratios of lubricating oil temperature and pressure on vibration and noise are relatively small. As for 
the brake specific fuel consumption, the power takes on a slightly significant weighting, followed by the speed. 
While the parameters that have less influence on brake specific fuel consumption are the lubricating oil pressure 
and temperature. Besides, the |MIV| standard deviation of the four input variables is high that indicates the per-
formance indexes are more sensitive to all of input parameters. This also illustrates that brake specific fuel con-
sumption, vibration, and noise are neither affected by a single factor, nor by the combination of multi-parameter.

Conclusions and future directions
In this study, a hybrid approach combining DNN and VSG is used to achieve an accurate performance model 
for marine diesel engines. The effects of diesel engine parameters on performances are analyzed, which could 
provide a guide for engineers in performance assessment and fault diagnosis. The main conclusions of this study 
can be summarized as follows.

(1) The sample data diffused by the VSG method keeps a high accuracy due to an error less than 7%. This 
indicates that the VSG method is capable of better diffusion of the experimental data. Further, the per-

(19)MIVi = abs(mean(Rimax − Rimin)),

Figure 13.  Influence of input parameters on brake specific fuel consumption.
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formance models of marine diesel engine are established based on the proposed hybrid method of DNN 
coupled with VSG. The coefficients of determination  (R2) between the predicted and experimental values 
of fuel consumption rate, vibration, and noise are 0.90, 0.94 and 0.91, respectively. The overall prediction 
accuracy is more than 93%. The results indicate the proposed model can be effectively applied for predict-
ing and assessing performances of marine diesel engine.

(2) Based on the DNN models of performances, the effect of diesel engine parameters on performance is dis-
cussed. With the increase of speed, power, lubricating oil temperature and pressure, the fuel consumption 
rate reduces moderately. Moreover, the change of vibration is in general positively related to the diesel 
engine parameters. It is also found that the noise attenuation trend is parallel to the changing trend of 
cylinder head vibration.

(3) The MIV algorithm has been used to quantify the weighting of the influence of each input parameter on 
the diesel engine performance parameters. The results show that speed has the greatest effect on vibration 
and noise with a weighting of 30% and 30.5% of the four input factors, respectively. While brake specific 
fuel consumption is sensitive to power due to a weighting of 30%. Moreover, the MIV standard deviation 
indicates the all of performance indexes are more sensitive to the input parameters.

This paper achieves the prediction of diesel engine performance and emissions, which effectively reduces 
time consumption and test costs. However, due to the limited experimental budget, only four input variables 
are designed in this paper, and the effects of multiple input parameters such as compression ratio, combustion 
starting point, and injection timing, are not considered. Moreover, due to the application of VSG technology, 
the four input variables selected in this paper are coupled each other, which makes it difficult to carry out the 
optimal design. However, the method proposed in this paper can be applied for optimizing, design, and analysis 
of independent input variables as well. Therefore, the research in this paper provides a foundation for the next 
work. Firstly, the method proposed in this paper provides a modeling basis for the optimization of complex 
diesel engine system parameters in the future work. Secondly, the results of this paper can provide a basis for 
performance evaluation and fault diagnosis of the subsequent diesel engine in the next work.

Figure 14.  Influence of input parameters on vibration.
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Figure 15.  Influence of input parameters on noise.

Table 7.  Value of |MIV| for input parameters.

Output

Input

Speed Power Lubricating oil temperature Lubricating oil temperature

Brake specific fuel consumption 0.2225 0.2510 0.1750 0.1895

Total vibration 0.25 0.2 0.1975 0.1972

Noise 0.24 0.188 0.1731 0.1875
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