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Abstract: This chapter describes viruses that are enterically transmitted and cause 
systemic disease. These are recognized as important food and waterborne pathogens. 
The chapter first summarizes the general characteristics of the viruses, then describes 
their typical epidemiological patterns. The chapter then discusses methods to detect 
and to inactivate the viruses, with an emphasis on strategies that can be implemented 
for food safety. 
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25.1   Introduction
Viruses that are recognized as causes of foodborne and waterborne illness can be 
separated into four general groups: the viruses that cause gastroenteritis (Chapter 
32), the viruses that cause hepatitis, the enteroviruses and emerging viruses. 
 The enterically transmitted hepatitis viruses (hepatitis A and hepatitis 
E) replicate and cause disease in the liver, while the enteroviruses (polio, 
echo and coxsackie) replicate in the small intestine but migrate to and cause 
illness in other organs. These two groups of viruses are transmitted by the 
faecal–oral route, either directly from person-to-person or indirectly when 
food or water is contaminated with faecal material from infected individuals. 
There are also some emerging viruses that are not usually transmitted via 
the faecal–oral route, but recent reports indicate they may infect via the 
gastrointestinal tract and have the potential to emerge as a food safety 
concern (influenza A, coronavirus, tickborne encephalitis). See Table 25.1 
for a summary of the viruses discussed in this chapter. 
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Table 25.1   Summary of enteric viruses and their main characteristics as discussed in this chapter 

Virus Family Target organs Illness Severity

Hepatitis A virus Picornaviridae Liver Hepatitis  Variable, severity increases 
     with age
Hepatitis E virus Hepeviridae Liver Hepatitis Mild, except in pregnant women  
Enteroviruses Picornaviridae Central nervous  Poliomyelitis, meningitis, Variable, most infections are mild
 (Poliovirus)  system, heart,  encephalitis, myocarditis,
 (Echovirus)  lungs, skin pericarditis, pleurodynia, 
 (Coxsackie virus)   hand foot and mouth disease 
Avian Influenza virus Orthomyxoviridae Intestine, lungs Gastroenteritis, respiratory disease Variable, certain strains have 
 (High pathogenicity)    high fatality rates in humans
Coronavirus Coronaviridae Intestine, lungs Gastroenteritis, respiratory disease Variable, one strain has had 
     high fatality rates in humans
Tick-borne encephalitis Flaviviridae Central nervous Encephalitis Severe, infections are rare
virus  system
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 These organisms are described in the following text, with an emphasis on 
their potential to cause foodborne illness. Methods to detect and inactivate the 
major viral pathogens are discussed, with indications for control measures that 
can be used to limit the spread of viral disease through the food supply. Each 
virus has particular challenges and considerations, but general themes emerge 
that can be used to mitigate current and future food safety concerns. 

25.2   Description of the organisms
25.2.1   Hepatitis A virus
The hepatitis A virus is a member of the Picornaviridae family, in the genus 
Hepatovirus (Fauquet et al., 2005). Particles are non-enveloped, icosahedral 
capsids of approximately 30 nm in diameter (Feinstone et al., 1973). They 
enclose a 7.5 kb single-stranded, polyadenylated RNA genome that codes 
for the viral structural and non-structural proteins (Cohen et al., 1987). 
 The hepatitis A virus infects epithelial cells of the small intestine and 
hepatocytes in primates (Balayan, 1992). Naturally-occurring disease is seen 
only in the human population and causes viral hepatitis characterized by 
fever, jaundice, light coloured stools, dark coloured urine, abdominal pain 
and occasional diarrhea in older children and adults (Nainan et al., 2006). 
Infection is generally asymptomatic or anicteric in children under six years 
of age (Hadler et al., 1980). The infection is acute and its resolution provides 
lifelong immune protection against future infections, as there is only one 
serotype of hepatitis A (Jacobsen and Koopman, 2004; Cristina and Costa-
Mattioli, 2007). 
 In developing regions of the world where hygienic standards (i.e. clean 
water, sewage systems, availability of adequate hygiene facilities and proper 
hygienic practices) may be below acceptable standards, children are commonly 
exposed to the hepatitis A virus at an early age. Since most infections in 
children are asymptomatic, the rates of disease are low and outbreaks are 
uncommon in these areas (Shapiro and Margolis, 1993). In contrast, in the 
developed countries, with low hepatitis A endemicity, hepatitis A infections 
and outbreaks are a serious public health concern (AAPCID, 2007). 
 The hepatitis A virus is spread via the faecal–oral route, typically by 
person-to-person contact or by ingestion of contaminated food or water 
(Brundage and Fitzpatrick, 2006). The virus has a particularly high rate of 
person-to-person transmission, and it is common for foodborne outbreaks 
of hepatitis A to be amplified when primary cases transfer the infection to 
members of their households (Fiore, 2004). The long incubation period 
between infection and symptomatic disease (15–50 d) also contributes to 
difficulties in accurately identifying foodborne sources of hepatitis A virus 
infection (Fiore, 2004). However, a large number of outbreaks have been 
characterized, and contamination can occur at every stage in food production, 
from cultivation through final preparation by food handlers. 
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25.2.2   Hepatitis E virus
The hepatitis E virus (HEV) is a member of the genus Hepevirus in the 
Hepeviridae family, which shares features with the Caliciviridae, Togaviridae 
and Picornaviridae families (Fauquet et al., 2005). The hepatitis E particle is 
a non-enveloped icosahedron of approximately 30 nm in diameter (Arankalle 
et al., 1988). The 7.5 kb genome is a single-stranded RNA molecule that 
codes for three open reading frames (Tam et al., 1991). 
 A single known serotype of this virus infects humans and animal species; 
the virus has been isolated from a range of hosts including primates, domestic 
swine, wild deer, wild boar and birds (Bradley et al., 1987; Meng et al., 
1997; Haqshenas et al., 2001; Matsuda et al., 2003; Tei et al., 2003). Anti-
HEV antibodies have been detected in an even wider range of host species, 
including food source animals such as cattle, sheep and goats (Meng, 2000; 
Lu et al., 2006; Shukla et al., 2007). 
 The hepatitis E virus causes similar clinical symptoms to those associated 
with hepatitis A infection. Recent analysis of case studies indicates that there 
are two clinical forms of hepatitis E infection: a classical type associated with 
large waterborne outbreaks in the developing world (Acharya and Panda, 
2006) and an emerging disease associated with endemically-acquired cases 
in the developed world (Teo, 2007). This latter form has been detected only 
sporadically and may be transmitted through contaminated food products. 
 In classical hepatitis E infections, the cases occur predominantly in young 
adults (Teo, 2006). The disease presentation is generally more severe than for 
hepatitis A. Childhood infections are generally symptomatic (Hyams et al., 
1992; Tsatsralt-Od et al., 2007). Hyperbilirubinaemia is more pronounced, 
protracted cholestasis is more common, and a larger proportion of hepatitis 
E patients present with jaundice (Chau et al., 2006). High (10 % or more) 
rates of fulminant hepatitis and fatality have been reported for classical 
hepatitis E infections in pregnant women, particularly in the third trimester 
(Rab et al., 1997; Boccia et al., 2006).
 By contrast, emerging hepatitis E infections in the developed world are 
more frequently associated with advanced age (Dalton et al., 2007; Teo, 
2007). There is no evidence that the water supply is contaminated in the 
developed world, and this has led to suggestions that such cases may be 
transmitted through food, although definitive evidence is lacking in almost 
all cases (Dalton et al., 2007). In these cases, underlying liver disease and 
excessive alcohol intake are risk factors for fulminant hepatitis, and there 
is no reported association with pregnancy (Peron et al., 2007). 

25.2.3   Poliovirus
Polioviruses are classified in the Enterovirus genus of the Picornaviridae 
family (Fauquet et al., 2005). They too form 30 nm particles containing 
a single-stranded RNA genome (Schwerdt and Fogh, 1957; Young, 1973). 
The genome is 7.5 kb in length and codes for a single, long open reading 
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frame that is post-translationally processed to yield all of the viral proteins 
(Kitamura et al., 1981). 
 Infection with poliovirus occurs following the ingestion of contaminated 
food or water. The virus replicates in the human intestinal tract resulting in 
asymptomatic infection or minor malaise in over 90 % of cases (Melnick, 
1996). Mild illness characterized by fever, headache, nausea and sore throat 
can occur in 4–8 % of infections. If the virus spreads to infect the nervous 
system, a further 1–2 % of cases experience stiffness in the back and neck, 
as well as mild muscle weakness. The major illness, paralytic poliomyelitis, 
occurs in approximately 1 % of cases and consists of meningitis plus persisting 
weakness of one or more muscle groups. The amount of damage to neurons 
is highly variable (Melnick, 1996). In endemic countries, the virus affects 
predominantly young children, with most cases of poliomyelitis occurring 
in those below five years of age (Singh et al., 1996). 
 Poliovirus was the first virus shown to be transmitted through food, and a 
number of outbreaks were associated with raw milk prior to the introduction 
of routine pasteurization (Dingman, 1916; Sullivan and Read, 1968). Polio 
can be prevented using a live attenuated vaccine administered orally or by 
an injectable killed vaccine (Melnick, 1996). As a result of the poliovirus 
eradication campaign led by the World Health Organization (WHO), infection 
with this virus has been eradicated or significantly reduced in many regions of 
the world and, as such, it is of questionable importance for routine food safety 
considerations (Lahariya, 2007). However, due to its historic importance and 
the early development of an attenuated vaccine strain, there have been many 
studies on the spread and inactivation of poliovirus in food products. 

25.2.4   Avian Influenza virus
The Influenza virus A genus is classified in the family Orthomyxoviridae 
(Fauquet et al., 2005). This family is characterized by pleiomorphic, enveloped 
virions with a segmented single-stranded RNA genome (Fauquet et al., 
2005). The genome is 14 kb of negative-sense RNA in eight segments, and 
its complement codes for structural and non-structural proteins (Fauquet et 
al., 2005). They are classified into sub-types on the basis of the two envelope 
glycoproteins, the hemagglutinase (H type) and the neuraminidase (N type) 
(Knossow and Skehel, 2006). There are 16 known H types and 9 known 
N types, which can theoretically be mixed and matched in all possible 
combinations (Knossow and Skehel, 2006). 
 All of the known sub-types of Influenza A viruses (82 H/N combinations 
out of a possible 144) have been found in wild birds (Van Reeth, 2007). 
Viruses containing combinations of the H1, H2, H3, N1 and N2 types are 
considered to be established in the human population; i.e. there are circulating 
strains of these viruses that predominantly infect humans (Hay et al., 2001). 
In addition, viruses of the H5, H7 and H9 sub-types have been found to 
cause sporadic human infections (Peiris et al., 1999; Shortridge et al., 2000; 
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Koopmans et al., 2004). The subtype of recent worldwide concern is the highly 
pathogenic H5N1 virus (Abdel-Ghafar et al., 2008). This particular avian 
influenza virus sub-type has been detected in poultry from over 50 countries 
on three continents (Van Reeth, 2007). It has infected humans in Vietnam, 
Thailand, Indonesia, Cambodia, China, Turkey, Iraq, Azerbaijan, Egypt 
and Djibouti (de Jong and Hien, 2006). This virus replicates to abnormally 
high levels in the upper respiratory tract, causing an intense inflammatory 
response and an extremely high case fatality rate of over 60 % (de Jong et 
al., 2006). The H5N1 avian influenza virus currently has a limited ability to 
spread from person to person. However, there is concern that this virus could 
acquire the ability to spread effectively in humans, leading to a worldwide 
pandemic (Rajagopal and Treanor, 2007). The Spanish influenza pandemic, 
which killed approximately 50 million people worldwide is thought to have 
arisen from an avian H1N1 strain (Rajagopal and Treanor, 2007). 
 To date, H5N1 avian influenza infections of humans have nearly all 
been linked to close contact between the afflicted individuals and infected 
poultry (de Jong and Hien, 2006; Van Reeth, 2007; Abdel-Ghafar et al., 
2008). However, the virus can be isolated from all parts of infected poultry 
including the blood, bones and meat (Lu et al., 2003b; Swayne, 2006a). As 
a result, the consumption of raw or undercooked poultry products represents 
a potential source of infection (Swayne, 2006b). 

25.2.5   Coronavirus
The members of the Coronaviridae family are pleiomorphic, enveloped, 
single-stranded RNA viruses (Fauquet et al., 2005). The positive-sense, 30 
kb genome codes directly for viral proteins (Fauquet et al., 2005). These 
viruses typically cause mild respiratory disease; however, a particularly 
virulent strain known as the Sudden Acute Respiratory Syndrome Coronavirus 
(SARS-CoV) emerged in 2003 and caused over 8000 cases, with a nearly 
10 % case fatality rate (Wang and Chang, 2004). This virus caused systematic 
infections as well as respiratory illness, and was identified in the digestive 
tract, as well as in faeces and sewage (Chan-Yeung and Xu, 2003; Zhang, 
2003; Wang et al., 2005). This raises the possibility that the virus may have 
had the potential to spread through the faecal–oral route and food products. 
Although these viruses are able to persist for days in some buffered media, they 
are sensitive to heating, UV light and disinfection (Duan et al., 2003; Rabenau 
et al., 2005a, b). No cases of foodborne spread were documented during this 
outbreak, although one cluster of cases in a housing complex was linked to 
an index patient suffering from diahrroea (McKinney et al., 2006). 

25.2.6   Other enteroviruses
The echoviruses and coxsackieviruses are enteroviruses of the family 
Picornaviridae and share many features with the polioviruses. They have 30 
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nm, non-enveloped particles enclosing a positive-sense single-stranded RNA 
genome (Fauquet et al., 2005). These viruses are common and infections 
are mostly asymptomatic. They can occasionally spread outside of the 
gastrointestinal tract to cause aseptic meningitis, myocarditis or encephalitis. 
Infection of newborns with these viruses can lead to serious or fatal infection 
(Abzug, 2004). These viruses are transmitted via the faecal–oral route, but 
are not frequently associated with foodborne illness. A recent report identified 
milk from an infected mother as the source of coxsackievirus B infection 
(Chang et al., 2006).

25.2.7   Tickborne Encephalitis virus
The tickborne encephalitis virus is an enveloped, single-stranded RNA virus 
of the family Flaviviridae (Fauquet et al., 2005). It is endemic to Europe and 
Russia, causing 10 000–12 000 cases of encephalitis every year, with a case 
fatality rate of 0.5 % (Gunther and Haglund, 2005). Survivors can develop 
long-term neurological sequelae at rates of up to 40 % (Dumpis et al., 1999). 
The majority of cases are transmitted by tick bites, but some have been 
associated with the consumption of raw milk from infected cattle or goats 
(Sixl et al., 1989; WHO, 1994; Dumpis et al., 1999; Kerbo et al., 2005). 

25.2.8   Emerging viruses of gastroenteritis
Additional emerging viruses of interest cause symptoms of gastroenteritis. 
These include the parvoviruses, toroviruses and picobirnaviruses. See 
Chapter 32 for a detailed description of the causative agents of viral 
gastroenteritis. 

25.3   Risk factors
25.3.1   Hepatitis A virus
There is an inverse correlation between hepatitis A disease rates and viral 
endemicity (Shapiro and Margolis, 1993). The Centres for Disease Control 
and Prevention in the USA has classified regions according to high (Central 
and South America, Africa, South Asia, Greenland), intermediate (Russia 
and Eastern Europe) and low (North America, Western Europe, Scandinavia, 
Australia) seroprevalence rates for hepatitis A (CDC, 2007). This is important 
because many of the cases and outbreaks of hepatitis A in developed countries 
can be traced to travel in endemic countries (Steffen, 2005). There may also 
be a higher risk for food produced in the highly endemic countries to be 
contaminated with the hepatitis A virus (Fiore, 2004). 
 Disease rates in low endemicity countries are difficult to generalize. They 
are characterized by cyclical peaks and troughs, and they are changing in 
response to recent vaccination campaigns (Pham et al., 2005; Wasley et al., 
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2005). Undiagnosed children may be an important source of the hepatitis 
A virus in communities, as a high percentage of hepatitis A infections have 
no known source (Staes et al., 2000; Nainan et al., 2005). There has been a 
safe and effective vaccine available against hepatitis A since the mid-1990s; 
however, this virus continues to cause outbreaks, with contaminated food 
being one important source of infection (Fiore et al., 2006; Craig et al., 
2007). 
 Foodborne outbreaks of hepatitis A have been associated with many 
different food types and different settings (see Table 25.2 for a summary of 
some outbreaks published over the past 10 years). Viruses are inert particles 
when present outside their host. The spread of hepatitis A infection through 
contaminated food, water or fomites is therefore dependent on the persistence 
of the virus after the introduction of contaminated human waste. 
 Documented outbreaks of hepatitis A due to shellfish have been caused 
by faecal contamination of shellfish growing waters (Conaty et al., 2000; 
Bosch et al., 2001; Bialek et al., 2007; Pontrelli et al., 2007; Shieh et al., 
2007). The hepatitis A virus survives for up to one month in dried faecal 
matter (McCaustland et al., 1982). In mixtures of human and animal waste 
designed for waste treatment prior to disposal, it takes 7 d to reduce viral 
titre by 1 log10 at 37 °C (Deng and Cliver, 1995). Once introduced into the 
water environment, the hepatitis A virus also remains infectious for months, 
associating with marine sediment (Arnal et al., 1998; Bosch, 1998). The 
hepatitis A virus has been shown experimentally to accumulate in mussels 
and oysters, and depuration is not effective at eliminating the virus from the 
shellfish tissue (Franco et al., 1990; Enriquez et al., 1992; Abad et al., 1997b; 
De Medici et al., 2001; Kingsley and Richards, 2003). Extensive depuration 
for more than three weeks was required to completely eliminate detectable 
hepatitis A virus from oyster tissue (Kingsley and Richards, 2003). 
 Fresh or frozen produce is another important source of foodborne hepatitis 
A outbreaks (Hutin et al., 1999; Dentinger et al., 2001; Calder et al., 2003; 
CDC, 2003b; Amon et al., 2005; Wheeler et al., 2005; Frank et al., 2007). 
In these reports, the human fecal contamination might have been introduced 
during produce growth (Amon et al., 2005), harvest (Calder et al., 2003), 
processing (Frank et al., 2007) or distribution. Consequently, the point of viral 
contamination can be difficult to identify (Hutin et al., 1999; Dentinger et al., 
2001; CDC, 2003b; Howitz et al., 2005; Wheeler et al., 2005; Tekeuchi et 
al., 2006). Once fresh produce is contaminated, the hepatitis A virus adsorbs 
to its surface and persists for days (Croci et al., 2002; Stine et al., 2005). 
Freezing allows the virus to survive for months to years (Niu et al., 1992). 
In addition, washing the contaminated produce does not usually substantially 
reduce the level of contamination (Croci et al., 2002). 
 The remaining source of reported hepatitis A outbreaks are infected food 
handlers (CDC, 2003a; Prato et al., 2006; Schenkel et al., 2006; Hasegawa 
et al., 2007). Hepatitis A virus has been shown to persist on experimentally-
contaminated hands for more than 4 h (Mbithi et al., 1992). The virus was 
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Table 25.2    Selected foodborne outbreaks of hepatitis A virus

Year # of cases Country Food type Contamination Reference

1997 467 Australia Oysters Growth water Conaty et al., 2000
1997 256 USA Frozen strawberries Unidentified Hutin et al., 1999
1998 43 USA Green onions Prior to restaurant delivery Dentinger et al., 2001
    (unknown)
2001 183 Spain Clams Growth water Bosch et al., 2001
2001 46 USA Sandwiches Food handler CDC, 2003a
2002 26 Italy Various Food handler Prato et al., 2006
2002 43 New Zealand Raw blueberries Harvest Calder et al., 2003
2003 601 USA Green onions Prior to restaurant delivery CDC, 2003b; Wheeler 
    (unknown) et al., 2005
2003 422 USA Green onions Farm Amon et al., 2005
2004 64 Germany Baked goods Food handler Schenkel et al., 2006
2004 1180 India Water Sewage contamination Arankalle et al., 2006
2004 884 Italy Raw shellfish Growth water Pontrelli et al., 2007
2004 351 Egypt Orange juice Processing plant Frank et al., 2007
2005 4 Denmark Ice cream Unknown Howitz et al., 2005
2005 39 USA Oysters Growth water Bialek et al., 2007; 
     Shieh et al., 2007
2006 9 Japan Sushi bar (undetermined) Unknown Tekeuchi et al., 2006
2006 15 Japan Restaurant (undetermined) Food handler Hasegawa et al., 2007
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readily transferred between inoculated fingers, to foods or stainless steel 
surfaces and from stainless steel surfaces (Mbithi et al., 1992; Bidawid et 
al., 2000a). The virus has been shown to attach to many of the surfaces 
common in food preparation settings, i.e. stainless steel, copper, polythene 
and polyvinyl chloride (Kukavica-Ibrulj et al., 2004) and to survive for 
more than 60 d on aluminium, china, latex and paper surfaces (Abad et al., 
1994). 
 The most effective prevention of hepatitis A virus transmission is to prevent 
faecal contamination of foods and food preparation surfaces (see Section 
25.5.1). In addition, there are some physical and chemical procedures known 
to effectively eliminate the hepatitis A virus from contaminated foods and 
surfaces (Tables 25.3 and 25.4)
 The hepatitis A virus is resistant to acid treatment, both in buffered solutions 
and in food products (Scholz et al., 1989; Hewitt and Greening, 2004). 
Heating is an effective mode of viral inactivation, but higher temperatures 
than those generally used to reduce bacterial counts are required (Parry and 
Mortimer, 1984). Protection of the virus is also conferred by food matrices, 
and longer times and/or higher temperatures are required to completely 
inactivate the virus (Croci et al., 1999; Bidawid et al., 2000d; Deboosere et 
al., 2004). For example, increasing the fat content (Bidawid et al., 2000d) 
or the sucrose concentration (Deboosere et al., 2004) of food preparations 
has been shown to increase the heat resistance of the virus. This may be 
due to a general effect of decreasing the water activity, but this possibility 
has not been systematically addressed. The result is that many traditional 
heat-inactivation or cooking protocols, such as pasteurization, steaming or 
baking, are insufficient to ensure the safety of hepatitis A-contaminated foods 
(Bidawid et al., 2000d; Croci et al., 2005; Hewitt and Greening, 2006). 
 Heating to 85 °C is not possible for fresh fruits and vegetables, and even 
for milk and shellfish the procedures required may render foods unpalatable. 
Surface decontamination may be possible using targeted applications. 
Alternative physical inactivation methods show some promise for the 
inactivation of hepatitis A in food products. The virus is sensitive to UV 
light, but the light must access viral particles to inactivate them, which makes 
the technique difficult to apply to most food products (Nuanualsuwan et al., 
2002). High hydrostatic pressure is a newer technique that has the potential 
to inactivate the hepatitis A virus in food products while maintaining the 
organoleptic properties of raw products, particularly shellfish. The technique 
shows promise for the inactivation of hepatitis A virus in buffer, oysters, 
strawberries and green onions, although high pressure may reduce the 
palatability of fresh fruits and vegetables (Kingsley et al., 2002, 2005; Calci 
et al., 2005). 
 Chemical methods are frequently used to eliminate virus dried on hands or 
on surfaces. The hepatitis A virus is more resistant to chemical disinfection than 
many enteric bacteria and enveloped viruses. Many commercially-available 
disinfectants are not effective when used on hepatitis A virus-contaminated 
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Table 25.3   Physical inactivation of enteric viruses discussed in this chapter

Virus Matrix Treatment Time Log  Conclusion Reference 
    reduction

Hepatitis A virus Buffer  pH 1.0 (RTa) 5 h 5 Acid stable Scholz et al., 1989
 Mussels pH 3.75 (4 °C) 4 wk None Acid stable Hewitt and Greening, 2004
 Buffer (pH 7.4) 75 °C 30 s 5 Inactivated by high heat Parry and Mortimer, 1984
 Milk 75 °C 7 min 5 Protected by matrix Bidawid et al., 2000d
 Mussels 80 °C 15 min 5 Protected by matrix Croci et al., 1999
 Strawberry mash 85 °C 10 min 5 Protected by matrix Deboosere et al., 2004
 Buffer (pH 7.4) 36.5 mW/cm2 UV 1 s 1 UV sensitive Nuanualsuwan et al., 2002
  light (RT)
 Strawberries 3 kGy gamma N/A 1 Higher dose than  Bidawid et al., 2000b
  irradiation (RT)   regulators allow
 Buffer (pH 7.4) 450 MPa (RT) 5 min 7 Pressure-sensitive Kingsley et al., 2002
 Oysters 400 MPa (9 °C) 1 min 3 Potential for use in matrix Calci et al., 2005
 Strawberry puree 375 MPa (RT) 5 min 4 Potential for use in matrix Kingsley et al., 2005
 Green onions 375 MPa (RT) 5 min 5 Potential for use in matrix Kingsley et al., 2005

Hepatitis E virus Buffer (pH 7.4) 56 °C 60 min 2 Moderately heat-resistant Emerson et al., 2005
 Liver 56 °C 60 min Incompleteb Moderately heat-resistant Feagins et al., 2008
 Liver 71 °C 5 min Completeb Moderately heat-resistant Zafrullah et al., 2004

Poliovirus Buffer  pH 1.0 (RT) 1 min 4 Unstable Scholz et al., 1989
 Buffer pH 3.0 (RT) 30 min 0 Moderately acid stable Eubanks and Farrah, 1981
 Buffer (pH 7.4) 50 °C 2 min 4 Heat-sensitive McGregor and Mayor, 1971
 Septage 55 °C 15 min 5 Heat-sensitive Stramer and Cliver, 1984
 Milk 72 °C 15 s <4 Resistant to some  Strazynski et al., 2002
     pasteurization
 Yoghurt 72 °C 15 s <4 Resistant to some  Strazynski et al., 2002
     pasteurization
 Buffer (pH 7.4) 24 mW/cm2 UV 1 s 0.5–1 UV sensitive Ma et al., 1994;
  light (RT)    Nuanualsuwan et al., 2002
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Avian Influenza Buffer  pH 2.0 (RT) 5 min 5 Acid labile Lu et al., 2003a
virus Buffer pH 5.0 (RT) 15 min 0 Stable Lu et al., 2003a
 Buffer (pH 7.4) 63 °C 2 min 5 Heat-sensitive Isbarn et al., 2007
 Whole egg 63 °C 2 min 5 Heat-sensitive Swayne and Beck, 2004
 Dried egg white 63 °C 1 d 5 Protected by matrix Swayne and Beck, 2004
 Chicken meat 70 °C 2 s 5 Heat-sensitive Thomas and Swayne, 2007
 Buffer (pH 7.4) 500 MPa (15 °C) 15 s 5 Pressure-sensitive Isbarn et al., 2007

SARS  Buffer (pH 7.4) 56 °C 30 min 6 Heat-sensitive Duan et al., 2003;
coronavirus      Rabenau et al., 2005a
 Buffer (pH 7.4) +  56 °C 30 min 2 Protein protects virus Rabenau et al., 2005a
 20 % fetal calf serum 
 Buffer (pH 7.4) +   60 °C 30 min 6 Heat-sensitive Rabenau et al., 2005a
 20 % fetal calf serum
 Buffer (pH 7.4) 90 mW/cm2 UV 60 min 6 UV-sensitive Duan et al., 2003
  light (RT)
a Room temperature.
b Initial titre of virus stock not available.

Table 25.3   (Cont’d)

Virus Matrix Treatment Time Log  Conclusion Reference 
    reduction
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Table 25.4   Chemical disinfection/inactivation of enteric viruses discussed in this chapter

Virus Active compound Contact time Log reduction Conclusion Reference

Hepatitis A virus Quaternary ammonium 5 min < 2 Not effective Mbithi et al., 1990 
     (0.1–2.7 %); Jean et al., 
     2003 (10 %)
 Glutaraldehyde 1 min > 4 Effective Mbithi et al., 1990 (2 %)
 Sodium hydroxide 1 min 1 Not effective Terpstra et al., 2007 (0.1 N)
 Ethanol 1–5 min < 1 Not effective Abad et al., 1997a (70 %);
     Mbithi et al., 1990 (70 %);
     Bidawid et al., 2000a (75 %),
     van Engelenburg et al., 2002 (80 %)
 Iodide 1–5 min < 1  Not effective Mbithi et al., 1990
     (0.07 %, 75 ppm);
     Jean et al., 2003 (2  %)
 Phenol 1 min 1–2 Not effective Mbithi et al., 1990 (0.1 %),
     Abad et al., 1997a (1.41 %)
 Sodium hypochlorite 1 min < 1–5  5000 ppm free chlorine Grabow et al., 1983 (0.4 mg/l);
    and full 1 minute contact  Abad et al., 1997a (0.125 %);
    time are essential Jean et al., 2003 (12 %);
     Terpstra et al., 2007 
     (0.1 %, 1000 ppm); Mbithi et al.,
     1990 (5000 ppm)
 Sodium chlorite 1 min < 1–3 Time and concentration Mbithi et al., 1990 (0.23 %);
    dependent, not as effective  Abad et al., 1997a (30 %)
    as sodium hypochlorite
 Hypochlorous acid 1 min < 1 Not effective Bigliardi and Sansebastiano, 
     2006 (1.6 mg/l)

Hepatitis E virus Sodium hypochlorite 30 min Incomplete 0.6 ppm free chlorine  Guthmann et al., 2006 (0.6 mg/l)
    residual in drinking water 
    is not effective
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Poliovirus Quaternary ammonium 30 s  Effective Weber et al., 1999 (0.06 %)
 Glutaraldehyde 3 h 5 Effective Stramer and Cliver, 1984 (1 mg/ml)
 Ethanol 1–2 min 1–4 Moderately effective Kramer et al., 2006 (70 %);
     Mbithi et al., 1993 (62 %);
     Abad et al., 1997a (70 %)
 Phenol 1 min <1 Not effective Weber et al., 1999 (0.06 %);
     Abad et al., 1997a (1.41 %)
 Sodium hypochlorite 1 min 4 Effective Weber et al., 1999 (5000 ppm);
     Ma et al., 1994 (0.5 mg/l);
     Lukasik et al., 2003 (300 ppm);
     Abad et al., 1997a (0.12 %)
 Sodium chlorite 1 min < 1 Not effective Abad et al., 1997a (30 %)
 Hypochlorous acid 1 min < 1 Not effective Bigliardi and Sansebastiano, 
     2006 (1.6 mg/l)

Avian Influenza  Quaternary ammonium 1 min 5 Effective Suarez et al., 2003 (0.06 %)
virus Formaldehyde 1 min 5 Effective King, 1991 (0.04 %)
 Ethanol 15 min 5 Effective  Lu et al., 2003a (70 %)
 Phenol 1 min 5 Effective Suarez et al., 2003 (0.06 %)
 Sodium hypochlorite 1 min 5 Effective Suarez et al., 2003 (0.4 %)

SARS coronavirus Ethanol 15 s 4 Effective Rabenau et al., 2005a (2 %);
     Rabenau et al., 2005b (2 %)
 Benzalkonium chloride 30 min 4 Effective Rabenau et al., 2005b (0.5 %);
 Glutaraldehyde 15 min 4 Effective Rabenau et al., 2005a (0.5 %);
     Rabenau et al., 2005b (0.5 %)

Table 25.4   (Cont’d)

Virus Active compound Contact time Log reduction Conclusion Reference
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surfaces (see Table 25.4) (Mbithi et al., 1990; Abad et al., 1997a; Bidawid 
et al., 2000a; van Engelenburg et al., 2002; Jean et al., 2003; Bigliardi 
and Sansebastiano, 2006; Terpstra et al., 2007). Notably, the active ethanol 
component of many commercial hand disinfectants has a very limited 
ability to reduce infectious hepatitis A virus titre from contaminated hands 
or surfaces (Mbithi et al., 1990; Bidawid et al., 2000a). The most effective 
disinfectants are 2 % glutaraldehyde and 10 % sodium hypochlorite (5000 
ppm free chlorine) (Grabow et al., 1983; Mbithi et al., 1990; Abad et al., 
1997a; Jean et al., 2003). Care must always be taken to follow appropriate 
time/concentration combinations for effective disinfection. 

25.3.2   Hepatitis E virus
The hepatitis E virus is considered to be an endemic human pathogen 
in Central America, North Africa and South Asia (Panda et al., 2007). It 
causes epidemic outbreaks of acute, enterically transmitted hepatitis in 
these countries, usually associated with faecally-contaminated water (Rab et  
al., 1997; Guthmann et al., 2006; Panda et al., 2007). Such outbreaks have 
been particularly associated with the Indian subcontinent, although this 
may reflect a reporting bias rather than the true level of incidence (Panda 
et al., 2007). 
 During these classical outbreaks in endemic countries, person-to-person 
transmission does not contribute greatly to the number of cases (Hla et al., 
1985; Somani et al., 2003). The viral genome has been detected in raw and 
treated sewage, and outbreaks have been associated with chlorinated water 
supplies, indicating that basic treatment designed to eliminate faecal coliforms 
may not be sufficient to inactivate the hepatitis E virus (Jothikumar et al., 
1993; Guthmann et al., 2006). Sporadic cases of hepatitis E infection also 
occur in endemic countries and are likely contribute to the spread of the 
virus in the population (Nanda et al., 1994). 
 In Western Europe, North America, Japan and Australia, the hepatitis E 
virus is an emerging concern (Teo, 2006). Hepatitis E infections in these 
countries have historically been associated with travel to endemic regions 
(Zaaijer et al., 1993; Skidmore and Sherratt, 1996). Recently, however, there 
have been reports of locally-acquired cases in developed countries, but the 
source of these infections remains uncertain (Mansuy et al., 2004; Ijaz et al., 
2005; Waar et al., 2005; Reuter et al., 2006; Dalton et al., 2007; Perez-Gracia 
et al., 2007; Peron et al., 2007). In two cases, the disease has been linked to 
the consumption of raw or undercooked meat from animals naturally infected 
with hepatitis E (Matsuda et al., 2003; Tei et al., 2003). This has led to the 
hypothesis that the hepatitis E virus is an emerging foodborne zoonosis in 
developed nations (Teo, 2006).
 The hepatitis E virus is known to infect a wide range of animal species 
(Goens and Perdue, 2004; Vasickova et al., 2007). Most of the studies and 
evidence for zoonotic transmission to humans have focused on strains isolated 
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from swine (Goens and Perdue, 2004). Studies have shown that these strains 
are very closely related to the human viruses and that they productively infect 
primates (Meng et al., 1997, 1998). Phylogenetic analysis indicates that swine 
viruses are more closely related to their human counterparts within a country 
than to other swine isolates around the world (Meng et al., 1997; Hsieh et 
al., 1999; van der Poel et al., 2001; Pei and Yoo, 2002; Nishizawa et al., 
2003; Banks et al., 2004). Zoonotic transmission of this virus to the human 
population has been postulated to occur through the consumption of raw or 
lightly cooked meat from a naturally infected animal (Teo, 2006; Vasickova 
et al., 2007). The evidence for this is strong in a few cases in Japan, but 
weak elsewhere (Matsuda et al., 2003; Tei et al., 2003). However, infectious 
hepatitis E virus and/or viral RNA has been isolated from commercial pig 
livers in the USA, the Netherlands and Japan, indicating that this is a possible 
transmission route (Yazaki et al., 2003; Bouwknegt et al., 2007; Feagins et 
al., 2007). 
 Testing the physical and chemical stability of the hepatitis E virus is 
challenging due to the lack of a cell culture system to propagate the virus. As 
such, the pH stability of this virus has yet to be formally demonstrated. The 
capsid protein acquires an increased heat stability at low pH, and the virus 
is known to infect via the gastrointestinal tract, implying some resistance 
to acidic conditions (Zafrullah et al., 2004). The virus resists inactivation 
by heating at 56 °C, but heating to 71 °C completely inactivated the virus 
in naturally-contaminated pig livers (Emerson et al., 2005; Feagins et al., 
2008). Other physical and chemical methods of inactivation have not been 
tested, although an outbreak linked to chlorinated drinking water indicates 
that free chlorine residuals known to reduce fecal coliforms are not sufficient 
to inactivate the hepatitis E virus (Guthmann et al., 2006). 

25.3.3   Poliovirus
The poliovirus is no longer a prevalent enteric pathogen around the world. The 
widespread use of the oral polio vaccine, which confers intestinal immunity, 
has led to the eradication of the virus from three of the six regions of the 
world as defined by the WHO (Sabin, 1991; Lahariya, 2007). These three 
regions are: the Americas, representing 35 countries, polio-free since 1994; 
the Western Pacific, representing 37 countries and territories, polio-free since 
2000; and the European, representing 51 countries, polio-free since 2002 
(CDC, 1994, 2001, 2002). The disease is still endemic in Afganistan, India, 
Nigeria and Pakistan (Lahariya, 2007). In recent years, there have also been 
other countries within the WHO regions of Africa, South-East Asia and the 
Eastern Mediterranean that have experienced outbreaks of poliomyelitis 
caused by both wild and vaccine-derived strains (Melnick, 1996; Chumakov 
et al., 2007). Due to the prevalence of asymptomatic disease, the absence of 
poliomyelitis does not always correlate with the absence of the poliovirus, 
and intensive vaccination campaigns are still warranted (Chumakov et al., 
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2007). Individuals in polio-free countries still routinely follow a course of 
vaccination with the killed vaccine (Wood et al., 2000, 2006). 
 Similarly to the hepatitis A virus, the poliovirus can be introduced at 
any stage in the farm-to-fork continuum. The virus has a low infectious 
dose (Plotkin et al., 1959) and is frequently isolated from sewage during 
outbreaks and in endemic countries (Arya and Agarwal, 2007). Once again, 
shellfish, fresh produce and food handlers are the most significant sources 
of foodborne virus transmission. 
 Poliovirus accumulates readily in shellfish and concentrates in the digestive 
tract (Di Girolamo et al., 1975). Depuration of poliovirus is more effective 
than for hepatitis A, and most of the virus can be eliminated in free-flow 
depuration system after 5 d (Di Girolamo et al., 1975; Franco et al., 1990; 
Enriquez et al., 1992). 
 The stability and accumulation of poliovirus is of significant concern in 
agricultural systems. The poliovirus is inactivated more readily than the 
hepatitis A virus by heating and storage treatments used to prepare manure 
for spreading on lands (Stramer and Cliver, 1984; Deng and Cliver, 1992). 
However, once the environment is contaminated, the poliovirus survives for 
weeks to months in groundwater (Yates et al., 1985; Gordon and Toze, 2003) 
and in soil (Yeager and O’Brien, 1979; Hurst et al., 1980). This virus has 
also been shown to persist for weeks to months on vegetables irrigated by 
spraying or flooding with contaminated waters (Tierney et al., 1977). It has 
also been demonstrated to survive for weeks to months on fresh and frozen 
produce, and simple washing does not appear to effectively eliminate poliovirus 
from food surfaces (Kurdziel et al., 2001; Lukasik et al., 2003).
 Poliovirus is moderately acid stable, resistant to incubation at pH 3.0 for 
30 min, but sensitive to pH 1.0 (Eubanks and Farrah, 1981; Siegl et al., 1984; 
Scholz et al., 1989). Heating is extremely effective for the inactivation of 
poliovirus in buffered solutions, although food matrices may provide some 
protection and require longer heating times (see Table 25.3) (McGregor 
and Mayor, 1971; Milo, 1971; Stramer and Cliver, 1984; Strazynski et al., 
2002). This may be due to protection provided by protein, fat, lowered aw 
or a combination of these parameters. Both UV light and ozone are effective 
in elimination of the poliovirus, and have been considered for the treatment 
of wastewater to be used in irrigation (Ma et al., 1994; Nuanualsuwan et 
al., 2002; Lazarova and Savoys, 2004; Tanner et al., 2004). 
 Food handlers with inadequate hygiene are frequently implicated in the 
transmission of viruses via the fecal–oral route. The virus can be transferred 
from contaminated hands to surfaces, where it resists drying and can persist 
for days to weeks (Mbithi et al., 1993; Abad et al., 2001). In a food service 
environment, there are a number of chemicals available to disinfect hands and 
surfaces potentially contaminated with the poliovirus (Table 25.4). Reagents 
that implement quaternary ammoniums, glutaraldehyde or sodium hypochlorite 
as the active ingredient are effective against poliovirus on surfaces (Stramer 
and Cliver, 1984; Ma et al., 1994; Abad et al., 1997a; Weber et al., 1999; 
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Lukasik et al., 2003). The poliovirus is removed by soap and water hand-
washing for 5 min, but ethanol-based hand disinfectants (60–70 % ethanol) 
are only moderately effective against the virus (Schurmann and Eggers, 
1985; Mbithi et al., 1993; Kramer et al., 2006). 

25.3.4   Avian Influenza virus
The WHO coordinates a Global Influenza Surveillance Network, with 119 
National Influenza Centres in 90 countries (WHO, 2007). These centres 
monitor the incidence of influenza, identify circulating strains and constantly 
update the risk for the emergence of a pandemic strain (Stohr, 2003). The 
highly pathogenic H5N1 influenza virus of recent public health significance 
has caused a limited number of human infections worldwide, but has been 
circulating in poultry since 2003 with no signs of abating (ECDC, 2007). 
These natural infections continue to pose a potential risk to humans who 
interact with infected flocks or who consume raw or undercooked poultry 
products (Swayne, 2006b). 
 All influenza viruses are predominantly spread via aerosolized droplets that 
enter the respiratory tract of a susceptible host. Experimental models have 
shown that this transmission is most efficient at low temperatures and low 
relative humidity, in correlation with the winter seasonal peaks in influenza 
infections (Lowen et al., 2007). The virus can persist for days when exposed 
to levels of solar radiation predicted for wintertime in temperate regions 
(Sagripanti and Lytle, 2007). The H5 strains have been shown to persist for 
weeks or months in water (Brown et al., 2007). Although the influenza virus 
is enveloped, it resists drying to some extent and exhibits a 1 log reduction 
in 24 h on stainless steel surfaces (Noyce et al., 2007). 
 There is also a risk that the avian influenza viruses will spread through 
contaminated food products. Natural infections in chickens and ducks have 
been demonstrated to produce contaminated meat, blood and bone (Lu et 
al., 2003b; Swayne, 2006a; Thomas and Swayne, 2007). The efficacy of 
physical and chemical inactivation methods has been shown to vary with 
influenza virus type, and not all methods have been tested with the relevant 
H5N1 strain (De Benedictis et al., 2007). Tables 25.3 and 25.4 summarize 
the information available. 
 The influenza viruses have a highly variable response to acid (Scholtissek, 
1985a, b). The viruses are sensitive to heating, in buffer and in poultry products 
(Swayne and Beck, 2004; Swayne, 2006a, Thomas and Swayne, 2007). 
Although the highly pathogenic H5 strains have an increased heat resistance 
compared to low pathogenic avian influenza strains, they are inactivated at 
70 °C, a temperature to which poultry is usually cooked (Swayne and Beck, 
2004; Swayne, 2006a; Thomas and Swayne, 2007). High-pressure treatment 
at 500 MPa has also been shown to be an effective means of inactivating 
the viruses (Isbarn et al., 2007). 
 Influenza viruses are enveloped, which confers susceptibility to many types 
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of disinfectants (De Benedictis et al., 2007). Some of the agents specifically 
tested using avian influenza strains are listed in Table 25.4 (King, 1991; Lu 
et al., 2003a; De Benedictis et al., 2007; Suarez et al., 2003). 

25.4   Detection methods
25.4.1   Overview
Classical virus detection methods involve the inoculation of cell cultures 
to amplify and detect infectious virus particles. These methods are rarely 
applicable to the isolation of foodborne viruses. Many of the important 
viruses do not grow in cell culture and the food extracts that need to be 
tested may be toxic to the cells. For example, although a model system exists 
for the study of inactivation kinetics, wild-type isolates of the hepatitis A 
virus grow very slowly, if at all, in culture and accumulate many mutations 
during this process (Cromeans et al., 1987; Konduru and Kaplan, 2006). 
A recently developed hepatitis E culture system takes 60 d to amplify the 
virus to high levels (Tanaka et al., 2007). Alternative methods that rely on 
detection of the viral particle, such as electron microscopy and enzyme-linked 
immunosorbent assays, typically have detection limits on the order of 105 
particles per gram of sample, while the infectious dose for foodborne viral 
infections has been estimated to be as few as 10–100 particles (Fiore, 2004; 
Koopmans and Duizer, 2004). 
 The advent of molecular methods for the detection of viral genomes has 
provided the increased detection sensitivity required to allow for a more 
accurate assessment of the viral contamination of food products (Sanchez 
et al., 2007). Although these methods do not distinguish between infectious 
and non-infectious particles, their advantages are so great that they are now 
used for the detection of all viruses in many food virology laboratories 
(Jothikumar et al., 2006; Sanchez et al., 2007). Molecular techniques also 
have the advantage that they provide information on the genotype of the 
strains involved in outbreaks (Nainan et al., 2006). This information can be 
useful in establishing an epidemiological link between cases of foodborne 
illness (Hutin et al., 1999). Microarrays are also being developed that could 
provide genotyping without the need for sequencing amplicons (Pagotto 
et al., 2008). The procedures outlined in the following sections describe 
viral extraction methods that are specific to different food types. In most 
cases, the extracted virus can be subsequently detected by a conventional, 
immunological or molecular method, as desired.

25.4.2   Detection of viruses in shellfish
Methods to extract viruses from shellfish have been extensively studied. Most 
methods begin by homogenizing the shellfish tissue prior to viral extraction 
(Sanchez et al., 2007). Changing pH can be used to concentrate enteroviruses 
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from oysters (Sobsey et al., 1975). At low pH, virus adsorbs to shellfish 
tissue and can be concentrated by centrifugation. At high pH, the virus is 
eluted from the tissue. Ultrafiltration or ultracentrifugation are then able to 
concentrate the viral particles in solution. The main disadvantage of this type 
of system is that many contaminants remain in solution with the extracted 
virus and may interfere with downstream detection by either cell culture 
or molecular methods (Speirs et al., 1987). Additional concentration steps 
using organic flocculation or polyethylene glycol precipitation can improve 
the detection efficiency (Traore et al., 1998). Extremely sensitive detection 
is obtained by lysing the viral particles with a phenol-guanidinium chloride 
reagent and purifying the genome using magnetic poly(dT) beads (Kingsley 
and Richards, 2001). This method has been standardized and published in the 
Health Canada Compendium of Analytical Methods for the microbiological 
analysis of potentially contaminated shellfish (Trottier et al., 2006). 

25.4.3   Detection of viruses in other foods
The development of procedures to isolate viruses from non-shellfish food 
samples has been more recent. Methods for viral isolation from fruits 
and vegetables employ washes or elution from the food surface, because 
homogenization releases many inhibitors of molecular reactions (Sanchez 
et al., 2007). Methods have been developed mainly for leafy greens, green 
onions and berries using a variety of concentration procedures (Bidawid et 
al., 2000c; Shan et al., 2005; Guevremont et al., 2006; Rzezutka et al., 2006; 
Butot et al., 2007; Papafragkou et al., 2008). Polyethylene glycol precipitation 
(Guevremont et al., 2006), immunomagnetic concentration (Bidawid et al., 
2000c; Shan et al., 2005), charge-based concentration (Bidawid et al., 2000c; 
Papafragkou et al., 2008), ultracentrifugation (Rzezutka et al., 2006) and 
ultrafiltration (Butot et al., 2007) have all been reported to be useful for the 
isolation of virus particles from fruits and vegetables. For example, positively 
charged beads circulated and captured using the Pathatrix™ machinery yield 
detection limits below one plaque forming unit of the hepatitis A virus in 
some artificially-inoculated samples (Papafragkou et al., 2008). In most 
cases, the choice of the method used is based on the reagents available to 
the testing laboratory, and the use of internal controls is not consistent. This 
is a concern because of the potential release of inhibitory compounds and 
should be addressed in future studies (Sanchez et al., 2007).

25.4.4   Detection of viruses in drinking water
The detection of viruses in drinking water has traditionally involved 
concentration from large volumes of water using charged filters (Hill et al., 
1976). These methods used conventional cell culture methods to detect virus, 
and were thus hampered by a lack of sensitivity as well as the inability to 
detect non-culturable viruses. The advent of molecular methods has reduced 
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the time and cost required for detecting viruses from water samples (Pillai, 
1997). These new methods have successfully been used to detect viral 
genomes or genome fragments in many types of raw and treated water samples 
(Kittigul et al., 2000; Albinana-Gimenez et al., 2006). It has, however, been 
demonstrated that viral genome fragments (non-viable) are detected after 
wastewater treatment protocols that eliminate infectious virus (Simonet and 
Gantzer, 2006). This raises concerns that the presence of genome fragments 
from enterically infecting viruses may not accurately predict the level of 
infectious virus in water samples. 

25.5   Control issues
25.5.1   Hepatitis A virus
The sources of hepatitis A in the food supply are highly variable. The long 
incubation period before infection is clinically apparent and the high rate 
of person-to-person transmission during hepatitis A outbreaks makes point 
sources difficult to identify (Nainan et al., 2005; Fiore et al., 2006). The high 
proportion of asymptomatic infections in children under the age of five years 
generates another source of uncertainty in epidemiological investigations 
(Staes et al., 2000). The accurate identification of disease transmission routes 
is a significant barrier to the implementation of effective control strategies to 
prevent hepatitis A virus transmission. The use of molecular detection and 
genotyping methods is one way to increase the odds of identifying linked 
cases of hepatitis A infection (see Section 25.4.1). 
 Due to the high degree of uncertainty in hepatitis A virus transmission, 
vaccination is one potential strategy for the control of infection (AAPCID, 
2007). There is a safe and effective vaccine, and it is currently recommended 
for use in travellers to and residents of areas of high endemicity (AAPCID, 
2007; CDC, 2007). Universal vaccination would be expensive, and has an 
unattractively high cost/benefit ratio when the healthy adult population of 
the developed world is the intended target (Anonychuk et al., 2008). The use 
of sanitary measures to eliminate fecal contamination of foodstuffs should 
effectively limit foodborne hepatitis A outbreaks. 
 Pre-harvest control strategies are attractive because, when properly 
implemented, they minimize the need for downstream interventions. The most 
effective approach to prevent shellfish contamination is to prevent human 
sewage from entering shellfish growing waters. This sounds straightforward, 
but its enforcement can be difficult, particularly in remote areas with both 
commercial and recreational boat traffic. Imposing monetary penalties for 
waste dumping, mandating the use of waste containers that cannot easily be 
dumped overboard, and developing education outreach programs are three 
strategies with the potential to limit hepatitis A contamination of shellfish 
(Papafragkou et al., 2006). If waters are contaminated, depuration can be 
used to reduce the levels of hepatitis A virus in shellfish prior to harvest, 
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but viruses in shellfish tissue are purged more slowly than bacteria, and the 
hepatitis A virus in particular is not as readily depurated as other viruses 
(Richards, 2001; Chironna et al., 2002). Unfortunately, current routine testing 
procedures do not look for viral contaminants in growing waters, and it 
has been repeatedly shown that the traditional bacterial indicators are not 
indicative of hepatitis A virus contamination (Croci et al., 2000; Muniain-
Mujika et al., 2003; Pusch et al., 2005; Phanuwan et al., 2006; Villar et al., 
2007). 
 For the pre-harvest control of produce contamination, it is important to 
prevent human waste contamination of irrigation water. Although treatment 
regimens are available to allow the reuse of wastewater for irrigation, they 
are not necessarily effective against the hepatitis A virus (Gantzer et al., 1998; 
Skraber et al., 2007). Further research is necessary into the effectiveness 
of various water treatment protocols to determine if they are appropriate 
for the control of hepatitis A virus contamination. Produce is also sensitive 
to contamination introduced by human handling during harvest. Control 
procedures at this stage should include provision of toilet and hand-washing 
facilities, education on hygienic practices, reporting of active illnesses 
and provision of childcare so that young children, a prominent source of 
asymptomatic hepatitis A infections, are not present in the fields (Fiore, 
2004; Koopmans and Duizer, 2004). 
 After harvest, the physical and chemical decontamination methods discussed 
in detail in Section 25.3.1 can be used to eliminate the hepatitis A virus 
from contaminated foods and/or processing areas. These are more stringent 
procedures than those necessary to reduce most bacterial contamination, 
and must be implemented properly in order to be effective. Cooking will 
inactivate the hepatitis A virus, but the entire product must reach 85 °C to 
ensure viral reduction (Parry and Mortimer, 1984). This is not suitable for 
fresh produce, and new technology must be developed to inactivate the virus 
in these products. Categories of food matrices must be individually tested to 
develop protocols that adequately reduce hepatitis A titre (Croci et al., 1999; 
Bidawid et al., 2000d; Deboosere et al., 2004). The use of UV light and high 
hydrostatic pressure are promising, but their effectiveness must be further 
investigated before they will be useful for routine decontamination procedures 
(Nuanualsuwan et al., 2002; Kingsley et al., 2006). Gamma irradiation is 
somewhat effective at reducing hepatitis A titre on lettuce and strawberries, 
but the dose for a 1 log reduction is approximately 3 kGy (Bidawid et al., 
2000b), while current regulations in the USA only allow doses up to 1 kGy 
for fresh foods (CFSAN, 2007). 
 Food handlers are another source of hepatitis A virus infections (Fiore, 
2004; Greig et al., 2007; Todd et al., 2007a, b). Contamination may be 
introduced during the final preparation stages for ready-to-eat foods (Greig 
et al., 2007; Todd et al., 2007a, b). The hepatitis A virus is excreted for up to 
two weeks prior to the development of symptoms (Fiore, 2004). It is therefore 
important to stress proper hygiene and hand-washing practices for all food 
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service workers. Proper hand-washing with soap and water has been shown 
to be more effective at removing hepatitis A virus from hands than ethanol-
based hand rubs (Mbithi et al., 1993; Bidawid et al., 2000a). Educational 
programs for food service workers must be designed with care to ensure the 
correct message is communicated. For example, gloved hands are frequently 
viewed as safer for food handling than bare skin, but care must still be taken 
to avoid cross-contamination of foods or surfaces. Preliminary data from our 
laboratory indicates that contaminated gloves spread virus very effectively 
(Bidawid et al., 2007). Effective surface decontamination can also be used 
to interrupt hepatitis A virus transmission in food service settings, but as 
described in Section 25.3.1, not all commercial disinfectants are effective 
against the hepatitis A virus (Mbithi et al., 1990; Abad et al., 1997a; Bidawid 
et al., 2000a; van Engelenburg et al., 2002; Jean et al., 2003; Bigliardi and 
Sansebastiano, 2006; Terpstra et al., 2007). For effective disinfectants, such 
as sodium hypochlorite, concentration and contact time must be followed 
precisely to effectively inactivate the virus on a contaminated surface (Grabow 
et al., 1983; Mbithi et al., 1990; Abad et al., 1997a; Jean et al., 2003). 

25.5.2   Hepatitis E virus
The control of hepatitis E infections in developing countries can be achieved 
by improving the availability of clean drinking water. This is linked to the 
availability of adequate hygienic facilities and improved hygienic practices. 
There is no vaccine available against hepatitis E, and the administration of 
pooled immunoglobulin from endemic areas does not appear to be protective 
(Khuroo and Dar, 1992; Panda et al., 2007). Since it has been shown that 
the virus can survive the levels of chlorination currently recommended by 
the WHO, research into the physical and chemical inactivation of hepatitis 
E is urgently required to provide protocols that ensure the disinfection of 
contaminated water supplies (Guthmann et al., 2006). Experimental studies in 
pig livers and epidemiological evidence indicate that boiling water is sufficient 
to inactivate the virus (Velazquez et al., 1990; Feagins et al., 2008). 
 As an emerging foodborne zoonotic agent, there is little information 
available about control measures that will prevent the spread of hepatitis 
E infection. The infection is endemic in many swine populations that have 
been examined, but does not cause overt disease. As a result, there is no 
incentive for control measures to improve animal health (Goens and Perdue, 
2004). If the link between infected animals and transmission to humans 
can be established outside of Japan, this might provide a rationale for the 
development of animal-specific prevention strategies. At this time, however, 
the most effective control measure against infection is thorough cooking of 
meats and organ meats prior to consumption (Feagins et al., 2008). Because 
of the low rates of person-to-person transmission in documented outbreaks, 
transmission via food handlers and ready-to-eat foods is not expected to be 
a major source of infection (Hla et al., 1985; Somani et al., 2003). 
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25.5.3   Poliovirus
Control measures against poliovirus involve vaccination programs and the 
global eradication initiative (Arya and Agarwal, 2007; Chumakov et al., 
2007). The virus does not have a non-human host, and it cannot circulate 
if the human population has a high level of mucosal immunity to infection 
(Melnick, 1996). Unfortunately, in addition to the four remaining endemic 
countries, 21 countries have experienced a resurgence or importation of 
poliomyelitis in recent years (Lahariya, 2007). This is due to the high 
prevalence of asymptomatic infections, as well as to vaccine-derived strains 
causing disease in communities (Chumakov et al., 2007; Lahariya, 2007).
 Fortunately, some relatively straightforward measures can be implemented 
to ensure that the poliovirus, if circulating, does not enter the food supply. 
Pasteurization of milk products has been shown historically to disrupt poliovirus 
transmission (Sattar et al., 2001). Similar time/temperature combinations  
(72 °C, 30 s) can be used to inactivate the virus in other potentially contaminated 
liquids (Strazynski et al., 2002). Depuration of shellfish greatly reduces the 
risk of poliovirus transmission by this route, and proper hand-washing by 
food handlers interrupts the chain of transmission during final preparation 
of foods (Schurmann and Eggers, 1985; Franco et al., 1990; Enriquez et 
al., 1992). It should be noted that for all of these measures, the conditions 
required to eliminate polio are less stringent than those required for the 
inactivation of hepatitis A (Table 25.3). 
 The presence of the poliovirus in wastewater remains the most important 
means of transmission in endemic countries, and effective methods exist to 
remove polio from sewage (Pavlov, 2006; Arraj et al., 2005; Belguith et al., 
2007; Dedepsidis et al., 2007). New methods under development, such as ozone 
and UV light, are able to decontaminate poliovirus-contaminated wastewater 
(Lazarova and Savoys, 2004; Tanner et al., 2004). The required focus on 
sewage treatment and clean water in the developing world is reminiscent of 
control measures to prevent the spread of many bacterial illnesses (Berry et 
al., 2006). The integration of clean water programs aimed at reducing the 
burden of bacterial and viral illness can only serve to increase the likelihood 
that these programs will see some successes in limiting the spread of enteric 
disease. 

25.5.4   Avian Influenza virus
Current strategies to mitigate the human health risks associated with the 
H5N1 avian influenza virus are mainly focused on preventing the disease 
from spreading in the animal population (Rajagopal and Treanor, 2007). The 
elimination of H5N1 infections in birds would of course remove the risk 
to humans. Unfortunately, H5N1 infections in birds have become endemic 
in many countries (ECDC, 2007, Rajagopal and Treanor, 2007). Therefore, 
accurate monitoring and understanding the circulation of the virus in wild 
and domestic birds is critical to the success of control programs (Olsen et 
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al., 2006). All H5 or H7 type avian influenza infections are notifiable to the 
World Organization for Animal Health (OIE, 2007). Early detection of the 
H5N1 infection in a local poultry population is a key step in preventing the 
disease from becoming widespread (Sims, 2007). 
 A vaccine is available against the H5 and H7 avian influenza virus sub-
types, and its use in the poultry population is one way to control the spread 
of emerging highly pathogenic viruses (Capua and Marangon, 2007). It is 
not possible to vaccinate all birds in areas where these viruses are endemic, 
and additional measures must be in place to prevent the spread of disease 
(Guan et al., 2007; Sims, 2007). A combination of surveillance, vaccination, 
culling of infected birds and segregation of wild and domestic poultry is 
recommended to control the spread of emerging epidemic avian influenza 
strains (Guan et al., 2007).
 Control measures to prevent transmission of avian influenza through the 
food supply are more straightforward. All of the strains and sub-types of 
influenza are more susceptible to heating and to chemical disinfection than 
the other foodborne viruses described in this chapter (see Tables 25.3 and 
25.4). Thorough cooking of poultry products and basic disinfection of food 
preparation surfaces is sufficient to prevent foodborne transmission of the 
influenza virus (De Benedictis et al., 2007).

25.6   Future trends
Two of the four viruses discussed in detail in this chapter are emerging 
zoonoses (hepatitis E and avian influenza). It is important that public health 
programs continue to monitor these diseases in both animals and humans in 
order to develop accurate risk assessment and prevention planning (Merianos, 
2007). The other two viruses (hepatitis A and polio) cause human illnesses 
that are vaccine-preventable. Calls from experts to continue and expand 
vaccine coverage with the goal of reducing the disease burden from these 
viruses is likely to continue (AAPCID, 2007; Chumakov et al., 2007). 
 In addition to public health measures, the food production and processing 
industries can take action to reduce the spread of viruses through food. 
A recurring point in the above discussion is the remarkable resistance of 
viruses to decontamination procedures. Heating and disinfection protocols 
for viruses and food preparation surfaces are being defined in the literature, 
but they must also be recognized and implemented along the food production 
continuum. In addition, these viruses typically have a very low infectious 
dose (10–100 particles) and they can be excreted at high levels (106–1011 
particles per gram of faeces). Since contamination of food products is 
typically a secondary event, a 5 log reduction in infectious particles has 
been considered effective for control. The recent development of sensitive 
and semi-quantitative detection methods will help to identify the critical 
control points along the food production and preparation continuum where 
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virus contamination can be reduced. Unfortunately, many of these methods 
detect viral genomes instead of infectious virus particles. The regulation of 
viruses in foods will require a more detailed understanding of the correlation 
between the presence of viral nucleic acid fragments and a human health 
risk. 

25.7   Sources of further information and advice
A book dedicated to food virology:
Goyal S M and Doyle M P (2006) Viruses in foods, New York, Springer. 
Comprehensive reviews of the four viruses discussed in detail in this 
chapter:
Abdel-Ghafar A N, Chotpitayasunondh T, Gao Z, Hayden F G, Nguyen D 

H, De Jong M D, Naghdaliyev A, Peiris J S, Shindo N, Soeroso S and 
Uyeki T M (2008) Update on avian influenza A (H5N1) virus infection 
in humans, N Engl J Med, 358, 261–73.

Melnick J L (1996) Current status of poliovirus infections, Clin Microbiol 
Rev, 9, 293–300.

Nainan O V, Armstrong G L, Han X H, Williams I, Bell B P and Margolis 
H S (2005) Hepatitis A molecular epidemiology in the United States, 
1996–1997: sources of infection and implications of vaccination policy, 
J Infect Dis, 191, 957–63.

Vasickova P, Psikal I, Kralik P, Widen F, Hubalek Z and Pavlik I (2007) 
Hepatitis E virus: a review, Vet Medicina, 52, 365–84.
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