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Diabetic retinopathy (DR) and diabetic macular edema (DME) are retinal complications
of diabetes that can lead to loss of vision and impaired quality of life. The
current gold standard therapies for treatment of DR and DME focus on advanced
disease, are invasive, expensive, and can trigger adverse side-effects, necessitating
the development of more effective, affordable, and accessible therapies that can
target early stage disease. The pathogenesis and pathophysiology of DR is complex
and multifactorial, involving the interplay between the effects of hyperglycemia,
hyperlipidemia, hypoxia, and production of reactive oxygen species (ROS) in
the promotion of neurovascular dysfunction and immune cell polarization to a
proinflammatory state. The pathophysiology of DR provides several therapeutic targets
that have the potential to attenuate disease progression. Current novel DR and
DME therapies under investigation include erythropoietin-derived peptides, inducers of
antioxidant gene expression, activators of nitric oxide/cyclic GMP signaling pathways,
and manipulation of arginase activity. This review aims to aid understanding of DR and
DME pathophysiology and explore novel therapies that capitalize on our knowledge of
these diabetic retinal complications.

Keywords: diabetic retinopathy, diabetic macular edema, arginase, erythropoietin, nitric oxide, antioxidant,
inducible nitric oxide synthase

INTRODUCTION

Diabetic retinopathy (DR) is a feared complication of diabetes that dramatically affects quality
of life through vision deterioration and loss (Hartnett et al., 2017). DR develops with prolonged
hyperglycemia, which can occur with both type 1 diabetes mellitus (T1DM) and type 2 diabetes
mellitus (T2DM) (Fong et al., 2004). According to the World Health Organization, the incidence of
diabetes increased by approximately 290% between 1980 and 2014, and the frequency of diabetes-
related premature mortality is climbing (WHO, 2021). The increased global prevalence of diabetes
has resulted in rampant DR, the leading cause of blindness in working-age adults (WHO, 2021).
Not only does DR affect patients individually, but it also represents a significant healthcare and
economic burden (WHO, 2021).
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Hyperglycemia, hyperlipidemia, and formation of reactive
oxygen species (ROS) initiate and perpetuate many processes
involved in the pathogenesis of DR. Clinically, DR is divided
into two primary stages: non-proliferative and proliferative DR
(Fong et al., 2004; Hartnett et al., 2017; Kern et al., 2019). Non-
proliferative DR can be further classified into mild, moderate,
severe, and very severe (Duh et al., 2017). Proliferative DR (PDR)
is differentiated from non-proliferative DR by the presence of
neovascularization, and can be stratified into early, high-risk,
or severe, based on location and quantity of neovascularization,
presence of preretinal or intravitreal hemorrhage, and macular
or retinal detachment (Duh et al., 2017). Diabetic macular
edema (DME), a vision-threatening complication of both non-
proliferative and PDR, results from fluid extravasation through
damaged and pathologic microvasculature (Gupta et al., 2013;
Duh et al., 2017). Though the etiologies of T1DM and
T2DM differ, the overlapping characteristics of hyperglycemia,
hyperlipidemia, hypoxia, and formation of ROS, provide the
milieu necessary for development and progression of DR and
DME (O’Brien et al., 1998; Gylling et al., 2004; Kahn et al., 2006).

PATHOPHYSIOLOGY OF DIABETIC
RETINOPATHY AND DIABETIC
MACULAR EDEMA

Hyperglycemia
Type 1 diabetes mellitus and T2DM represent a spectrum
of diseases whose presentation and progression can vary
considerably, yet they are unified by the predominant feature,
hyperglycemia (American Diabetes Association, 2021). While
T1DM is characterized by hyperglycemia secondary to lack
of endogenous insulin production, T2DM is associated
with systemic insulin resistance and is associated with
metabolic syndrome, a cluster of metabolic derangements
including hypertension, increased central adiposity, and
hypertriglyceridemia (Samson and Garber, 2014; Katsarou et al.,
2017). Sustained hyperglycemia results in several biochemical,
metabolic, and vascular abnormalities that are responsible
for disease progression, such as production of advanced
glycosylation end-products (AGEs) and activation of the protein
kinase C (PKC), polyol, and hexosamine pathways, all of which
can promote increased production of cytokines and growth
factors (Urias et al., 2017; Ighodaro, 2018).

AGEs are formed via a three-step process initiated by high
blood glucose (Ott et al., 2014; Singh et al., 2014). When formed,
AGEs create cross-linked, non-degradable aggregates of proteins,
lipids, and nucleic acids (Ott et al., 2014; Singh et al., 2014).
Cross-linking of the extracellular matrix causes stiffening of the
vasculature and promotes organ dysfunction (Ott et al., 2014;
Singh et al., 2014). Thus, AGE aggregation can compromise
protein, lipid bilayer, and collagen function (Ott et al., 2014; Singh
et al., 2014). Additionally, these aggregates initiate inflammatory,
angiogenic, vascular remodeling, and apoptosis signal cascades
via several receptors (Ott et al., 2014). These signal cascades
are integral in the pathogenesis of diabetes, DR, and DME,

inducing vascular dysfunction and remodeling, angiogenesis,
thrombogenesis, atherosclerosis, and hypoxia (Li et al., 2004;
Chang et al., 2008; Yamagishi, 2011; Hegab et al., 2012; Roy,
2013). When AGEs bind to the receptor for AGEs (RAGE), a
signal cascade promotes angiogenesis through upregulation of
vascular endothelial growth factor (VEGF), a key mediator of
neovascularization in PDR (Li et al., 2004; Chang et al., 2008;
Yamagishi, 2011; Roy, 2013; Ott et al., 2014; Singh et al., 2014).
New vessel formation in the hypoxic and inflammatory milieu of
DR is aberrant and promotes DME development, as these fragile
retinal vessels have poor integrity, leading to widespread fluid
extravasation (Gupta et al., 2013; Urias et al., 2017).

In addition to promoting AGE formation, hyperglycemia
activates the polyol pathway, which metabolizes glucose under
conditions of glucose excess and produces sorbitol via aldose
reductase with oxidation of NADPH to NADP+ (Ighodaro,
2018; Kang and Yang, 2020). Most tissues in the body have
sorbitol dehydrogenase which converts sorbitol to fructose via
reduction of NAD+ to NADH, allowing for progression of
this metabolic pathway. However, sorbitol dehydrogenase is
not readily expressed in the retina, resulting in a build-up of
osmotically active sorbitol, leading to retinal dysfunction (Thul
et al., 2017; Kang and Yang, 2020). Consumption of NADPH
in the polyol pathway impairs antioxidant mechanisms and
increases vulnerability of retinal tissues to oxidative stress.

The hexosamine pathway metabolizes glucose under
conditions of hyperglycemia. The end-product of this pathway,
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc),
catalyzes the addition of O-GlcNAc moieties to serine and
threonine residues of proteins, altering their function and
resulting in retinal damage (Semba et al., 2014). Additionally,
activation of the hexosamine pathway results in upregulation of
cholesterol synthesis through O-GlcNAcylation and activation
of cholesterol transcription factor, specificity protein 1
(Sp1), leading to hypercholesterolemia, which independently
contributes to disease progression (Semba et al., 2014). Although
activation of the AGE-RAGE, polyol, and hexosamine pathways
initiate a series of processes directly involved in the pathogenesis
of DR, hyperlipidemia and formation of reactive oxygen species
(ROS) also strongly contribute to disease progression.

Hyperlipidemia
Both T1DM and T2DM are associated with a hyperlipidemic state
(Shah et al., 2017). Due to the development of insulin resistance
in T2DM and the lack of exogenous insulin production in T1DM,
the cellular uptake of glucose is blunted despite high blood
glucose levels. This state of relative starvation promotes lipolysis
and cholesterol accumulation, resulting in elevated blood lipids
(Lopaschuk, 2016). Hyperlipidemia not only contributes to
systemic disease progression, but also to progression of DR
and DME. Accumulation of lipid particles on endothelial cells
(EC) induces vascular damage and impairs regional blood
flow, promoting a state of retinal hypoxia (Tetè et al., 2012).
The vascular damage from lipid accumulation contributes to
breakdown of the blood-retinal-barrier (BRB). This increased
vascular permeability predisposes to DME development and
damage to the retinal neurovascular unit (Urias et al., 2017).
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Additionally, vascular lipid accumulation activates leukocytes,
which secrete chemokines to promote inflammatory macrophage
infiltration into the retina and to induce polarization of retinal
microglia to a pro-inflammatory phenotype (Tetè et al., 2012;
Kinuthia et al., 2020). Activated macrophages and microglia
sustain the inflammatory state through secretion of cytokines that
compromise the BRB and contribute to VEGF production, which
exacerbates the BRB breakdown and promotes angiogenesis and
neovascularization (Tetè et al., 2012).

Additionally, hyperlipidemia accelerates hyperglycemia-
induced mitochondrial damage, further promoting an
inflammatory state (Rao et al., 2021). Hyperlipidemia has
also been shown to result in increased intracellular calcium and
pro-inflammatory cytokine production, which increases the
expression of inducible nitric oxide synthase (iNOS), the NOS
isoform that produces cytotoxic quantities of nitric oxide (NO)
as an immune defense mechanism (Bogdan, 2015; García-Ortiz
and Serrador, 2018; Rao et al., 2021).

Reactive Oxygen and Nitrogen Species
The formation of ROS and reactive nitrogen species (RNS)
and the subsequent damage caused by these volatile molecules
is intimately linked to the pathogenesis of DR, playing an
essential role in disease progression by amplifying the ischemic
and inflammatory milieu. ROS and RNS, such as superoxide,
hydrogen peroxide, hydroxyl radicals, and peroxynitrite, are
formed via several mechanisms. One mechanism is via a
hyperglycemia-induced increase in activity of NADPH oxidases,
which results in superoxide or hydrogen peroxide formation
(Kowluru, 2021). Another mechanism is through uncoupling
of NOS, via reduced L-arginine availability, which forms
superoxide instead of producing NO (Roe and Ren, 2012). The
consequences of NOS uncoupling are twofold, with impaired
vasodilation resulting in hypoxia and superoxide production
leading to inflammation and tissue dysfunction (Guzik et al.,
2003). The hypoxic state further accentuates formation of
ROS, vascular dysfunction, VEGF production, and inflammation
via downstream effectors of hypoxia-inducible factor isoforms
(Gunton, 2020). Hyperglycemia increases PKC activation, which
plays a critical role in the formation and amplification of ROS.
It has also been demonstrated that PKC augments NADPH
oxidase activity, further contributing to oxidative stress (Kang
and Yang, 2020). Accumulation of ROS not only contributes
to the vascular and metabolic dysfunction in DR, but also
promotes formation of AGEs and increases polyol pathway flux,
exacerbating the damage.

THE NEED

With the epidemic-level increase in cases of diabetes, more
individuals are at risk of DR-induced vision loss, necessitating
the development of more effective, affordable, and accessible
treatment modalities (Urias et al., 2017; Schmidt, 2018). The
current gold-standard therapies for DR and DME are pan-retinal
photocoagulation (PRP) and intravitreal injections of anti-VEGF
or steroid drug formulations (Funatsu et al., 1996; Gupta et al.,

2013). PRP involves laser ablation of the outer retina, which
is thought to slow progression of DR by destroying peripheral
tissue with high oxygen demand, thereby diverting oxygen to the
ischemic central retina and decreasing hypoxia-induced release
of inflammatory cytokines and VEGF (Funatsu et al., 1996).
Though this method is efficacious in blunting progression of
DR, it is associated with notable complications including visual
field impairment, night vision deficits, and suprachoroidal and
macular effusions that promote exudative retinal detachment
(Reddy and Husain, 2018). Anti-VEGF intravitreal therapies
target the hypoxia-induced expression of VEGF, attenuating
neovascularization in PDR and breakdown of the BRB in DME
(Gupta et al., 2013). Though this treatment can be effective
in many patients, some DME patients are treatment-resistant
or exhibit only transient improvement (Urias et al., 2017).
Intravitreal corticosteroid injections target retinal inflammation
but can promote VEGF expression (Schwartz et al., 2016).
Intravitreal injections require frequent office visits and are
associated with poor patient compliance due to fear of intravitreal
administration, financial limitations, and perceived lack of
efficacy (Polat et al., 2017). Moreover, intravitreal injections are
associated with significant risks (Sachdeva et al., 2016; Tan et al.,
2021). With each injection, patients are at risk of developing
acute exogenous endophthalmitis, a serious medical emergency
characterized by bacterial or fungal infection of the vitreous
and/or aqueous humor (Day et al., 2011; Sachdeva et al., 2016;
Durand, 2020). Anti-VEGF injections also increase the risk of
tractional retinal detachment, elevations in intraocular pressure,
and uveitis (Heier et al., 2012).

The developing understanding of the neurovascular
interactions in health and disease is guiding efforts to find
novel therapeutic targets capable of arresting DR at early stages
(Simo et al., 2021). Strategies for promoting tissue repair and
preventing neuroinflammation have shown promising results
in the treatment of neurovascular diabetic complications. The
discovery of erythropoietin (EPO) production within retinal
tissue has prompted investigations into its physiologic roles
and therapeutic potential (Brines et al., 2008). Distinct from
its role in hematopoiesis, EPO has been found to mediate
neuroprotective effects in the retina, resulting in development
of EPO peptide derivatives (Brines et al., 2008). ARA290 is a
peptide that binds to the EPO innate repair receptor but lacks the
erythrogenic activity of endogenous EPO (Brines et al., 2015).
ARA290 has shown potential therapeutic benefit in minimizing
glial activation, neuronal loss, and promoting tissue repair in
preclinical studies of DR (McVicar et al., 2011). In clinical trials,
ARA290 administration in diabetic patients blunted metabolic
dysfunction and symptoms of diabetic neuropathy (Brines et al.,
2015). Another novel therapeutic approach targeting early stages
of DR and DME is NO/cyclic GMP (cGMP) modulator drug
therapy, which capitalizes on the various roles of NO signaling
in DR pathogenesis. Runcaciguat, a novel cGMP activator, is
undergoing clinical trials to assess its efficacy in both diabetic
nephropathy and DR (Hahn et al., 2021). Although clinical
trials with antioxidant and radical scavenging molecules have
failed to show sufficient protection from DR progression,
strategies for activating tissue antioxidant mechanisms have
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shown great therapeutic promise in retinopathies involving
oxidative stress (Nakagami, 2016; Evans and Lawrenson, 2017).
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a novel
potential target that upregulates transcription of antioxidant
proteins and has shown great promise in the treatment of
retinal diseases (Nakagami, 2016). Finally, our group has
demonstrated the complex roles of the arginase isoforms
in the development and progression of DR, illustrating the
potential therapeutic benefit of targeting these enzymes in
diseases that impact the neurovasculature (Patel et al., 2013;
Caldwell et al., 2015; Shosha et al., 2016, 2021; Atawia et al.,
2020).

ARGINASE AND DIABETIC
RETINOPATHY

Arginase as a Therapeutic Target
Diabetes increases the expression of arginase isoforms, which
have a crucial role in the development of diabetes-induced
complications (Patel et al., 2013). Arginase, the key enzyme in
the hepatic urea cycle, reciprocally regulates NO production
by competing with NOS for their shared substrate, L-arginine
(Elms et al., 2013; Caldwell et al., 2015; Wang et al., 2015).
This ureohydrolase has two isoforms, arginase 1 (Arg1), which
is cytoplasmic and highly expressed by hepatocytes, and arginase
2 (Arg2) which is primarily localized to the mitochondria.
Both isoforms are found in a variety of cells, including
retinal, endothelial, neuronal, and immune cells. Additionally,
both can be upregulated under conditions of hyperglycemia,
inflammation, and increased ROS (Romero et al., 2008; Chandra
et al., 2012; Pandey et al., 2014; Caldwell et al., 2018). Arg1
and Arg2 are expressed in various layers and cell types of the
retina (Patel et al., 2013). Arg1 immunoreactivity is prominent in
neuronal cells within the ganglion cell layer, inner nuclear layer,
and in Müller glial cells. Pronounced Arg2 immunoreactivity is
evident in cells of the inner nuclear and nerve fiber layers as well
as in horizontal cells (Narayanan et al., 2013; Patel et al., 2013).
However, given the mitochondrial localization of Arg2, it is likely
that a basal level of Arg2 is present in all cell types.

Increased arginase expression leads to elevated levels of
L-ornithine, a downstream product of arginase activity. The
metabolism of L-ornithine by ornithine decarboxylase (ODC)
and ornithine aminotransferase results in the production of
polyamines (putrescine, and downstream products spermidine
and spermine), and proline and glutamate, respectively (Caldwell
et al., 2018). Production of proline is necessary for collagen
formation, which contributes to wound healing and fibrosis
(Wu and Morris, 1998; Caldwell et al., 2018). Polyamines
are important in cell proliferation, ion channel function, and
neuroprotection (Narayanan et al., 2013; Caldwell et al., 2015).
Activation of the ODC pathway has been shown to limit
inflammation, reduce iNOS activation, and promote a reparative
M2-like macrophage phenotype by increasing the production of
putrescine in a model of bacterial infection (Hardbower et al.,
2017). However, the reverse activity of this pathway (spermine
to spermidine to putrescine), generates hydrogen peroxide and

toxic acrolein, which can exacerbate the pathology (Narayanan
et al., 2014, 2019; Alfarhan et al., 2020).

Arginase 1 and Vascular Tone
The competition between arginase and NOS for L-arginine is
of particular importance in vascular tone regulation given the
crucial role of NO signaling in vasodilation, leukocyte adhesion,
and platelet aggregation (Caldwell et al., 2018). In fact, elevated
Arg1 is involved in endothelial dysfunction in a wide range
of vascular beds including pulmonary, coronary, aortic, and
mesenteric vasculature (Beleznai et al., 2011; Lucas et al., 2013;
Toque et al., 2013; Kövamees et al., 2016; Caldwell et al., 2018).
In retinal blood vessels, increased Arg1 immunoreactivity was
detected as early as 8 weeks in diabetic mice (Elms et al., 2013).
Furthermore, partial deletion of Arg1 or treatment with the
arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH),
resulted in improved EC-mediated vasodilation in the retinal
vasculature of diabetic murine models (Elms et al., 2013).
Together, these results suggest that Arg1 plays a role in diabetes-
induced endothelial dysfunction in retinal vasculature.

Arginase 1 in Retinal Ischemia
In DR, damage to the retinal microvasculature leads to impaired
tissue perfusion and subsequent hypoxia, which is further
accentuated by increased leukocyte adhesion (Cai and Boulton,
2002; van der Wijk et al., 2017). Despite the prominent
role of Arg1 in diabetes-induced endothelial dysfunction, a
neuroprotective role of Arg1 has been surprisingly revealed
in murine models of retinal ischemia/reperfusion injury (I/R)
(Malek et al., 2018). In this model, mice with either partial
global deletion of Arg1 (Arg1±) or myeloid-specific Arg1 deletion
demonstrated significantly worse neuronal and microvascular
degeneration compared to their littermate controls. However, this
effect was not seen in EC-specific Arg1 knockout mice (Fouda
et al., 2018). It is postulated that the neuroprotective effects
of Arg1 are due to the reduced availability of L-arginine for
iNOS, which functions to amplify the pro-inflammatory state
through increased macrophage polarization to the M1-like, pro-
inflammatory phenotype (Lee et al., 2017). Elevated Arg1 reduces
L-arginine levels, the substrate necessary for iNOS to maintain
high NO production and inflammation. In fact, control mice
subjected to I/R exhibited fewer macrophages in the M1-like, pro-
inflammatory state (Fouda et al., 2018). In acute hypoxic injury,
such as I/R, these anti-inflammatory, neuroprotective effects of
Arg1 seem to outweigh the detrimental effects of Arg1 on the
vascular endothelium (Fouda et al., 2018, 2020). Intravitreal
and intraperitoneal treatment with pegylated Arg1 (PEG-
Arg1), (Arg1 covalently linked to polyethylene glycol with a
prolonged half-life), in murine models of I/R exhibited significant
protection against retinal neurodegeneration (Fouda et al., 2018,
2022). Macrophages pretreated with PEG-Arg1 in vitro also
exhibited reduced cytokine production and iNOS expression after
exposure to bacterial lipopolysaccharide (LPS). Additionally,
PEG-Arg1 treatment of these macrophages post-LPS exposure
reversed the LPS-induced mitochondrial dysfunction (Fouda
et al., 2018). The neuroprotective effects of PEG-Arg1 are
likely secondary to blockade of iNOS-induced oxidative stress,
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blunting perpetuation of inflammation and oxidation by retinal
macrophages and microglia.

Arginase 1 and Immune Modulation
The role of Arg1 in the polarization of macrophages toward
a reparative, M2-like phenotype and its effects on other
immune cell function has been extensively studied, however, the
mechanisms are not entirely understood (Kieler et al., 2021). As
briefly discussed, L-arginine depletion by Arg1 has been proposed
as a mechanism that mediates decreased production of cytotoxic
NO levels and blunts iNOS perpetuation of inflammation and
oxidative stress (Lee et al., 2003). Additionally, L-arginine
depletion results in T-lymphocyte dysfunction through inhibition
of T-cell receptor CD3ζ chain expression (Rodriguez et al.,
2003). Another proposed mechanism for Arg1 modulation of
immune cell responses is through the Arg1-induced production
of polyamines via the ODC pathway, which has been shown to
promote the reparative M2-like phenotype in macrophages and
microglia (Van den Bossche et al., 2012; Latour et al., 2020).
Independent of Arg1 expression, production of polyamines was
necessary for M2-like polarization in cultured macrophages
stimulated with IL-4 (Van den Bossche et al., 2012). Additionally,
depletion of polyamines in cultured macrophages resulted in the
amplification of LPS-induced inflammatory gene expression (Van
den Bossche et al., 2012). Another study found that elevated levels
of putrescine attenuated macrophage polarization to the pro-
inflammatory M1-like phenotype and proposed that this effect
was via histone modifications (Hardbower et al., 2017). Though
these are some possible explanations, more studies are necessary
to unravel the seemingly multifaceted effects of Arg1 on immune
cell modulation.

Arginase 2 and Diabetic Retinopathy
In contrast to Arg1, global or EC-specific deletion of Arg2 in
mice results in reduced oxidative and nitrative stress, decreased
neurovascular damage, and absence of glial activation in the
retina after I/R injury (Shosha et al., 2016, 2021). In both
the I/R in vivo model and in EC exposed to oxygen and
glucose deprivation/reperfusion (OGD/R), Arg2 mRNA and
protein expression were markedly increased (Shosha et al., 2016,
2021). Furthermore, overexpression of Arg2 in EC subjected
to OGD/R resulted in increased mitochondrial dysfunction and
fragmentation, and amplified cell stress and apoptosis (Shosha
et al., 2021). Interestingly, pan-arginase inhibition in EC with
ABH resulted in inhibition of OGD/R-induced cell stress but did
not promote cell survival. This lack of survival with pan-arginase
inhibition is postulated to be due to the loss of Arg1-mediated
protective effects. Mice with a global Arg2 deletion challenged
by a high-fat, high-sucrose diet were protected against retinal
oxidative stress, inflammasome activation, and pro-inflammatory

activation of retinal glial cells, indicating that Arg2 plays a
role in the early pathogenesis of DR (Atawia et al., 2020). The
apparent dichotomy of these arginase isoforms under various
pathologic conditions warrants the development of therapies
targeted to either specific inhibition of Arg2 or selective delivery
of Arg1 to macrophages.

CONCLUSION

With the prevalence of diabetes on the rise worldwide,
more people are at an increased risk of developing vision-
compromising DR and DME, necessitating the development of
more efficacious and patient-friendly treatment modalities. DM
is a systemic, multifactorial disease that involves a multitude
of interconnected processes. Studies examining the nuances
of the pathogenesis and pathophysiology of DR and DME
have elucidated many promising novel therapeutic targets. EPO
signaling in tissue repair, cGMP activation, and activation of
antioxidant gene transcription are promising therapeutic targets
that can modify disease progression and can be utilized at
earlier disease stages (Brines et al., 2008, 2015; Nakagami, 2016;
Evans and Lawrenson, 2017; Hahn et al., 2021). Capitalizing
on Arg1 and Arg2 activity in the disease pathogenesis of DM
also shows therapeutic potential. PEG-Arg1 has demonstrated
a neuroprotective effect in ischemic retinopathy that appears to
outweigh the detrimental effect on the vasculature by attenuating
production of inflammatory cytokines through suppression of
iNOS activity (Caldwell et al., 2018; Fouda et al., 2018, 2022).
Deletion of Arg2 has exhibited protective effects through the
attenuation of inflammasome activation and polarization of
macrophages and retinal microglia (Narayanan et al., 2014;
Shosha et al., 2016; Atawia et al., 2019, 2020). There is hope that
these novel therapies will prove to be effective in attenuating
DR and DME progression, thereby decreasing the number of
individuals at risk of diabetes-induced vision loss.
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