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Abstract

Summary: We present ‘Threshold-seq,’ a new approach for determining thresholds in deep-

sequencing datasets of short RNA transcripts. Threshold-seq addresses the critical question of

how many reads need to support a short RNA molecule in a given dataset before it can be con-

sidered different from ‘background.’ The proposed scheme is easy to implement and incorporate

into existing pipelines.

Availability and Implementation: Source code of Threshold-seq is freely available as an R package

at: http://cm.jefferson.edu/threshold-seq/

Contact: isidore.rigoutsos@jefferson.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

‘Short RNA-seq’ is widely employed to study categories of non-

coding RNAs (ncRNAs), typically between 15 and 30 nucleotides

(nts) in length (Bartel, 2004; Cloonan et al., 2011; Londin et al.,

2015). The benefits of short RNA-seq include its comprehensive na-

ture, relatively low cost, and the relative ease with which it can be

implemented and executed. Unlike microarray approaches where

one is constrained to quantifying the abundance of only the ncRNAs

represented by the microarray’s probes, short RNA-seq quantifies

any ncRNA that is present in a sample.

A number of factors establish the effective depth at which a given

RNA sample is sequenced. These factors include RNA quality, li-

brary preparation, degree of multiplexing, DNA contamination,

micro-organism contamination (e.g. by mycoplasma), etc. In the

general case, the relative contributions of these factors cannot be

quantified. Given these considerations, any two RNA-seq datasets

will have different sequencing depths. The idea behind ‘normaliza-

tion’ is to account for the uneven sequencing depths of datasets that

are about to be compared, in order to ‘equalize’ the read counts of

transcripts that are common to the datasets being compared.

A popular normalization approach has been to express RNA tran-

script abundance in terms of ‘Reads Per Million Mapped’ reads

(RPMM) values. RPMM can be applied to individual datasets.

Several other normalization approaches have been suggested over

the years; they are summarized and reviewed elsewhere (Dillies

et al., 2013; Garmire and Subramaniam, 2012; Tam et al., 2015).

It is important to stress that normalization methods do not an-

swer the question of how to establish the level of support below

which one would likely be immersed in noise. The idea behind

‘thresholding’ is to separate molecules of putative biological rele-

vance from those that likely result from degradation or aberrant

transcription (‘background’ noise). A frequent and arbitrary thresh-

old choice has been to use 1.0 RPMM. However, this choice will

lead to complications if a dataset contains outlier features that re-

ceive a lot of support compared to the rest of the features that are

present: such outliers can cause high variability in the number of fea-

tures that are retained and analyzed (see Supplementary Fig. S2).

Here, we present Threshold-seq, a novel approach to threshold-

ing short RNA-seq datasets. Threshold-seq adapts to sequencing

depth variations and permits dynamic selection of dataset-specific

thresholds that strike a balance between the competing requirements

of sensitivity and specificity. Threshold-seq alleviates the above-

mentioned influence of outliers by calculating a threshold through

analysis of the number of distinct molecules that can be identified in

a dataset. In other words, Threshold-seq does not rely only on the

number of reads in the dataset.
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2 Materials and methods

Threshold-seq proceeds as follows. After adapter removal and qual-

ity trimming, the sequenced reads are mapped uniquely to the gen-

ome of interest (Londin et al., 2015). No thresholding is applied at

this step: all sequences that are supported by at least one read are

kept: let K be the number of unique sequences that are kept. Note

that K is not user-defined; it is determined from the dataset being

analyzed. Each of the K sequences that are kept is then paired with a

count that reflects its support in terms of mapped reads: thus, we

generate a collection S of K pairs of the type (sequence, count). We

iterate over the following three steps for a total of N times (default

N¼1000). During the n-th iteration (1�n�N):

1. we randomly resample K (sequence, count) pairs with replace-

ment. i.e. we draw K (sequence, count) pairs from the original

pool of K unique sequence-count values, creating a collection S0

that contains as many (sequence, count) pairs as the original col-

lection S. However, owing to our use of replacement during

resampling, the latter being a key element of our approach,

S0 6¼ S.

2. for the resampled K (sequence, count) pairs, we approximate nu-

merically the cumulative distribution CDF as follows: CDF
n xð Þ ¼

Px
i¼1 F ið Þ, where F(i) is the fraction of the resampled se-

quences that are paired with a count of exactly i reads;

3. for a user-defined interval [MIN, MAX] (default interval¼
[0.90, 0.99]), we report the abscissas xo, x1, x2, . . ., xmax at

which CDFn(x0)¼MIN, CDFn(x1)¼MINþ e, CDFn(x2)¼
MINþ2e, . . ., CDF n(xmax)¼MAX (default e¼0.5%).

We then identify CDFtarget as the smallest CDF value at which

multiple values of x were reported across N iterations: CDFtarget is

the smallest value within [MIN, MAX] at which biologically rele-

vant sequences begin to differentiate themselves from background.

Finally, we report as the threshold of choice, xthresh, the value

mode(xn) over all values xn that satisfy CDFn(xn)¼CDFtarget. In

other words, xthresh is the most frequent abscissa at which the CDF

reaches CDFtarget (illustrated in Supplementary Fig. S3) across N

iterations.

To compare Threshold-seq with arbitrary thresholds, we used

two public collections of datasets for which technical replicates are

available: (i) five samples from the GEUVADIS RNA sequencing

project (1000 Genomes Project; see also Lappalainen et al., 2013);

and (ii) three samples that we published previously (Londin et al.,

2015). The GEUVADIS datasets were sequenced at seven different

sequencing centers and have different sequencing depths even

though they are technical replicates (Supplementary Table S1). Our

three samples were sequenced at two locations (our University and

Applied Biosystems/Thermo Fisher Scientific—see also Supplement

for more details). By working with these datasets, we can evaluate

our method while removing biological variability.

3 Results

For each of the 44 analyzed datasets (5 biological samples � 7 tech-

nical replicates plus 3 biological samples � 3 technical replicates),

we compare the results of Threshold-seq to several fixed RPMM

threshold choices ranging from 0.5 to 5.0 (Figs 1 and 2). We also

compare Threshold-seq to thresholds in terms of absolute read num-

bers (Supplementary Tables S1 and S2, Supplementary Figs S1 and

S2). For each of the five GEUVADIS samples, we examined the cor-

responding seven technical replicates and identified: (i) collection A

of all sequences that are supported by one or more reads and are

present in all seven replicates of the sample; we refer to the set A as

the set of positives; (ii) collection B of all sequences that are sup-

ported by one or more reads and are absent from at least one of the

seven replicates; we refer to the set B as the set of negatives; and, (iii)

collection C of all sequences that go above threshold in at least one

Fig. 1. Comparison of Threshold-seq with arbitrary RPMM thresholds. The shown five samples were sequenced in seven technical replicates. In each case, we

plot the obtained sensitivity (X-axis) vs. the obtained specificity (Y-axis) for different RPMM thresholds from 0.5 to 5 in increments of 0.5. Dark circles show the

Threshold-seq equivalent metrics in each case

Fig. 2. Comparison of Threshold-seq with arbitrary RPMM thresholds. The shown three samples were sequenced in three technical replicates. In each case, we

plot the obtained sensitivity (X-axis) vs. the obtained specificity (Y-axis) for different RPMM thresholds from 0.5 to 5 in increments of 0.5. Dark circles show the

Threshold-seq equivalent metrics in each case
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of the seven replicates. Thus, for a given choice of threshold, the

true positives will be equal to C \ A; the false positives will be equal

to C \ B; and, the true negatives will be equal to B\C. In Figure 1,

we plot sensitivity (X-axis) vs. specificity (Y-axis) for different

choices of RPMM threshold, ranging from 0.5 to 5.0 (in steps of

0.5). For each of our three samples, we examined its three technical

replicates and repeated the above analysis (Fig. 2). Note how

Threshold-seq adaptively approaches the RPMM value that achieves

a balance between sensitivity and specificity and how that value dif-

fers across the eight samples shown in Figures 1 and 2. Also, import-

antly, Threshold-seq is reliable over a large range of values for N

(Supplementary Figs S3 and S4).

4 Discussion

We presented Threshold-seq, a method for automatically establish-

ing read thresholds when analyzing short RNA-seq datasets.

Threshold-seq works on any short RNA-seq dataset regardless of

choice of mapping program and of parameters. Threshold-seq can

work with individual datasets; i.e. it does not require the availability

of technical or of biological replicates. In Figure 1 and

Supplementary Figure S1 we show that when using low absolute

thresholds (e.g. 5 reads) or low RPM values (e.g. 1.0 RPM) more dis-

tinct sequences go above threshold (¼high sensitivity) at the expense

of low specificity; on the other hand, using a higher absolute thresh-

old (e.g. 15 reads) or higher RPM (e.g. 5.0 RPM) improves specifi-

city, at the expense of lower sensitivity. By resampling the distinct

sequences of the dataset at hand, Threshold-seq achieves a good bal-

ance between sensitivity and specificity. Threshold-seq will capture

those sequences of a sample that can be confidently assumed to rep-

resent biologically relevant features in the tissue/cell of origin, while

remaining immune to any outliers that could be present in the data

(see also Supplementary Fig. S2).
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