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Abstract: In this research, polyester-based polymers/Fe3O4 nanocomposite foams were prepared
in order to study their performance; namely shape recovery speed and actuation load. A foamed
structure was obtained through a solid-state foaming process, which was studied and optimized
in previous research. The optimum foaming parameters were applied in an attempt to achieve
the highest foaming ratio possible. A Taguchi Map was then designed to determine the number
of experiments to be conducted. The experimental results showed that the maximum actuation
load obtained was 3.35 N, while optimal (fastest) recovery speed was 6.36 mm/min. Furthermore,
temperature had no impact on the actuation load as long as a temperature above the Tg was applied.
Moreover, the addition of nanoparticles reduced shape recovery speed due to discontinuity within
the polymer matrix.

Keywords: actuation load; shape memory effect; shape memory polymer; glass transition tempera-
ture; discontinuity phase

1. Introduction

Materials that exhibit shape memory effect are getting more attention, that is due
to their suitability for various applications and industries. This paper focuses on the
development of shape memory foam based on polyester polymer composite.

Shape memory effect (SME) is the phenomenon whereby the original shape of a
material is recovered in the presence of a suitable stimulus such as heat, light, electric, or
magnetic fields [1]. This has been observed in many different materials, including metallic
alloys and polymers [2]. SME consists of two different processes, as shown in Figure 1:
Programming process in which the material is deformed into a temporary shape, and the
recovery process during which the material recovers its original shape.
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their suitability for various applications and industries. This paper focuses on the devel-
opment of shape memory foam based on polyester polymer composite. 

Shape memory effect (SME) is the phenomenon whereby the original shape of a ma-
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magnetic fields [1]. This has been observed in many different materials, including metallic 
alloys and polymers [2]. SME consists of two different processes, as shown in Figure 1: 
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recovery process during which the material recovers its original shape. 
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Figure 1. Shape memory effect steps in polymers.

SMPs and their foams are distinguished by their unique properties such as light weight,
high elastic deformation [3], ease of processing, low cost, and excellent shape recovery
properties. Shape memory polymers are widely used for different applications, being
employed as light actuators, structural parts with a reduced size during transport, and
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as expandable/deployable structures. Other potential applications are in the biomedical
field, and these include drug delivery, biosensors, and biomedical devices. Moreover,
since polymers can become biodegradable, they can be used as short term implants when
removal by surgery is hazardous [4].

Foams can be classified based on their cellular structures to open-cell foams like carbon,
metallic and ceramic foams, and closed-cell foams like polyurethane and polystyrene foams.
Common methods for producing foams are chemical [5] or physical [6–8] processes. These
are complex methods, as they require the insertion of blowing agents. An emerging
foaming process that does not require a chemical reaction or a physical foaming agent is
known as solid-state foaming. This process was proposed and tested on epoxy polymers
by Quadrini and his team [9]. The main purpose of this foaming process is to simplify the
process and reduce costs.

This research is motivated by the advantage of foam compared to the solid form
of the polymer. Shape memory polymer foams have advantages over normal shape
memory polymers due to their low density and their ability to be compressed. Yet, a
major disadvantage of the foam is its low recovery force with a reduced stiffness and
mechanical strength. This research introduces the use of composites to overcome this
disadvantage. Shape memory composites have greater strength and stiffness [10–12],
as well as other special properties [13] determined by the types of filler that are added.
Lisuzzo et al. [14] found that adding 10 wt% halloysite nanotubes to Mater-Bio plastic
improved its elongation of the composite by 100%. Linul [15] and his team found that
Aluminum microfiber improved mechanical properties of polyurethane flexible foams.
Another study by Meesorn [16] proved that improved dispersion of cellulose nanocrystals
(CNC) enhanced the mechanical properties of EO-EPI/CNC nanocomposites.

Previous work showed that The addition of Fe3O4 nanoparticles (NPs) caused an
increase in the tensile strength of the poly(d,l-lactide) polymer [11]. Similarly, another study
showed improvement in the resultant compressive strength, when Fe3O4 NPs were added
to polyimide [17]. The results of previous studies motivate this research to study the effect
of adding NPs to polyester-based foam. This research aims to find out the effect of adding
Fe3O4 NPs to polyester-based polymer foam; specifically, the impact on the actuation load,
and recovery speed of the composite foam. Polyester-based foam was introduced for the
first time by Quadrini and Sque [9], and its performance under microgravity was studied
by Santo and Quadrini [18]. Santo [19] conducted further development to improve the
foam performance. Santo and Tedde [20] explored its application as an actuator.

The light weight and compressibility of polyester-based foam makes it suitable for
space applications; this was investigated by Santo [21]. The developments and potential of
this shape memory foam also motivate this research to explore further improvements.

The next section, experimental method, demonstrates the use of a Taguchi Map as a
method to guide the study to find the best parameter levels as well as the best combination
of process parameters that lead to the optimal objectives. Results are shown in Section 3
and discussed in Section 4. It is clear that these NPs impact the mechanical properties of
their host matrix. The paper concludes by Section 5, where major findings are presented.

2. Experimental Method
2.1. Design of the Experiment

The Taguchi Map was designed using Minitab software (Minitab.v17 Minitab, LLC,
State College, PA, USA) and was used to determine the effect of different parameters on the
shape memory foam performance. The minimum number of experiments was ascertained
via the formula below:

N_Taguchi = 1 + N_v (L− 1) (1)

where NTaguchi is the number of experiments conducted, Nv is the number of parameters,
and L is the number of different levels in each respective parameter. In this research, six
different factors were studied in terms of their effect on the foamed sample properties.
These factors were: NPs percentage, polymer type, packing pressure, holding time, foaming
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temperature, and foaming time. The selected factors and their levels were determined in a
previous research by the authors. The orthogonal array design in this research needs a total
of 7 experiments, the nearest Taguchi array design is with 8 experiments, and Table 1 below
demonstrates the full map of the conducted experiments. Three replicas were created from
each set of experiments.

Table 1. The Taguchi Map design for this research. NPs: Nanoparticles; JAD: Jotun Super Durable 2903®; CC: Corro-Coat
PE Series 7®.

Run #
Parameters NPs% Polymer Type Packing

Pressure (lbs.)
Holding Time

(Minutes)
Temperature

(◦C)
Foaming Time

(Minutes)

1 0 CC 7500 1 260 15
2 0 CC 7500 3 290 10
3 0 JSD 10,000 1 260 10
4 0 JSD 10,000 3 290 15
5 2 CC 10,000 1 290 15
6 2 CC 10,000 3 260 10
7 2 JSD 7500 1 290 10
8 2 JSD 7500 3 260 15

2.2. Sample Preparation

The first step was preparing the Fe3O4 nanoparticles using co-precipitation method.
Microscopic investigation of the prepared NPs was carried out using Scanning Electron
Microscope technique (JEOL Ltd., Tokyo, Japan) as shown in Figure 2. The prepared NPs
had an average diameter of 3 µm, similar average sizes were obtained by [21]. Following,
the NPs were mixed with the polymer powder. The total weight of the mixture was 5 g, with
and without NPs. X-ray powder diffraction XRD graphs (SHIMADZU CORPORATION,
Kyoto, Japan) of both CC and Jotun Super Durable 2903® (JSD) composites are preset in
Figures 3 and 4, respectively, and the graphs indicate the similarity between two polymers
as both of them contain same percentage of NPs and are both polyester based polymers.
Tablets were then prepared from the mixed powder by applying a certain packing pressure
and holding time based on the Taguchi design. The mixture was filled into a stainless-steel
mold and placed on a stainless-steel base. The powder was then packed gently into the
mold using a stainless-steel plunger. The Carver Hydraulic Press Test System (CARVER,
Inc., Wabash, IN, USA) provided the required packing pressure at a pumping speed of 1.56
mm/ s and the system can apply a maximum compression force of 30 klbs. Application
of high pressure caused the powder to stick together and form a tablet with a height of
9 mm and a 20 mm diameter. Finally, the tablet was extracted from the mold by gentle
hammering in order to avoid any cracking or breakage.
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2.3. Tablet Foaming

The prepared tablets were then moved to the second processing stage; namely, the
foaming stage. Tablets were placed into a thin aluminum sheet and then slowly inserted
into another stainless-steel mold with an inner diameter of 20.7 mm. The mold was then
inserted in an oven previously set to a predetermined temperature to assist with the
foaming process. The Taguchi Map was used to determine the foaming temperature and
foaming time to be applied to the tablets inside the oven. After the foaming time was
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over, tablets were carefully removed from the oven and cooled down for 15 min in an air
environment. This foaming technique is called solid-state foaming and has only recently
been proposed and tested on 3M epoxy resin by Quadrini and his team. After the foaming
stage, samples had a cylindrical shape, and were extracted from the mold with via gentle
hammering action to avoid cracking or breaking them, and then machined to produce a
uniform shape and dimensions.

2.4. Shape Recovery Speed Measurements

Three replicas were prepared and tested to study the shape memory effect. The same
technique as above was followed in order to obtain the foamed samples. All the foamed
samples prepared, from each set of experiments, were placed in an oven previously heated
to 120 ◦C. They were kept at that temperature for two minutes to soften their structure and
make it easier to compress them. Subsequently, these samples were compressed using a
scaled plunger for one minute at room temperature in an air environment to reach 50%
of their original height. Samples were placed in a cylindrical mold in order to direct the
motion downwards during compression. Furthermore, they were allowed to cool down to
receive their temporary shape. After that, the compressed samples were placed in the oven
once again to allow the shape recovery process to take place. The samples were removed
once they had returned to their original height, with a high recovery ratio of 100%. See
Figure 5 below.
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Figure 5. A sample just heated: Compressed to 50%: Regained original height.

The recovery time was recorded the moment samples started the recovery process
until they reached their original height. It was noticed that the shape recovery process
took place once the temperature inside the oven reached 120 ◦C. The recovery speed was
calculated by dividing the height recovered by the recorded recovery time. The original
height of the sample was 42 mm, compressed to 21 mm, and was 42 mm after recovering
its shape.

2.5. Actuation Load Measurements

A new set of three samples for each experiment was prepared. These samples were
placed in an oven for two minutes at 120 ◦C to soften their structure. Then, the samples
were compressed to 50% of their original height using a scaled plunger and placed inside
a cylindrical mold. The samples were then allowed to cool in an air environment for
five minutes in order to achieve their temporary shape. After that, the samples were
placed in an oven and in slight contact with a digital force gauge (DFG35 Digital Force
Gauge, Omega Engineering, Inc., Norwalk, CT, USA)® previously inserted inside the
oven. Subsequently, the gauge was moved upwards to make a 0.0 N contact force with
the compressed sample. The temperature inside the oven was then increased to 120 ◦C,
and the samples were exposed to that temperature for one minute to allow shape recovery.
Once the SME was activated, the sample started to exert a pushing force on the force gauge.
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Next, the temperature was gradually decreased to room temperature. The force gauge
readings were obtained using MESUR Lite software in order to determine the actuation
load values (refer to Figure 6 for a sample graph obtained using the force gauge data).
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3. Results
3.1. Optimizing Shape Memory Effect (Recovery Speed)

Samples for this test were allowed to fully recover their original height, the recovery
time and speed were recorded and calculated, in order to study the effect of different
process parameters on the shape recovery properties of both the Corro-Coat PE Series 7®

(CC) and Jotun Super Durable 2903® (JSD) materials. The results of the calculated recovery
speed in mm/min, and the recovery time in seconds, alongside the standard deviations,
are shown in Table 2 below.

Table 2. Average calculated values for recovery speed and time for each experiment.

Run# 1 2 3 4 5 6 7 8

Samples S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Initial height 25 25 25 24 24 24 15 15 15 18 18 18 28 28 28 26 26 26 12 12 12 14 14 14

Average Recovery Time (seconds) 243.66 236 186 188.66 319.33 337.66 170 166.33

Standard deviation 6.79 11.86 3.74 3.29 9.177 3.68 10.98 8.178

Average Recovery Speed (mm/min) 5.94 6.36 5.16 5.82 5.20 4.68 4.02 4.92

Standard deviation 0.059 0.30 0.343 0.47 0.21 0.129 0.49 0.84

An analysis of the Taguchi Map showed that lower NPs% resulted in faster recovery
speeds. On the other hand, higher foaming temperature and a longer foaming time,
recorded higher shape recovery speeds and lower recovery times. The CC foamed tablets
had a tendency to recover faster than the JSD tablets. A summary of the analysis can be
found in Figure 7 below.
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3.2. Optimizing Actuation Load

The actuation load is defined as the force exerted by the sample on an object. Prepared
samples were individually placed almost one millimeter away from the force gauge to
make a 0.0 N contact force with the force gauge arm. Then, the temperature was increased
to 120 ◦C, once the sample was actuated, the gauge recorded the actuation load applied
over time as shown in Figure 3. When maximum load was achieved, the actuation load
showed a decrement behavior, as all energy stored within the polymer chain was released.
After that, the temperature inside the oven was returned back to room temperature. The
results for the calculated mean value of the maximum actuation load applied by samples in
each experiment, alongside the standard deviation values, can be found in Table 3 below.

Table 3. Average measured actuation load values for each experiment.

Run# 1 2 3 4 5 6 7 8

Maximum Actuation Load (N) 2.36 1.66 0.91 2.35 1.46 0.45 3.01 3.35

Standard deviation 0.271 0.246 0.64 0.227 0.062 0.041 0.169 0.49

The results showed that as NP%, foaming temperature, and foaming time increased,
higher actuation loads were obtained. Additionally, lower packing pressure increased the
actuation load. In this test, the JSD polymer was superior in performance to the CC, due to
its more rigid structure. A summary of the analysis can be seen in Figure 8 below.

Figure 9 below shows the actuation load curves for every experiment. Each curve
represents the average value for each experiment. It can be seen that run number eight
(8) had the highest actuation load of approximately 3.35 N, while run number seven (7)
was second with a maximum actuation load of 3.016 N. Runs four (4), one (1), two (2), five
(5), and three (3) came third, fourth, fifth, sixth, and seventh, respectively, with average
actuation loads of 2.35, 2.36, 1.66, 1.46, and 0.9 N. Run number six (6), however, recorded
the lowest average actuation load of only 0.45 N. It was observed that all curves had very
similar increment rates; it took every sample approximately two minutes (120 s) to reach
their maximum actuation load. All samples showed an indistinguishable behavior; after
they achieved their maximum actuation load, it started to decrease again, but none reached
to 0 N by the end of the experiment period. The lowest actuation loads recorded were 0.25



Materials 2021, 14, 1264 8 of 13

and 0.35 N for runs three (3) and six (6), compared to maximums of 2.68 N for run number
eight (8), and 2.3 N for run number seven (7).
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It is also worth mentioning that the samples started to apply actuation loads when the
oven temperature was between 80 ◦C and 90 ◦C, temperature had no further impact on the
actuation loads of any of the samples.

Relationship between Actuation Load and Sample Length

A separate test was conducted on six different samples to verify if actuation load was
dependent on sample length. A sample of Pure PE was prepared, and it was compressed
under a pressure of 7500 lbs. with one minute holding time at a temperature of 260 ◦C,
and was kept inside the oven for fifteen minutes. Three of the six prepared samples were
machined to a height of 40 mm, while the other three were machined to 20 mm. All the
samples were then compressed to 50% of their original height to be ready for the test. A
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t-test for equal means was conducted in order to compare the mean actuation loads of
the two sets of samples. T-test, using Minitab, was used to determine if the two means
were equal. The null hypothesis was that there is no difference between the two means for
actuation loads with a confidence level of 90%. The alternative hypothesis suggested that
both means were not equal. The formula used to arrive at the t-value is shown below.

t =
Y1 −Y2√

s2
1

N1
+

s2
2

N2

(2)

where N1 and N2 are the sample sizes, Y1 and Y2 are the sample means, and s2
1 and s2

2 are
the sample variances. The t-test results showed that there was no effect on the actuation
load. A t-value of 2.62 was obtained using the formula above. The p-value was 0.142, as
shown in Table 4 below. This is more than the acceptable significance level of α = 0.1, so the
null hypothesis is accepted and the mean values for sample heights of 40 mm and 20mm
were considered as equal.

Table 4. Minitab results for the t-test.

Two-Sample T for l40 vs. l20

Sample Length N Mean Standard
Deviation SE Mean

120 3 2.667 0.257 0.15
140 3 2.233 0.126 0.073

Difference = µ (l40) − µ (l20)
Estimate for difference: 0.433

90% CI for difference: (0.082, 0.785)
t-Test of difference = 0 (vs 6=): t-Value = 2.63 p-Value = 0.058 DF = 4

Both use Pooled StDev = 0.2021

4. Discussion
4.1. Optimizing Shape Memory Effect (Recovery Speed)

Shape memory effect is defined as the ability of a sample to return to its original
shape after being deformed. This test was carried out on each sample to measure its
shape recovery speed. The recovery speed is obtained by dividing the recovered height by
recovery time. The fastest recovery speed was achieved when no NPs were added to the
polymer matrix. See Table 5 below for results.

Table 5. The effect of NP% on recovery speed (mm/minute).

NP%
Polymer Type

CC JSD Average

0% 5.97 5.5 5.735

2% 4.92 4.47 4.695

Average 5.445 4.985 5.215

This can be attributed to the fact that the addition of NPs created a discontinuity in the
polymer matrix, which caused the sample to take a longer time to recover its original height,
hence the slower recovery speed. This observation is in line with observations by Genus
and his team [22], who observed that silicon carbide (SiC) nanoparticles damaged the shape
recovery feature of shape memory epoxy and shape memory polyurethane (SMPU). This
negative impact was ascribed to the dramatic decrease of soft segment crystallinity in the
SMPU. It was also noted that holding time under packing pressure had a negligible effect
on recovery speed. See Table 6 below.
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Table 6. The effect of packing pressure on recovery speed.

Holding Time
Packing Pressure

7500 10,000 Average

1 5.94 5.16 5.55

3 5.82 6.0 5.91

Average 5.88 5.58 5.73

4.2. Optimizing Actuation Load

JSD polymer had a higher actuation load than CC. This can be attributed to the fact
that JSD has a higher yield strength compared to CC (see Figure 10). Thus, it was able
to store more energy. Moreover, foamed JSD is denser than CC (0.29 g/cm3 compared to
0.25 g/cm3), and Figure 11 demonstrates the fact that the volume of 5 g of foamed CC is
larger than the volume of 5 g of foamed JSD, and hence was capable of exerting a greater
actuation load upon shape recovery process. Both samples showed similar behavior to
other foams produced by [15,23]. The graph could be characterized into 3 main regions: A
linear elastic region at the beginning, a plateau region in the middle, and a densification
area at the end. It is obvious that both polymers featured brittle matrices by the presence of
a jagged line in the middle region.
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The Addition of NPs had a small impact on improving the actuation load, the average
actuation load for pure samples is 1.82 N, while the average for samples after adding 2%
Fe3O4 is 2.06 N, this contributes to a 11% increment. It was beyond the initial expectations
of this research. This result is in line with conclusions made by previous work, in which
the addition of nanoparticles did not significantly affect the mechanical properties of the
polymer composite [24]. Meanwhile, other studies reported better improvement [25,26].
This indicates an inconsistency which is attributed to the difference in polymers types,
additives, and the foaming process.

The samples started exerting an actuation load on the force gauge once they reached
a temperature between 80 ◦C and 90 ◦C. This temperature is just above the Tg of both
polymers. The results indicated that after the Tg temperature has been exceeded, no
effect of temperature on the actuation load can be found. Moreover, a further increase in
temperature did not result in an increase in the actuation load. This is because all energy
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stored within the polymer chains had been released, and no more chain sliding or shape
recovery occurred.
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Table 7 below represents a comparison between mechanical tests operated on different
polymeric materials. It is clear that the effect of NPs depends on various parameters [27],
such as the properties of the host material. Our objective was to produce a shape memory
polymer composite foam with high ratio, low density, fast shape recovery speed, and a
high actuation load, while using the optimum process parameters using a Taguchi design
method. So, our object was to improve memory effect, not the yield strength of the polymer.
Our results are consistent with studies conducted on similar shape memory polymers, such
as studies conducted by Yu [28] and Genus and his team [22].

Table 7. Comparing this work to previous work.

Yield Strength (MPa) Yield Strength (MPa)
after Adding NPs Polymer Name Reference

3.9 6.7 PMMA Zhang, et al. 2017 [27]

5.7 4.7 Polyurethane Soto, et al. 2018

2.61 3.0 Polyimide Weng, et al. 2018

56.26 75.93 Epoxy Polymer Yu, et al. 2019 [28]

1.5 1.2 JSD
Our material

1.25 0.52 CC

5. Conclusions

A solid-state foaming process, with no foaming agent, was tested on two different
polymers: Namely, Corro-Coat PE Series 7® (CC) and Jotun Super Durable 2903® (JSD) and
their composites with the inclusion of Fe3O4 NPs. Tablets were prepared at different levels
as indicated by the Taguchi Map designed for this research. These tablets were foamed
at different levels of foaming temperature and varied foaming times. Moreover, different
tests were conducted on these foamed samples to measure their shape recovery speed
(mm/min) and actuation loads (N).

The results showed that the insertion of NPs into the polymer matrix did not increase
the shape recovery speed, and in fact, this caused a reduction in speed. This can be
attributed to the fact that NPs do not possess shape memory behaviors as part of their
nature, and they caused discontinuity within the polymer matrix.
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Generally, the JSD polymer matrix showed higher actuation load values compared to
CC, due to its higher yield strength and density. NPs insertion increased actuation load of
the JSD composite, and reduced actuation load of the CC composite, this is because density
increased for JSD samples, and decreased for CC. Increment in density means that the
energy received upon compression was stored in smaller volume, and thus able to release
more force when it recovered its shape.

6. Future Work

Further pores expansion techniques can be tested for bigger pore size and better
uniform size distribution. These techniques could be rotational or ultrasonic vibration.
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