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Abstract: Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component
of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular
complex biophysical properties, it stands out from its neighboring lipids as one of the most important
regulators of membrane-associated signaling events. Despite its very low steady-state concentration,
PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and
spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane.
These pools are crucial for the recruitment, activation, and organization of signaling proteins and
consequent regulation of downstream signaling. The present review showcases some of the most
important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane
dynamics, lateral organization, and interactions with other biochemical partners.
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1. Introduction

The plasma membrane is a complex structure tasked with enclosing the cell and separating it
from the surrounding environment. While biomembranes provide structure and define the boundaries
of the cell, their dynamic biochemical and biophysical characteristics also allow them to regulate
traffic and communication to and from the cytosol, organize reaction sequences, and promote cellular
processes. These biophysical properties are defined not only by the intrinsic physical and chemical
properties of the lipids, proteins, and other components but also by their complex set of interactions.
This complexity holds the key to many key cellular processes. A lipid that stands out in the landscape
of the eukaryotic plasma membrane is phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). PI(4,5)P2 is
the most abundant phosphoinositide in mammalian cells and is found primarily in the inner leaflet of
the plasma membrane. It has also been found in endosomes, in the endoplasmic reticulum, and in
the nucleus [1]. While its role as a source of secondary messengers during signaling events is known
for decades [2], evidence has accumulated through time of its importance as an intact phospholipid
for defining plasma membrane identity in eukaryotic cells. Due to its very large headgroup and
multivalent negative charge, PI(4,5)P2 acts almost like an electrostatic beacon, interacting specifically
or non-specifically with several molecular entities such as membrane proteins, other lipids, cellular
cations, etc. As a result of its particular biophysical properties, it is a major regulator of a wide spectrum
of plasma membrane events, including cell adhesion and motility [3,4], ion channel transport [5,6],
vesicle endocytosis [7–11], and exocytosis [8,12–14] (Figure 1).

This wide-ranging reach of PI(4,5)P2 as a critical functional lipid has made it an important
research focus over the last decades in cell biology and more specifically in areas such as neuroscience,
virology, and biophysics. In this review, we will focus on the physical, chemical, and structural
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properties of PI(4,5)P2. The impact of these properties on membrane dynamics and interactions
with PI(4,5)P2 biochemical partners will also be described. We will give particular focus to PI(4,5)P2

conformation dynamics, lateral organization, and the monodisperse PI(4,5)P2–PI(4,5)P2 nanodomain
duality. As mentioned above, PI(4,5)P2 is also found in the nuclear membrane, where it is thought
to contribute to compartmentalization [15,16], as well as on membraneless organelles within the
nucleus [15,16]. However, this review will focus on the behavior and properties of PI(4,5)P2 in the
plasma membrane (PM) and PM mimicking membranes.
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Figure 1. Membrane processes associated with or dependent on phosphatidylinositol 4,5-
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2. The Phosphoinositide Family 

PI(4,5)P2 is a member of the phosphoinositide (PI) lipid family. PIs are a small group of 
glycerophospholipids derived from phosphatidylinositol. These lipids consist of a characteristic 
inositol headgroup, which can undergo reversible phosphorylation and dephosphorylation, leading 
to the formation of seven distinct phosphorylated species. While the parent lipid 
phosphatidylinositol represents roughly 10% of total membrane phospholipids in the eukaryotic cell, 
the phosphorylated derivatives account only for around 2–3% [1], with PI(4)P and PI(4,5)P2 
representing the bulk of these lipids [17]. Each of these seven species has a distinct subcellular 
distribution with predominant localization in subsets of membranes. Additionally, within a given 
membrane the localization of a specific PI can be heterogeneous. Many PIs are overall in low 
abundance in the membrane but they can be found at high local concentrations in membrane domains 
not readily detected by conventional techniques [3,17]. For a historical review on inositol lipids, see 
Irvine (2016) [18]. Over the last couple of decades, PIs have been found to be one of the most 
ubiquitous signaling entities in eukaryotic metabolism. Their reach extends from controlling 
organelle biology to regulating cellular growth. Due to this all-encompassing reach, they have also 
been linked to a number of human diseases. In fact, the inositide signaling pathway is considered a 
promising pharmaceutical target. For an excellent review on the major developments on PI cellular 
biology and their impact on disease, see Balla (2013) [3].  

3. PI(4,5)P2 Structure 

3.1. Headgroup Conformation 

The core PI(4,5)P2 structure descends from its “parent” lipid, phosphatidylinositol. At the core, 
it consists of a myo-inositol headgroup. There are 9 existing isomers of inositol but the myo-inositol 
isomer is the most commonly found in eukaryotic cells. In its most stable conformation, it assumes 
the chair conformation where every hydroxyl substituent is at the equatorial position except for the 
hydroxyl in the position 2 of the ring, which is in an axial position. The myo-inositol moiety is typically 
linked to the diacylglycerol (DAG) backbone via a phosphodiester bond in position 1. This leaves the 
hydroxyl groups in positions 2 to 6 open. However, only positions 3, 4, and 5 can be enzymatically 

Figure 1. Membrane processes associated with or dependent on phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2). Figure created with BioRender.com.

2. The Phosphoinositide Family

PI(4,5)P2 is a member of the phosphoinositide (PI) lipid family. PIs are a small group of
glycerophospholipids derived from phosphatidylinositol. These lipids consist of a characteristic
inositol headgroup, which can undergo reversible phosphorylation and dephosphorylation, leading to
the formation of seven distinct phosphorylated species. While the parent lipid phosphatidylinositol
represents roughly 10% of total membrane phospholipids in the eukaryotic cell, the phosphorylated
derivatives account only for around 2–3% [1], with PI(4)P and PI(4,5)P2 representing the bulk of
these lipids [17]. Each of these seven species has a distinct subcellular distribution with predominant
localization in subsets of membranes. Additionally, within a given membrane the localization of a
specific PI can be heterogeneous. Many PIs are overall in low abundance in the membrane but they
can be found at high local concentrations in membrane domains not readily detected by conventional
techniques [3,17]. For a historical review on inositol lipids, see Irvine (2016) [18]. Over the last couple
of decades, PIs have been found to be one of the most ubiquitous signaling entities in eukaryotic
metabolism. Their reach extends from controlling organelle biology to regulating cellular growth.
Due to this all-encompassing reach, they have also been linked to a number of human diseases.
In fact, the inositide signaling pathway is considered a promising pharmaceutical target. For an
excellent review on the major developments on PI cellular biology and their impact on disease,
see Balla (2013) [3].

3. PI(4,5)P2 Structure

3.1. Headgroup Conformation

The core PI(4,5)P2 structure descends from its “parent” lipid, phosphatidylinositol. At the core,
it consists of a myo-inositol headgroup. There are 9 existing isomers of inositol but the myo-inositol
isomer is the most commonly found in eukaryotic cells. In its most stable conformation, it assumes
the chair conformation where every hydroxyl substituent is at the equatorial position except for the
hydroxyl in the position 2 of the ring, which is in an axial position. The myo-inositol moiety is typically
linked to the diacylglycerol (DAG) backbone via a phosphodiester bond in position 1. This leaves the
hydroxyl groups in positions 2 to 6 open. However, only positions 3, 4, and 5 can be enzymatically
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phosphorylated to yield the 7 phosphorylated PI species. PI(4,5)P2 is the result of phosphorylation in
positions 4 and 5 of the headgroup by specific kinases and phosphatases (Figure 2A).
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Figure 2. PI(4,5)P2 headgroup features. The PI(4,5)P2 headgroup consists of myo-inositol ring where
every hydroxyl substituent is at the equatorial position except for the hydroxyl in the position 2 of
the ring, which is in an axial position. In the case of PIP2, the hydroxyls in positions 4 and 5 are
enzymatically phosphorylated. It is linked to the diacylglycerol (DAG) backbone via a phosphodiester
bond in position 1 (A). At pH 7.0, one of the phosphodiester proton dissociates, and the one remaining
is shared between the two vicinal phosphomonoester groups. In terms of potential charge this means
that, at pH 7.0, the charges would be −1.58 and −1.41 for the phosphomonoester groups at positions 4
and 5, respectively [19]. The lower charge of the 5-phosphomonoester group is attributed to a network
of intramolecular hydrogen bonds that it is engaged in, which stabilize the proton (B). Carbon atoms are
colored in grey, hydrogen in white, oxygen in red, and phosphorus in orange. Snapshots obtained from
a simulation of a bilayer consisting of 95:5 mol ratio 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC): PI(4,5)P2, using the CHARMM36m forcefield run in GROMACS2019. Images were modeled
using VMD.

In mammals, the majority of PI(4,5)P2 in the plasma membrane is synthesized from PI(4)P by type
I phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) (α, β, and γ) [20]. Type II phosphatidylinositol
5-phosphate 4-kinase (PIP4K) (α, β, and γ) phosphorylate PI(5)P2 to synthesize a quantitatively minor
pool of PI(4,5)P2 localized in the Golgi [1,21,22]. It can also be produced by the dephosphorylation of
PI(3,4,5)P3 catalyzed by phosphatase and tensin homolog protein (PTEN) and phosphatidylinositol
3,4,5-trisphosphate 3-phosphatase (TPIP) (α, β, and γ) [23,24]. PI(4,5)P2 hydrolysis is controlled
by specific 4’- or 5’-phosphatases or by phospholipase breakdown in response to various stimuli.
Dephosphorylation by specific phosphatases (primarily 5’-phosphatases) controls PI(4,5)P2 steady-state
levels and controls the extent of its signaling. Additionally, cleavage by phospholipases, such as
phospholipase C (PLC), control PI(4,5)P2 levels and originate metabolites that propagate and amplify
cellular signaling. PI(4,5)P2 levels, in general, are the result of a complex interplay of many cellular
enzymes. While PI(4,5)P2 metabolism falls out of the scope of this review, more information can be
found elsewhere [3,25].

3.2. Membrane Conformation Dynamics

In terms of molecular structure when inserted into the membrane, there are surprisingly very
few experimental studies probing PI(4,5)P2 dynamics. Since the dynamics of phosphatidylinositol
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or of the mono-phosphorylated PI(4)P has been addressed to some extent, we can estimate some of
PI(4,5)P2 properties from the behavior of these closely related precursors. At the insertion depth
of phosphatidylinositol and PI(4)P, when inserted into the membrane and in the absence of any
interactions with other chemical partners, it is believed that the phosphodiester bond is located roughly
at the same depth as the phosphodiester of phosphatidylcholine. Additionally, evidence points out that
the phosphodiester bond remains roughly parallel when compared to the membrane normal [26–29].

PI(4,5)P2 headgroup tilt seems to be significantly impacted by phosphorylation. For the case
of phosphatidylinositol, the headgroup is roughly perpendicular to the membrane plane, with the
C4 hydroxyl as the most exposed to the water layer despite a slight tilt being observed arising from
an intramolecular hydrogen bond established between the C2 hydroxyl and the pro-R-oxygen of
the phosphodiester phosphate [26–28,30]. This is the result of the glyceryl-phosphate-inositol link
being always very close to a trans, trans, trans, gauche-conformation, which brings the two hydrogen
bond partners together. Interestingly, the formation of this hydrogen bond appears to be crucial
for the recognition by PLC, however, it is not yet clear if it is formed when phosphatidylinositol is
aggregated [27]. In the case of PI(4)P, the headgroup tilt is more significant [26,28,29], and authors
suggest it might be also due to the establishment of electrostatic interactions between the negatively
charged phosphate and the positively charged choline headgroups from the neighboring lipids.
For PI(4)P, due to this more significant tilt, the C5 hydroxyl is the most accessible to the water layer.

In a Variable Angle Sample Spinning NMR study [29], PI(4,5)P2 membrane conformation was
studied in a membrane-like environment consisting of neutral alkyl-poly(ethylene)glycol and long-chain
alcohols. All possible conformations obtained showed a much more pronounced headgroup tilt for
PI(4,5)P2 than for PI(4)P, where the PI(4,5)P2 headgroup would be laying almost parallel to the
membrane surface. As this cannot arise from specific electrostatic interactions in this membrane model,
it is likely that this is the result of more subtle effects such as water- or alcohol-mediated hydrogen
bonding. As the analysis of NMR measurements of complex systems (such as PIs) is error-prone and
the “membrane matrix” used is far from being biological relevant, the authors of this study could not be
definitive in their conclusions regarding PI(4,5)P2 orientation. Nevertheless, they were able to replicate
what had been previously observed for PI(4)P in other membrane mimetics. If these observations are
replicated in more relevant conditions, they will challenge the more established “concept” of how
PI(4,5)P2 is structurally displayed in the membrane and how it interacts with protein partners. All-atom
molecular dynamics simulations of PI(4,5)P2 in lipid membranes show a well-defined average head-tail
angle of roughly 100◦, indicating that the headgroup would lie mostly flat along the membrane in
agreement with the previous studies [31] (Figure 3). Poisson Boltzmann MD simulations, however,
show a more conservative tilt of roughly 40◦.

Overall, there are strong hints that, in the absence of interactions with other biochemical partners,
PI(4,5)P2 when inserted into a membrane has its headgroup lying tilted over the membrane, however,
the extent of this tilt is still yet to be fully understood and likely depends not only on PI(4,5)P2 intrinsic
properties but also on the interactions with the neighboring lipid molecules.
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Figure 3. Examples of PI(4,5)P2 headgroup tilt when inserted into a phospholipid membrane. PI(4,5)P2

presents a significant headgroup tilt, when inserted into a bilayer, ranging from almost parallel to
the membrane plane (A) to a more conservative ~40◦ tilt (B). Whilst the more dramatic headgroup
tilt appears to be favored from interactions between its negatively charged phosphate groups and
the positively charged membrane surface, the more moderate tilt surges from the establishment of
intramolecular hydrogen bonds between the C2 hydroxyl and the pro-R-oxygen of the phosphodiester
phosphate. Carbon atoms are colored in grey, hydrogen in white, oxygen in red, and phosphorus in
orange. Snapshots obtained from a simulation of a bilayer consisting of 95:5 mol ratio POPC: PI(4,5)P2,
using the CHARMM36m forcefield run in GROMACS2019. Images were modeled using VMD.

3.3. Headgroup Charge

An important aspect that is closely related to the conformation of PI(4,5)P2 is the charge state of
each of its headgroup phosphate groups. Whilst the charge state of the headgroup linking phosphate
group is well defined at physiological pH (pKa between 1 to 3) [32], the headgroup phosphate charges
are much more volatile. The charge state of these groups has mostly been studied experimentally
for PI(4,5)P2 in micelles and small unilamellar vesicles (SUVs), via 31P–NMR and the dependency of
the chemical shift on the pH. Typically, PI(4,5)P2 is considered to have approximately four negative
charges at cytosolic pH. This result was inferred from the determination of the pKa of each headgroup
phosphate in either pure or mixed vesicles of PI(4,5)P2 using 31P–NMR [33]. These experiments
determined a pKa value for the first protonation of roughly 6.7 and 7.7 for the phosphomonoester
groups at position 4 and 5, respectively. In terms of potential charge, this would mean that at pH 7.2,
the 5-phosphomonoester would be partially protonated at charge −1, the 4-phosphomonoester would
be fully deprotonated with charge −2, and the phosphodiester would have charge −1.

However, studies have since shown that the PI(4,5)P2 headgroup ionization behavior (as well as for
other phosphoinositides) cannot be accurately described by a Henderson-Hasselbalch mechanism [19].
In the more detailed mechanism that was proposed by the authors [19], at pH values close to 4–5,
both phosphomonoester groups are mono-protonated as previously described. Upon increasing the pH,
one proton dissociates, whilst the remaining one is shared between the two vicinal phosphomonoester
groups (Figure 2B). In terms of potential charge this means that, at pH 7.0, the charges would be −1.58
and −1.41 for the phosphomonoester groups at positions 4 and 5, respectively. The lower charge of the
5-phosphomonoester group is attributed to the fact that it establishes a hydrogen bond interaction with
the hydroxyl group in the position 6, which in turn, is also forming a long-range hydrogen bond with
the phosphodiester group in the position 1. This weakens the first hydrogen bond slightly and thus
the proton binds to the 5-phosphomonoester more tightly. These results gave a much more detailed
look at the charge distribution of PI(4,5)P2 and at the complex network of intra- and intermolecular
hydrogen bonds that lead to the dissipation of the headgroup charge and are, very likely, part of the
reason for why repulsion between phosphoinositides is much weaker than expected.
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A fact that is often overlooked is how the interaction of PI(4,5)P2 with neighboring molecules
influences its charge distribution. In vivo, PI(4,5)P2 is constantly in interaction not only with its
neighboring lipids but also with proteins and cationic ions. The complex network of interactions
formed by PI(4,5)P2 with these partners leads to a greater distribution of its charge, effectively altering
its headgroup charge. A study has shown that, in the absence of divalent cations, lipids with hydrogen
bond donor capabilities could influence PI(4,5)P2 headgroup charge [34]. Phosphatidylethanolamine
(PE) was shown to influence the first step of deprotonation of the PI(4,5)P2 headgroup, most likely
by interacting preferably with the 5-phosphate. In the presence of PI, the first step of deprotonation
was not affected, however, a lower degree of ionization was observed for both phosphomonoester
groups for the removal of the last shared proton. Curiously, phosphatidylserine (PS) was not shown to
affect PI(4,5)P2 headgroup ionization significantly. This study clearly showcases how the PI(4,5)P2

local environment can affect PI(4,5)P2 headgroup charge, a crucial feature responsible for a lot of its
biological function.

3.4. Acyl-Chain Composition

The acyl-chain composition of lipids often plays an important functional role. These roles can be
defined by specific interactions with proteins or by simply changing the overall biophysical properties
of the surrounding membrane. In general, fatty acid profiles vary between phospholipid classes, tissues,
and species and can also vary over time with dietary habits, stimuli, or disease. Like many other lipids,
PI(4,5)P2 is also subject to these effects. In mammals, the phosphorylated myo-inositol headgroup is
typically bound to a DAG moiety, which consists of two fatty acid chains bonded to a glycerol molecule
via ester bonds at positions sn1 and sn2. The major fatty acid profile observed for PI(4,5)P2 in mammals
consists of 1-stearoyl-2-arachidonyl (18:0/20:4) [23]. Curiously, inositol-phosphate headgroups coupled
to ceramide have also been identified in fungi, plants, and protozoa [35], however, we will focus only
on the mammal relevant DAG-bound species in this review.

The 18:0/20:4 acyl-chain profile consists of up to 70% of the total PI(4,5)P2 lipid pool in some cell
lines, especially in brain tissue. This enrichment is likely the combined outcome of substrate specificity
for 1-stearoyl-2-arachidonyl-glycerol in several enzymes in the phosphatidylinositol cycle and the
remodeling of phosphoinositide acyl-chains via the Land’s cycle [36]. A more detailed look at how the
cell might maintain this enrichment can be seen in this review by D’Souza et al. (2014) [36]. However,
PI(4,5)P2 still has a broad distribution profile ranging from highly unsaturated chains to fully saturated
ones [37]. These less abundant species become more prevalent in response to certain stimuli [38],
stress [37,38], aging [37], or in cancer [39]. In these cases, fully saturated and mono-unsaturated
compositions increase significantly in concentration, in some cases even surpassing the canonical
1-stearoyl-2-arachidonyl (18:0/20:4) composition [38].

However, why do cells spend so many resources in maintaining this particular acyl-chain
composition? And why does the acyl-chain profile shift, sometimes dramatically, in specific conditions?
The biological functions behind the enrichment in 18:0/20:4 are still not very clear. The enrichment in
this configuration seems to be particularly prevalent in brain cells, where PI(4,5)P2 has been associated
with several stages of both endocytosis and exocytosis and has been considered an important mediator
of synaptic vesicle trafficking [40]. It has been shown that arachidonate, and other polyunsaturated
fatty acids such as docosahexaenoate (22:6), at the sn2 position, facilitate membrane shaping
and fission activities. Additionally, asymmetric sn1-saturated-sn2-polyunsaturated phospholipids
have been shown to provide efficient membrane vesiculation whilst maintaining lower membrane
permeability [41]. These properties might provide significant mechanical benefits in these particular
tissues. Of course, arachidonic acid in particular has biological activity of its own in addition to serving
as the precursor for the synthesis of eicosanoids, such as prostaglandins and leukotrienes [42]. Overall,
this particular theme has been given little attention thus far, however, it could be the key for some of
PI(4,5)P2 multifunctionality.
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4. Lateral Organization of PI(4,5)P2

Having looked at the core structural properties of PI(4,5)P2 we now turn to its organization in the
plasma membrane. As PI(4,5)P2 is engaged in a multitude of cellular functions occurring in parallel,
its levels must be tightly regulated to avoid significant fluctuations of its total plasma membrane
concentration. This implies that the simultaneous regulation of these cellular functions by PI(4,5)P2

must occur through the presence of multiple localized pools of this phospholipid in the plasma
membrane [43]. PI(4,5)P2 lateral organization in cells has been studied through a variety of techniques
from fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching
(FRAP) to atomic force microscopy (AFM). In FCS experiments carried out in Rat1 fibroblasts and HEK
cells, researchers microinjected micelles of fluorescent labelled-PI(4,5)P2 into cells and showed that the
diffusion coefficient of PI(4,5)P2 in these cells is significantly lower than expected for free phospholipids.
The simplest interpretation of this result is that approximately two-thirds of PI(4,5)P2 in the inner
leaflet of the plasma membrane is somehow sequestered [44]. Studies in PC12 cells have also shown,
using Stimulated emission depletion (STED) microscopy [45] and Stochastic optical reconstruction
microscopy (STORM) imaging techniques [46], that PI(4,5)P2 is highly enriched in nanometer-sized
membrane domains, specific to this cellular model.

In fact, while the presence of segregated PI(4,5)P2 pools can be partly explained by localized
PI(4,5)P2 synthesis and degradation through several kinases and phosphatases [47], it is also evident
that membrane diffusion rates, in the absence of significant obstacles for diffusion, will always be
higher than concentration changes due to enzymatic activity causing PI(4,5)P2 to diffuse away faster
than it can be produced. This means that it is unlikely that local synthesis can result in significant
changes in the submicroscopic organization of PI(4,5)P2 in the membrane [43]. PI(4,5)P2 interactions
with other cellular binding partners could alternatively explain the observed lateral organization of
this phosphoinositide. Interactions with proteins, divalent cations, cholesterol, and the cytoskeleton
are the ones most likely to have such an impact. In this review, we will give particular attention to the
often neglected effect of divalent cations on the lateral organization of PI(4,5)P2.

4.1. Sequestration by Proteins

One way to explain PI(4,5)P2 lateral organization in the plasma membrane of cells is that proteins
can act as reversible buffers, binding much of the PI(4,5)P2 present and then releasing it locally
in response to specific signals [48]. Theoretical simulations predict that such sequestration can be
achieved not only through specific interactions with PI(4,5)P2 but also through nonspecific electrostatic
interactions. In fact, polybasic proteins are able to sequester a lipid with a valence of ~4 (such as
PI(4,5)P2) 1000-fold more effectively than a lipid with a valence of ~1 (such as PS) [49,50]. Due to its
highly negatively charged headgroup, PI(4,5)P2 was confirmed to interact strongly with polybasic
stretches of amino acid residues [43,51]. Through these polybasic stretches, several proteins were found
to laterally sequester PI(4,5)P2 molecules in a reversible manner [52,53]. For an efficient buffering of
PI(4,5)P2 levels, these proteins would have to be present at a concentration comparable to PI(4,5)P2,
localize to the plasma membrane and be able to bind PI(4,5)P2 with high affinity while being able
to release it in response to stimuli. Proteins such as myristoylated alanine-rich C-kinase substrate
(MARCKS) [50,53,54], Growth Associated Protein 43 (GAP43) [48,55], CAP23 [48], among many others,
have been shown to be able to sequester PI(4,5)P2 in such a manner. In the case described above of
PI(4,5)P2 domains detected in PC12 cells, these were found to be associated with the sequestration of
PI(4,5)P2 to clusters of the SNARE protein syntaxin-1 [45,56,57]. This sequestration by syntaxin-1 is
critical for the regulation of SNARE-dependent membrane fusion [58,59].

Employing fluorescence and electron paramagnetic resonance spectroscopic tools, McLaughlin,
Cafiso, and co-workers [50,52] showed that a 24 aa peptide corresponding to the effector domain of
MARCKS was able to efficiently sequester an average of 3 PI(4,5)P2 molecules through non-specific
electrostatic interactions. Importantly, this sequestration occurred even in the presence of physiological
concentrations of the monovalent acidic phospholipid PS, confirming theoretical predictions. MARCKS
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sequestration of PI(4,5)P2 has been shown to be important in the PI(4,5)P2 mediated activation of
TRPC-family Ca2+ channels [60], in the endocytosis of the amyloid precursor protein (APP) [61], and in
the synaptic clustering of PI(4,5)P2 [62].

4.2. PI(4,5)P2 Interactions with Divalent Cations

Several studies have shown that PIs and PI(4,5)P2, in particular, are able to establish strong
electrostatic interactions between their negatively charged headgroups and divalent cations. In the
cellular PI(4,5)P2 context, calcium and magnesium stand out. Calcium is a common player in signal
transduction and a second messenger in cells. Its levels are strictly controlled and maintained at
low levels in the cytosol, with normal intracellular levels at around 100 nM (20,000 fold lower than
extracellular levels) [63]. Upon stimulation, however, several signal transduction pathways can lead to
transient increases of intracellular calcium concentration up to around 1 µM, with local concentrations
in the vicinity of open calcium channels reaching hundreds of µM, before being regulated back to
normal levels [64]. In fact, PI(4,5)P2 has been reported to be associated with a variety of Ca2+ channels
and a great number of these require PI(4,5)P2 for proper function [3]. Magnesium, on the other hand,
is a less studied modulator of cell function. Magnesium levels are well buffered in a narrow millimolar
range between 0.25 mM and 1 mM [65,66] and are thus kept at a much higher concentration than those
of calcium. Both divalent cations have been shown to bind strongly to PI(4,5)P2 and influence its lateral
organization dramatically as discussed below.

Through hybrid Quantum mechanics/molecular mechanics (QM/MM) experiments we can get an
insight on the molecular basis for cation binding to PI(4,5)P2 [31]. From a molecular point of view,
when binding to a single PI(4,5)P2 lipid, both calcium and magnesium bind to PI(4,5)P2 either in between
the phosphomonoester groups (Figure 4B) or solely near the 4-phophomonoester (Figure 4A). However,
simultaneous binding between the two phosphomonoester groups is approximately 10 kcal/mol more
unfavorable [31]. Divalent cation binding to the phosphodiester group has also been observed [67].

When analyzing the free energy associated with the removal of each divalent cation from its
binding position, significantly more energy is required to remove calcium into the bulk water than it is
for magnesium. The difference in free energy could come from the fact that, in contrast to calcium,
magnesium appears to retain its first hydration shell in its equilibrium binding position. This causes
its equilibrium binding position to be further away from the headgroup and leads to the formation of
fewer hydrogen bonds, on average, between the headgroup and the surrounding water molecules.
Interestingly, it was also shown that upon binding to calcium, the remaining PI(4,5)P2 headgroup
proton at physiological pH could be favorably displaced and that the effective size of the PI(4,5)P2

headgroup would significantly decrease [31]. In the presence of magnesium, the dissociation of
the remaining proton was not favorable, however, the decrease in effective headgroup surface area
was also observed albeit to a lesser extent. All of these cation-induced changes can and will affect
PI(4,5)P2 dynamics, thus influencing local membrane dynamics as well as its interactions with protein
binding partners.

Apart from simply binding to PI(4,5)P2, both divalent cations also have the ability to crosslink
PI(4,5)P2 lipids. This induces the formation of very stable cation-induced PI(4,5)P2 nanodomains. It has
been shown through different experimental techniques that divalent cations, and especially calcium,
are able to induce the formation of PI(4,5)P2 nanodomains, even at physiological concentrations of
cation and lipid. In lipid monolayers, these clusters can be detected through AFM [68,69] (Figure 5).
Through the use of fluorescent analogs of PI(4,5)P2 , calcium-induced clusters were shown to occur
in model membranes at physiologically relevant concentrations of both calcium and PI(4,5)P2 [70].

Other phosphoinositides have also shown some propensity to form cation-induced clusters. PI(3,5)P2

has been found to form nanodomains by itself in the presence of physiological concentrations of
calcium cations, however, in the presence of magnesium clustering was negligible [71]. On top of
that, the clusters formed by PI(3,5)P2 were much smaller and likely less stable than those formed by
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PI(4,5)P2 [71]. On the other hand, when the monophosphorylated PI(4)P was tested in the same type
of experiments, no calcium-induced clusters were observed [71].
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Figure 4. Snapshots of calcium ions interacting with the PI(4,5)P2 headgroup phosphates.
Calcium can bind to PI(4,5)P2 either solely near the 4-phophomonoester (A) or in between the
phosphomonoester groups (B). However, simultaneous binding between the two phosphomonoester
groups is approximately 10 kcal/mol more unfavorable [31]. Carbon atoms are colored in grey,
hydrogen in white, oxygen in red, phosphorus in orange, and calcium in blue. Snapshots obtained
from a simulation of a bilayer consisting of 95:5 mol ratio POPC: PI(4,5)P2 in the presence of calcium in
a 5:1 calcium to PI(4,5)P2 ratio, using the CHARMM36m forcefield run in GROMACS2019. Images
were modeled using VMD.
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Figure 5. Snapshots of experiments on mixed lipid monolayers, containing different mol % of
1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) and PI(4,5)P2, while exposed to calcium.
Reprinted from Biophysical Journal, 101, Ellenbroek, W.G.; Wang, Y.H.; Christian, D.A.; Discher, D.E.;
Janmey, P.A.; Liu, A.J. Divalent cation-dependent formation of electrostatic PIP2 clusters in lipid
monolayers. 2178–2184, Copyright (2011), with permission from Elsevier [69].

From a molecular point of view, a single divalent cation can likely crosslink up to 2 PI(4,5)P2

lipids by simultaneously binding each lipid phosphodiester and/or headgroup phosphomonoester
groups via strong electrostatic interactions [72]. A single PI(4,5)P2 lipid, however, can simultaneously
bind up to 3 divalent cations, and thus be complexed with 3 other PI(4,5)P2 lipids (Figure 6). This net
of PI(4,5)P2—cation interactions can thus induce the formation of a grid of tightly crosslinked lipids.
Whilst the main driving force behind the clustering appears to be cation crosslinking, the formation
of a complex network of intermolecular hydrogen bonds, between the headgroup hydroxyl and
phosphomonoester groups, very likely plays a role in thermodynamically favoring clustering. Due to
the electrostatic nature of the cation interactions, the propensity to crosslink PI(4,5)P2 lipids appears
to be highly correlated with the affinity towards the divalent cation. Thus, Ca2+ shows a much
greater clustering propensity than magnesium. In fact, Ca2+ induced clusters have been shown to
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be significantly larger than those induced by magnesium at the same experimental conditions [68].
However, although magnesium has a much weaker affinity for PI(4,5)P2 when compared to calcium,
its steady-state levels are several orders of magnitude higher than those of calcium, and at these mM
concentrations, it is also able to induce comparable PI(4,5)P2 clustering [71].

As the formation of these clusters is driven mainly by the crosslinking of the phosphate groups,
the nanodomains formed are composed of almost only PI(4,5)P2. Studies have shown that other
phosphorylated PI species can co-cluster with PI(4,5)P2, albeit to a lesser degree, but that the parent
lipid phosphatidylinositol cannot [73]. Incorporation into clusters also seems to be independent from
acyl-chain composition [73], however, it is very likely that different acyl-chain compositions induce the
formation of nanodomains with different biophysical properties.
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Figure 6. Crosslinking of PI(4,5)P2 lipids induces the formation of PI(4,5)P2 nanodomains. As a single
divalent cation can bind up to 2 PI(4,5)P2 lipids and each lipid can potentially bind 3 divalent cations,
a network of electrostatic interactions can crosslink PI(4,5)P2 lipids together (A). As the number of
clustered lipids increases, PI(4,5)P2 nanodomains are formed (B). Coarse grain beads representing the
inositol headgroup and acyl-chains are colored in grey, the glycerol component in red, the phosphate
groups in orange, and calcium in blue. Snapshots obtained from a simulation of a bilayer consisting of
95:5 mol ratio POPC: PI(4,5)P2 in the presence of calcium in a 5:1 calcium to PI(4,5)P2 ratio, using the
martini 2.2 coarse-grained forcefield run in GROMACS2019. Images were modeled using VMD.

These cation-induced PI(4,5)P2 nanodomains are much more than simply the sum of their elements.
While calcium is known to directly regulate the interaction of different protein domains to PI(4,5)P2 [74],
the structure and dynamics of the phospholipid within the divalent cation-induced cluster present
markedly distinct biophysical characteristics than the monodisperse lipid. As mentioned previously,
binding of divalent cations, and in particular calcium, can alter PI(4,5)P2 headgroup exposure leading
to a decrease in solvent-accessible area [31]. Additionally, as divalent cations accumulate, significant
screening of the headgroup charges occurs, essentially shielding the large negatively charged headgroup
from potential binding partners [75]. As PI(4,5)P2 lipids are forced to accumulate in an enclosed
area, further reorganization of the headgroups occurs, promoted by the molecular interactions of the
divalent cations with the 3 phosphate groups [76], effectively altering the headgroup conformation.
This local accumulation likely influences PI(4,5)P2 acyl-chain dynamics and, therefore, local membrane
order. Studies have shown that PI(4,5)P2 nanodomains have significantly reduced lateral dynamics [70]
and that PI(4,5)P2, which as a single lipid has a strong preference for disordered domains, displays
significantly less affinity for disordered domains upon clustering [71]. All of these altered biophysical
properties can, and most likely will, influence downstream PI(4,5)P2 signaling by modulating its
interactions with protein and lipid partners.
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Altogether, these findings show that divalent cation-mediated clustering can lead to the formation
of specific sites in the membrane highly enriched in PI(4,5)P2 while depleting the rest of the
membrane [70]. PI(4,5)P2 is likely constitutively clustered in the membrane, crosslinked by Mg2+

ions alongside other minor phosphoinositide lipids. In the vicinity of active calcium channels,
where calcium concentrations increase significantly upon opening of a channel, both ions will
simultaneously contribute to the formation of the nanodomains, to form larger and more stable
PI(4,5)P2 nanodomains. These cation-induced nanodomains can influence not only PI(4,5)P2 lateral
organization and biophysical properties but also the way proteins interact with PI(4,5)P2, by modulating
their localization in the plasma membrane, their target recognition and binding affinity to PI(4,5)P2,
and even further downstream interactions with other proteins. Therefore, beyond the impact of calcium
on PI(4,5)P2 levels in the membrane through activation of phospholipase activity, the direct interaction
of divalent cations with PI(4,5)P2 is expected to play a crucial role in the regulation of the biological
activity of this phospholipid.

4.3. Effect of Cholesterol on PI(4,5)P2 Properties and Distribution

Cholesterol is a crucial membrane component, implicated in a myriad of membrane processes.
However, its most noted role is in the regulation of plasma membrane biophysical properties as a
“fluidity buffer”. Whilst its effects can vary with different cholesterol contents, cholesterol, in general,
decreases membrane fluidity by increasing lipid packing even leading to the cholesterol-dependent
formation of coexisting liquid phases [77]. Like all the other phospholipids in the plasma membrane,
PI(4,5)P2 is also subject to these cholesterol-dependent effects.

Unsurprisingly, given its large negatively charged headgroup and highly unsaturated acyl
chain, PI(4,5)P2 was shown to preferentially partition into the less ordered cholesterol-poor phases of
biphasic monolayers containing PI(4,5)P2:SOPC:Chol [78]. However, after the addition of calcium,
the subsequent cation-induced PI(4,5)P2 nanodomains were shown to have increased the miscibility
of the coexisting domains in the cholesterol-containing monolayers [78]. Related results have been
observed, in a study with fluorescent derivatives of PI(4,5)P2 incorporated in ternary mixtures of
POPC:SM:Chol. In this study, monodisperse PI(4,5)P2 presented low miscibility in more ordered
lipid phases, yet, after cation-induced clustering, the preference for disordered domains decreased
by more than two-fold [78]. Importantly, the lipid composition of this ternary mixture was shown to
have a marked influence both on the extent of PI(4,5)P2 calcium-induced clustering and on the size of
clusters formed (Figure 7) [78]. Since the dimensions of PI(4,5)P2 clusters were heavily dependent on
temperature, it was concluded that the major factor regulating PI(4,5)P2 clustering was membrane order
and not the presence of a specific molecular partner in the membrane. This suggests that the insertion
of PI(4,5)P2 in more ordered domains is stabilized by the formation of cation-induced nanodomains.
In a cellular context, the effect of cholesterol on PI(4,5)P2 appears to be heavily dependent on cell type.
In fibroblasts [79] and cultured pancreatic β-cells [80], cholesterol depletion leads to decreased levels of
free PI(4,5)P2, whilst in HEK293 [81] cholesterol enrichment was shown to promote PI(4,5)P2 depletion.

Altogether, the findings we have previously discussed appear to be in agreement with theories
that associate PI(4,5)P2 with the controversial cholesterol-rich microdomains, such as “lipid rafts”
and caveolae, which are said to be involved in regulating a variety of membrane functions. PI(4,5)P2

has been found to be enriched in detergent-resistant membranes [82]. Moreover, while detergent
extraction has been put into question on whether it induces an artefactual enrichment in PI(4,5)P2 [83],
studies have shown PI(4,5)P2 to colocalize with more ordered membrane domains [84–87] and to be
sensitive to membrane curvature [87,88], both associated with these types of structures. Interestingly,
in a study where a PI(4,5)P2-specific phosphatase was targeted to either the “raft” or the “nonraft”
membrane fractions of T cells, the authors were able to show clear evidence of compartmentalization
of PI(4,5)P2-dependent signaling in each of the fractions. When depleting the “nonraft” fraction
of PI(4,5)P2, T cells showed an increase in cell filopodia and cell spreading, whilst in contrast,
when depleting the “raft” fraction of PI(4,5)P2, T cells showed smooth membranes free of ruffling
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and filopodia among other effects. Findings also appear to suggest that roughly half of the PI(4,5)P2

content is synthesized preferentially in these cholesterol-enriched domains [82]. Nonetheless, this is
still an area of great controversy amongst researchers, and there is a lot yet to uncover before significant
conclusions can be drawn on the importance of these microdomains for PI(4,5)P2 lateral organization.Molecules 2020, 25, x FOR PEER REVIEW 12 of 18 

 

 

Figure 7. Ternary diagram for the POPC:PSM:Chol lipid mixture at 25 °C (A) and 37 °C (B). Color-
code depicts decrease in measured fluorescence anisotropies of a PI(4,5)P2 fluorescent analog (TF-
PI(4,5)P2) upon inclusion of 100 μM Ca2+. Since the decrease reflects homo-FRET between analogs 
incorporated within the same clusters, darker areas correspond to more efficient PI(4,5)P2 clustering. 
Adapted with permission from Sarmento, M.J.; Coutinho, A.; Fedorov, A.; Prieto, M.; Fernandes, F. 
Membrane order is a key regulator of divalent cation-induced clustering of PI(3,5)P2 and PI(4,5)P2. 
Langmuir 2017, 33, 12463–12477 [78]. Copyright (2017) American Chemical Society. 

Altogether, the findings we have previously discussed appear to be in agreement with theories 
that associate PI(4,5)P2 with the controversial cholesterol-rich microdomains, such as “lipid rafts” and 
caveolae, which are said to be involved in regulating a variety of membrane functions. PI(4,5)P2 has 
been found to be enriched in detergent-resistant membranes [82]. Moreover, while detergent 
extraction has been put into question on whether it induces an artefactual enrichment in PI(4,5)P2 

[83], studies have shown PI(4,5)P2 to colocalize with more ordered membrane domains [84–87] and 
to be sensitive to membrane curvature [87,88], both associated with these types of structures. 
Interestingly, in a study where a PI(4,5)P2-specific phosphatase was targeted to either the “raft” or 
the “nonraft” membrane fractions of T cells, the authors were able to show clear evidence of 
compartmentalization of PI(4,5)P2-dependent signaling in each of the fractions. When depleting the 
“nonraft” fraction of PI(4,5)P2, T cells showed an increase in cell filopodia and cell spreading, whilst 
in contrast, when depleting the “raft” fraction of PI(4,5)P2, T cells showed smooth membranes free of 
ruffling and filopodia among other effects. Findings also appear to suggest that roughly half of the 
PI(4,5)P2 content is synthesized preferentially in these cholesterol-enriched domains [82]. 
Nonetheless, this is still an area of great controversy amongst researchers, and there is a lot yet to 
uncover before significant conclusions can be drawn on the importance of these microdomains for 
PI(4,5)P2 lateral organization.  

4.4. Effect of the Cytoskeleton and Curvature on PI(4,5)P2 Lateral Organization 

PI(4,5)P2 has been shown to be a major player in cytoskeleton dynamics, by interacting and 
regulating the activity of numerous enzymes and cytoskeletal proteins [89,90]. However, the 
cytoskeleton can also regulate PI(4,5)P2, and in particular its lateral organization, via corralling by the 
cortical actin network. Cortical actin networks have been shown to be able to induce spatio-temporal 
confinement of phospholipids in the plasma membrane of living cells [91]. PI(4,5)P2 should be no 
exception to this effect and, in fact, due to its close proximity with a variety of actin-binding proteins 
[90], one can suspect it could be even more susceptible to these effects. Studies have shown that the 
cytoskeleton is responsible for some of the low mobility of PI(4,5)P2 in atrial myocytes [92].  

Figure 7. Ternary diagram for the POPC:PSM:Chol lipid mixture at 25 ◦C (A) and 37 ◦C (B). Color-code
depicts decrease in measured fluorescence anisotropies of a PI(4,5)P2 fluorescent analog (TF-PI(4,5)P2)
upon inclusion of 100 µM Ca2+. Since the decrease reflects homo-FRET between analogs incorporated
within the same clusters, darker areas correspond to more efficient PI(4,5)P2 clustering. Adapted with
permission from Sarmento, M.J.; Coutinho, A.; Fedorov, A.; Prieto, M.; Fernandes, F. Membrane order
is a key regulator of divalent cation-induced clustering of PI(3,5)P2 and PI(4,5)P2. Langmuir 2017, 33,
12463–12477 [78]. Copyright (2017) American Chemical Society.

4.4. Effect of the Cytoskeleton and Curvature on PI(4,5)P2 Lateral Organization

PI(4,5)P2 has been shown to be a major player in cytoskeleton dynamics, by interacting
and regulating the activity of numerous enzymes and cytoskeletal proteins [89,90]. However,
the cytoskeleton can also regulate PI(4,5)P2, and in particular its lateral organization, via corralling by the
cortical actin network. Cortical actin networks have been shown to be able to induce spatio-temporal
confinement of phospholipids in the plasma membrane of living cells [91]. PI(4,5)P2 should be
no exception to this effect and, in fact, due to its close proximity with a variety of actin-binding
proteins [90], one can suspect it could be even more susceptible to these effects. Studies have shown
that the cytoskeleton is responsible for some of the low mobility of PI(4,5)P2 in atrial myocytes [92].

Curvature can also greatly influence PI(4,5)P2 lateral organization. PI(4,5)P2 has been found
to undergo a transient increase at the phagocytic cup during the initiation of phagocytosis [93,94].
More recently, it was found that the curvature induced by the engagement of non-biological solid
particles with the plasma membrane was enough to increase PI(4,5)P2 concentrations at the site of
contact. Additionally, as we previously discussed, PI(4,5)P2 has been associated with several stages
of endocytosis and exocytosis, where curvature effects are paramount [40]. As a monodisperse lipid,
PI(4,5)P2 has an inverted cone-shaped structure [95] due to its very large inositol headgroup. As such,
it is associated with positive membrane curvature. After interacting with divalent cations, however,
PI(4,5)P2 presents a cone-shaped structure [95], likely due to the decrease in headgroup area as well
as the aggregation of the headgroups after complexation with the cations. In this case, it would be
associated with negative membrane curvature. Whether local curvature at the plasma membrane plays
a major role in dictating PI(4,5)P2 lateral organization or PI(4,5)P2 lateral organization contributes
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to local curvature is not entirely clear. In a cellular context, it is likely dependent on the process in
question and the overall result of both effects.

5. Concluding Remarks

Despite having been discussed separately in this review, all the complex biophysical properties
we discussed previously are tightly interlinked processes. Furthermore, it is the combined effect of
these properties that allows PI(4,5)P2 to be a major regulator of membrane dynamics despite being
present at very low overall concentrations. While a lot of research has been conducted on these effects,
many are still to be fully characterized, especially those associated with cation-induced nanodomains,
such as the lipid conformation in these structures, the extent of charge dissipation, and the effect of
these nanodomains on the local bilayer properties. A good molecular understanding of these effects
is fundamental in order to better understand how PI(4,5)P2 carries out its role as a major plasma
membrane regulator.

Over the last decades, extensive research efforts have uncovered a multitude of different cellular
roles of PI(4,5)P2. However, the current view on the majority of the mechanisms associated with
these functions neglects the almost certain presence of a highly significant, if not dominant, pool of
this phospholipid that is not monodispersed. Special consideration should be given to the fact that
in the plasma membrane, PI(4,5)P2 must be either protein-bound or constitutively complexed with
divalent cations within small clusters. PI(4,5)P2 within these structures is bound to have significantly
different properties from the monodisperse lipid. These properties can influence PI(4,5)P2 interactions
with its binding partners (such as proteins) as well as downstream protein-protein interactions. It is
conceivable that many of PI(4,5)P2 cellular functions are also regulated by the extent of this effect.
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