
ARTICLE

Comparison of Power, Prognosis, and Extrapolation
Properties of Four Population Pharmacodynamic Models
of HbA1c for Type 2 Diabetes

Gustaf J. Wellhagen, Mats O. Karlsson and Maria C. Kjellsson*

Reusing published models saves time; time to be used for informing decisions in drug development. In antihyperglycemic
drug development, several published HbA1c models are available but selecting the appropriate model for a particular purpose
is challenging. This study aims at helping selection by investigating four HbA1c models, specifically the ability to identify
drug effects (shape, site of action, and power) and simulation properties. All models could identify glucose effect
nonlinearities, although for detecting the site of action, a mechanistic glucose model was needed. Power was highest for
models using mean plasma glucose to drive HbA1c formation. Insulin contribution to power varied greatly depending on the
drug target; it was beneficial only if the drug target was insulin secretion. All investigated models showed good simulation
properties. However, extrapolation with the mechanistic model beyond 12 weeks resulted in drug effect overprediction. This
investigation aids drug development in decisions regarding model choice if reusing published HbA1c models.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 331–341; doi:10.1002/psp4.12290; published online 25 March 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Several HbA1c models are available in literature to

be reused, with some aspects being different and

others similar.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study was performed to guide selection of the

appropriate HbA1c model.
WHAT DOES THIS STUDY ADD TO OUR

KNOWLEDGE?
� Model choice will depend on the drug mechanism of

action as well as the main analysis purpose. All models

identified nonlinearity in glucose; however, a mechanis-

tic model would differentiate the accurate site of drug

action. Power of detecting drug effects was marginally
higher for models using MPG, instead of FPG for
HbA1c formation, unless the drug effect was incretin. In
addition, insulin measurements were only beneficial if
insulin was the main target. All tested models showed
good prognostic and extrapolative properties, except
the de Winter et al.12 model, which overpredicted the
drug effect for 26-week extrapolation.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Modelers can reuse published models that are fit for
purpose, knowing their strengths and weaknesses.
Focus can instead be put on interpreting the results
and making informed decisions in drug development.

Reusing published models is attractive as it saves time;
time to be used for informing decisions in drug development
and increasing certainty of the decision. Diabetes is an
area in which many models are available, describing mainly
glycosylated hemoglobin (HbA1c).1 HbA1c (measuring sus-
tained glycemic control) is commonly used as the main bio-
marker in antihyperglycemic drug development, along with
fasting plasma glucose (FPG) and/or fasting serum insulin
(FSI), and possibly mean plasma glucose (MPG). In phase II
of antihyperglycemic drug development, study designs
are often similar: double-blinded, parallel, and placebo-
controlled, with 4–5 longitudinal observations of biomarkers
over 12–14 weeks, in which the study drug is given as an
add-on treatment to the standard-of-care (e.g., metformin).2

Modeling is well-accepted in diabetes research, thus, finding
published models to reuse for pharmacometric analysis of
phase II study data are easy and the challenge rather lays in
selecting a model fit for purpose.

The purpose of a pharmacometric analysis varies greatly:

selection of optimal doses and dosing regimens to maxi-

mize the HbA1c-lowering effect in phase II, quantitative

support for the decision of dose reduction in subsequent

phase II trials,3 mechanistic understanding of drug effects

on hemoglobin (Hb) and its impact on HbA1c,4 assessment

of demographics and disease progression on HbA1c to

inform patient inclusion criteria,5 evaluation of the impact of

genetic pharmacokinetic differences on HbA1c,6 investiga-

tion of differences in HbA1c effects between once-daily and

twice-daily dosing,7 and all prospective predictions of HbA1c

in phase II using phase I short-term glucose,8 phase III using

phase II study data,9 and patients using data from healthy

subjects.10 In most of these examples, pharmacometric analy-

sis was also used to quantify uncertainty.
Some aspects of the HbA1c models are shared and

yet others are different. To guide modelers in the choice
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of the models for reuse, we herein present a quantitative,
simulation-based investigation of four already published
HbA1c models, demonstrating their respective strengths
and weaknesses. Four aspects were compared: (1) the
ability to identify the correct mechanism of action; (2) the
power to detect a drug effect; (3) simulation performance
for similar study duration (prognosis); and (4) longer studies
(extrapolation).

METHODS
Models
The four HbA1c models investigated throughout this article

are denoted: A Dynamic HbA1c EndpOint Prediction Tool

(ADOPT) published by Møller et al.,11 2013; FPG-FSI-

HbA1c (FFH) by de Winter et al.,12 2006; FPG-Hb-HbA1c

(FHH) by Hamr�en et al.,4 2008; and Integrated Glucose-

RBC-HbA1c (IGRH) by Lled�o-Garcı́a et al.,13 2013. Sche-

matic pictures of all HbA1c models are shown in Figure

1.4,11–13 They represent different complexity, ranging from

indirect response to more complex mechanistic models, uti-

lizing different biomarkers. The selected models have all

been used to guide decisions in drug development.

ADOPT
The ADOPT model (Figure 1a) consists of two indirect

response models: one for MPG and one for HbA1c. The

HbA1c formation is determined by MPG with a first order

rate.

FFH
The FFH model (Figure 1b) contains three linked indirect

response models describing FSI, FPG, and HbA1c. It was

developed to describe the type 2 diabetes disease progres-

sion with terms of beta cell function (EFB) and insulin

sensitivity (EFS). The model contains a mechanistic homeo-

static feedback between FPG and FSI, in which FPG affects

the production rate of FSI and FSI affects the production

rate of FPG. The relationship is described using the

homeostasis model of assessment (HOMA) equations,14 in

which healthy subjects have a HOMA-%B 5 1 and HOMA-

%S 5 1 at FPG 5 4.5 mM and FSI 5 5 mU/L, which at

steady-state gives B0 5 FSI0/(5*(FPG0-3.5)) 5 HOMA-%B

and S0 5 FPG0*FSI0/22.5 5 HOMA-%S. The HbA1c is

formed by an FPG-driven first order rate and a non-FPG-

driven constant rate representing glycosylation from post-

prandial glucose (PPG) and contamination in HbA1c, unre-

lated to glucose, respectively.

FHH
The FHH model (Figure 1c) describes HbA1c formation

through the life-span of red blood cells (RBCs) with eight

transit compartments: four nonglycosylated and four glyco-

sylated compartments of RBC of varying age. During their

lifetime, RBCs are glycosylated with a first order rate driven

by f(FPG). The FPG is modeled with an indirect response

model and f(FPG) is a power function of FPG, allowing for

a nonlinear relationship between FPG and HbA1c forma-

tion. This nonlinearity has been hypothesized to be related

to FPG only measuring fasting glucose exposure, excluding

additional exposure of PPG.

IGRH
The IGRH model (Figure 1d) is similar to FHH with HbA1c
formation described through the RBC life-span, however,
using more transit compartments. In this model, MPG
drives the glycosylation in a linear first order process. The
glucose exposure affects the life-span of RBCs, so that
higher glucose levels shorten the life-span of RBCs. Pre-
cursors of RBCs are also assumed to be partly glycosy-
lated. MPG is modeled with an indirect response model,
similar to the ADOPT model. The total number of compart-
ments for RBC in the IGRH model was 24 in the original
publication and for simulating data in this study. However,
for reduced estimation time, 12 transit compartments were
used in estimations: 6 for nonglycosylated and 6 for glyco-
sylated RBCs. Reducing the number of compartments has
little effect on the fit.15

Simulation study design
Data were simulated according to a 12-week parallel group
phase IIa clinical trial design with patients with type 2 dia-
betes. Inclusion criteria on baseline were HbA1c 7–10%,
FPG 7–13.3 mM, and FSI 7.3–18 mU/L. A total of 4,000
patients were divided equally in four treatment arms:
(1) the placebo arm; (2) the 10 mg b.i.d. arm; (3) the
25 mg b.i.d. arm; and (4) the 50 mg b.i.d. arm. Patients
had a standardized diet of three meals and two snacks per
day, corresponding to 62.5 g and 12.5 g glucose,
respectively.

Glucose and insulin were simulated with the integrated
glucose-insulin (IGI) model,16 shown in Supplementary
Figure S1, with parameters fixed to published estimates.
The glucose and insulin error was set to 10.7% and 27%,
respectively, to include both assay error and model misspe-
cification.17,18 Placebo was described as a 20.1 6 0.14 mM
(mean 6 SD) change in glucose at steady-state; a magni-
tude in line with a number of placebo-controlled antihyper-
glycemic drug trials.19–27

Five different drug effects were investigated separately,
each incorporated at a different site in the IGI model and
drugs were assumed to elicit their effect without a delay:
stimulation of basal insulin secretion (BASI) similar to
the expected effect of an insulin secretagogue, insulin-
independent glucose (CLG) and insulin-dependent (CLGI)
glucose elimination mimicking the effects of SLGT-2 inhibi-
tors and peroxisome proliferator-activated receptor agonists,
respectively, inhibition of endogenous glucose production
(EGP), hypothesized as the main action of metformin and
stimulation of incretin release (INCR), similar to the expected
effect of dipeptidyl peptidase-4 inhibitors. Supplementary
Equation S1 details how the drug effects were implemented
in the simulations.

All drug effects were designed to give the typical individ-
ual 10% decrease in HbA1c with 50 mg dose relative to
placebo, implemented as maximum effect (Emax) functions.
The half-maximal effective concentration was set to 0.03,
matching the typical individuals’ maximum concentrations
after a dose of 25 mg. Corresponding Emax values were
titrated to 0.455 (BASI), 0.8 (CLG), 0.465 (CLGI), 0.375
(EGP), and 1.18 (INCR) and were all associated with a 5%
interindividual variability (IIV).
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Output from the IGI model was coupled with the full
IGRH model (24 compartments for RBCs) to produce
HbA1c. An IIV of 17% was added on the proportional

HbA1c error. Simulation settings were chosen to render a
sample size �10 patients per arm with a conventional t-test
at 80% power with a 5 0.05.

Figure 1 Schematic presentation of the A Dynamic HbA1c EndpOint Prediction Tool (ADOPT) model11 (top left panel), the FPG-FSI-
HbA1c model12 (FFH; top right panel), the FPG-Hb-HbA1c model4 (FHH; middle panel) and the Integrated Glucose-RBC-HbA1c
model13 (IGRH; bottom panel). FPG, fasting plasma glucose; FSI, fasting serum insulin; Hb, hemoglobin; HbA1c, glycosylated hemo-
globin; KG, turnover of glucose; kglucose, glycosylation rate constant; kin, input rate constant; kout, output rate constant; ktr, transit rate
constant; LS, life-span; MPG, mean plasma glucose; RBC, Red Blood Cells.
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Glucose, insulin, and HbA1c were sampled in the morn-
ing (after 11 hours of fasting) at weeks 0, 4, 8, and 12. The
integrated 24-hour glucose exposure was used to calculate
the MPG. Biomarker profiles are shown in Supplementary
Figures S3–S7.

Estimations
The four HbA1c models were implemented as suggested
by the authors of the original publications and a placebo
model with IIV was added.

• In the ADOPT model, kin_HbA1c and kout_HbA1c were fixed to 0.0116
day21 and 0.0323 day21 from the published values, whereas all
other parameters were estimated. Placebo affected kin_MPG.

• In the FFH model, all parameters were estimated and a steady-
state-solution of FPG and FSI was implemented for runtime and sta-
bility reasons. Placebo affected the turnover of glucose.

• In the FHH model, all parameters were estimated. Placebo affected
kin_FPG.

• In the IGRH model, all system parameters were fixed to their
published values, whereas design parameters (kout,MPG, MPG0)
were estimated. To reduce runtime, 12 transit compartments,
instead of 24, were used and the system parameter turnover of
glucose (KG) was re-estimated. The estimate was fixed to 1.42 3

1024 mM21 3 day21 instead of the published 1.51 3 1024 mM21

3 day21. Placebo affected kin_MPG.

Drug model selection
Drug effects in the creation of data were Emax functions.
However, that may not necessarily translate to Emax func-
tions on FPG, MPG, or FSI. Therefore, the shape and posi-
tion of the drug effect was investigated in each of the four
estimation models. Linear, Emax, or sigmoidal Emax models
were tested on all glucose/insulin parameters (i.e., kin, kout,
KG, EFS, and/or EFB) and all combinations of these
parameters. The likelihood ratio test was used to determine
statistical significance using the difference in objective func-
tion value (DOFV) between the full (with drug effect) and
the reduced model (without drug effect). If DOFV was the
same for two competing drug effect models, a parsimonious
approach was taken, benefiting smaller models. Drug
effects on HbA1c were not investigated.

Power and sample size
The power to detect a drug effect was assessed as the
DOFV between full and reduced models. Sample sizes
were calculated with the Monte Carlo Mapped Power
method (sampling from individual DOFV values) using the
number of differing parameters between the full and
reduced model as the degrees of freedom.28 The sample
size for a conventional t-test was also calculated at different
levels of power (80% or 90%) and varying alpha (0.1%,
1%, 5%, or 10%), comparing the change from baseline at
12 weeks between placebo and 50 mg. The signal-to-noise
ratio (SNR) was defined as the corresponding true effect
size (difference in means, delta), back-calculated from the
given alpha, power and sample sizes from the Monte Carlo
Mapped Power, assuming a SD 5 1. The SNR will be simi-
lar regardless of alpha or power, whereas sample sizes are
heavily dependent on these values. The SNR for model-

based analysis corresponds to identifying a statistically sig-

nificant concentration-effect relationship using all four arms

(placebo and three doses), whereas the SNR for the t-test

corresponds to identifying a statistically significant effect

between placebo and the highest dose.

Prognosis (12 weeks)
The final parameter estimates of the full models were used

to simulate 100 trials of 12 weeks duration with 600

patients, equally distributed among four dose arms. Simula-

tions of baseline corrected HbA1c at 12 weeks of treatment

were compared with the “observed” data, represented by

baseline corrected HbA1c from the IGI-IGRH simulations at

12 weeks. Results were evaluated using the estimation

error, which was calculated as the difference between prog-

nosis and “observations” of the placebo-corrected change

from baseline in HbA1c at 12 weeks.

Extrapolation (26 weeks)
The final parameter estimates were also used to make an

extrapolation of the outcome of a 26-week (6-month) trial

similarly as for 12-week prognoses. Simulations of baseline

corrected HbA1c at 26 weeks of treatment were compared

with “observations,” represented by baseline corrected

HbA1c from the IGI-IGRH simulations at 26 weeks. Results

were evaluated as estimation error at 26 weeks.
A schematic view of the study design is shown in Sup-

plementary Figure S2.

Software
Data management, statistical calculations, and graphics

were performed using R version 3.2.2 (R Core Team 2015,

Vienna, Austria),29 data simulation and estimation in NON-

MEM version 7.3 (Icon Development Solutions, Ellicott City,

MD),30 which was run through PsN version 4.5 (Depart-

ment of Pharmaceutical Biosciences, Uppsala University,

Uppsala, Sweden).31,32

RESULTS
Drug model selection
A summary of the results of the drug model selection are

shown in Supplementary Table S1. Independent of the

simulated site of action (SoA) of the drug in the IGI-IGRH

model, the ADOPT, and IGRH models identified the same

drug effect model: Emax function on kout_MPG. In addition,

the FHH model identified Emax functions in all cases. How-

ever, depending on the SoA, the drug effect was either

identified on kin_FPG or kout_FPG.
For the FFH model, the most mechanistic model in terms

of glucose and insulin, the best model varied greatly

depending on the SoA. Thus, the FFH model could identify

increased EFB when the drug effect had been placed on

insulin secretion (BASI and INCR). For INCR, a drug effect

was also identified on the turnover of glucose, likely related

to the INCR effect mainly affecting PPG, which is not part

of FPG and, thus, is difficult to model using FPG. When

the original drug effect had been placed on CLGI, the FFH

model identified an effect on insulin sensitivity plus an addi-

tional effect on EFB. This additional effect was a reduction

of beta cell effect, reflecting the expected downregulation of
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insulin due to the smaller need for insulin, which is also

mechanistically reasonable.
The FFH model describes the glucose-insulin homeosta-

sis in the overnight fasting state and drug effects on CLG

and EGP can either be effectuated via the KG or by

improving insulin sensitivity (EFS) and/or insulin secretion,

in which results indicate the latter explanation.

Power and sample size
In Figure 2, the SNR for the four HbA1c-models and the t-

test are shown. The SNR is similar for the ADOPT and

IGRH models, although consistently slightly lower for the

ADOPT model compared to the IGRH model. The consis-

tency is most likely due to the shared driver for HbA1c for-

mation (i.e., MPG). Comparing the two models using FPG

to drive HbA1c formation, results are less consistent as the

FFH model also makes use of insulin. Insulin observations

strengthen the SNR when the drug effect is related to insu-

lin secretion; however, the restriction imposed on the

model-relating insulin and glucose observations through the

HOMA equations rather seems to dilute the SNR when the

drug effect is not directly related to insulin. The FFH model

has the highest SNR of all models when the drug effect is

stimulating BASI, whereas the FHH model has the highest

SNR of all models when the drug inhibits EGP. The t-test

generally has the lowest SNR, although for drugs stimulat-

ing INCR, it is on par with the worse models.

Prognosis (12 weeks) and extrapolation (26 weeks)
There was, in general, a good agreement between

observed and simulated HbA1c change from baseline for

all models, as shown in Figure 3 and Figure 4. Indepen-

dent of where the drug effect had its SoA, at what time

the effect was assessed, and which model was used,

t–
te

st

t–
te

st

t–
te

st

Figure 2 Signal-to-noise ratio (SNR) for site of drug action by model. Ratio is reported for several combinations of type 1 error rate
(alpha) and power. For model-based analysis, the SNR corresponds to identifying a statistically significant concentration-effect relation-
ship while for t-test, the SNR corresponds to identifying a statistically significant effect between placebo and the highest dose. ADOPT,
A Dynamic HbA1c EndpOint Prediction Tool model; BASI, basal insulin secretion; CLG, insulin-independent glucose; CLGI, insulin-
dependent glucose; EGP, endogenous glucose production; FFH, FPG-FSI-HbA1c model; FHH, FPG-Hb-HbA1c model; IGRH, Inte-
grated Glucose-RBCell-HbA1c model; INCR, incretin release.
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differences were small both on main trend and confidence
intervals.

Figure 5, depicting the differences between prognoses
and observations of placebo-corrected and baseline-
corrected HbA1c, shows that all models had good 12-week
prognostic properties, with the IGRH being the most accu-
rate across all SoAs.

The accuracy was even better for the 26-week extrapola-
tions (Figure 6), with both the IGRH and ADOPT model
extrapolating well. The accuracy of the extrapolations from
the FHH model was improved compared to 12 weeks for all
drug SoAs, except CLG and EGP, which were slightly
biased. The FFH performed poorly in the extrapolations
with higher bias across all SoAs compared to prognoses,
with a severe bias for the extrapolations for CLG and EGP.

A summary of how the models performed in all the inves-
tigated aspects is shown in Table 1.

DISCUSSION
Drug model selection
The Emax models were used when simulating data using
the IGI model. The nonlinearity of the drug effect was con-
served also when glucose was modeled using less complex
systems. The ADOPT and IGRH models were consistent
across drug effects and identified Emax models on glucose
elimination (kout) throughout. With FFH, combinations of
effects were needed to explain the full drug effect. How-
ever, all models identified at least one relationship to be
nonlinear. The FHH model consistently identified Emax mod-
els, however, on different system parameters.

The FFH is the only of the tested models with a semime-
chanistic model for glucose and insulin. Although the glucose
model is simplified compared to the IGI model, it could cor-
rectly identify the various sites of drug effects, based on sta-
tistical criteria (not physiological rationale). For example,

Figure 3 Baseline-corrected change in HbA1c at 12 weeks by dose. The mean and the corresponding 95% confidence interval is
shown for observations (open circles, black solid line, and bars) and model simulations based on data up to 12 weeks (open triangles,
shaded area, colored dashed lines and bars). ADOPT, A Dynamic HbA1c EndpOint Prediction Tool model; BASI, basal insulin secre-
tion; CLG, insulin-independent glucose; CLGI, insulin-dependent glucose; EGP, endogenous glucose production; FFH, FPG-FSI-HbA1c
model; FHH, FPG-Hb-HbA1c model; IGRH, Integrated Glucose-RBC-HbA1c model; INCR, incretin release.
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when the drug effect in the IGI model was on BASI, the

identified drug effect was on EFB and a drug effect in the

IGI model on CLG was identified as a drug effect on EFS in

the FFH model. Thus, this model offers an additional benefit

over the others in identifying the SoA of the drug.

Power and sample size
The MPG-driven models (ADOPT and IGRH) performed

best with drug-affecting INCR. This is expected as INCR

affects PPG and the information about PPG is contained in

MPG, not FPG. The FFH model has the highest power to

detect drug effects acting on BASI. This suggests that sam-

pling insulin is useful for insulin secretagogues and the

FFH model is more highly powered than the FHH model,

because it has additional information given from FSI. The

difference between FPG and MPG as a driver for HbA1c is

relatively small, suggesting that, in many cases, a fasting

value can be used instead of an integrated 24-hour mean

value without loss of power, especially for drug effects on

EGP. The SNR for any model-based approach is generally

higher than for a regular t-test. Again, this is expected

because the t-test disregards information from intermediate

dose arms, midpoint samples, and glucose; focusing only

on 12 weeks of HbA1c for placebo and highest dose arm.

The FFH and FHH models perform worse than the t-test for

a drug stimulating INCR, likely because the models cannot

fit the flat FSI and FPG profiles simultaneously with low-

ered HbA1c with drug effects only on glucose/insulin

parameters (see Supplementary Figure S3). Adding drug

effects on HbA1c parameters resolved this issue (results

not shown). In addition, the FFH model is penalized due to

the number of parameters. The correct model choice can

reduce the size of a clinical trial, because power deter-

mines the sample size required.

Figure 4 Baseline-corrected changes in HbA1c at 26 weeks by dose. The mean and the corresponding 95% confidence interval is
shown for observations (open circles, black solid line, and bars) and model simulations based on data up to 12 weeks (open triangles,
shaded area, colored dashed lines, and bars). ADOPT, A Dynamic HbA1c EndpOint Prediction Tool model; BASI, basal insulin secre-
tion; CLG, insulin-independent glucose; CLGI, insulin-dependent glucose; EGP, endogenous glucose production; FFH, FPG-FSI-HbA1c
model; FHH, FPG-Hb-HbA1c model; IGRH, Integrated Glucose-RBC-HbA1c model; INCR, incretin release.
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Prognosis
All models make good prognoses, with small deviations

from observed values. Because we are fitting the models to

12-week data this is unsurprising. For prognostic purposes,

the model choice will not affect results greatly. Thus, a less

mechanistic model, such as ADOPT or FFH, may be used

if it has other advantages.

Extrapolation
The extrapolation results largely follow similar trends as the

prognoses. The main difference from the 12-week progno-

ses is that the FFH model is slightly overpredicting the drug

effect. This is likely due to an incorrect shape of the model

fit, in which the time to steady-state is too long. Hence, the

FFH model should not be the first choice when making

extrapolations to 26 weeks.

Additional considerations
For convenience, we assumed all patients received stan-
dardized meals with regular intervals and followed study

protocol. These assumptions give a less variable population
than normally expected from a 12-week HbA1c study. To
account for this, we allowed an inflated IIV in both the phar-

macokinetic and pharmacodynamic parameters plus noise
in terms of IIV on residual error for HbA1c. The HbA1c
residual error was inflated so at least 10 individuals per
arm in a conventional t-test would be required for 80%

power. Normally, a phase IIb trial requires even more
patients for 80% power, and part of this high power with
few individuals is related to the study assumptions (stan-

dardized meals, no dropouts). However, we focused on
finding the properties that distinguish the proposed models
from one another and also from conventional practice in

Figure 5 Placebo-corrected, baseline-corrected HbA1c at 12 weeks by dose. ADOPT, A Dynamic HbA1c EndpOint Prediction Tool
model; BASI, basal insulin secretion; CLG, insulin-independent glucose; CLGI, insulin-dependent glucose; EGP, endogenous glucose
production; FFH, FPG-FSI-HbA1c model; FHH, FPG-Hb-HbA1c model; IGRH, Integrated Glucose-RBC-HbA1c model; INCR, incretin
release.
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quantitative assessment of clinical data. Thus, the errors
added should distort the signal enough to make the conclu-
sions valid. This is supported by the fact that the SNR is
consistent across different levels of alpha and power for

each model.
There are both strengths and weaknesses associated

with using simulations for the comparison between the
models. The advantage of simulating the data is the control
of the true relationships between drug effect and the glu-

cose system, but the validity of the results will depend on
how accurately the simulation model represents the true
nature of the biological system. The IGI model has been
shown to perform well in analyzing glucose challenges with
and without drug effect.16,33,34 It was, however, developed

for a short-term glucose test and not 12-week studies of
glucose and may lack certain aspects of the glucose
homeostasis needed to accurately describe glucose over

an extended time period. Kjellsson et al.8 showed that the
IGI model performed reasonably well in predicting HbA1c

over a 12-week period for drug effect on EGP and BASI,
however, how well the model performs for other mecha-
nisms of actions has not been shown and is speculative.

As recommended in the original paper, kout_HbA1c in the

ADOPT model was fixed to the reported value.11 This
allows less flexibility than the IGRH model, which could
explain the slightly lower power and slightly higher inaccu-

racy in 12-week prognosis observed compared to the IGRH
model. The predictive performance of the IGRH and

ADOPT models has previously been investigated head-to-
head.9 In that study, the IGRH model was used with fixed
parameters, results slightly favoring the ADOPT model.

This shows that these models are similar in performance.
The FFH model was implemented with a steady-state

solution of FPG and FSI to decrease runtimes and for

Figure 6 Placebo-corrected, baseline-corrected HbA1c at 26 weeks by dose. ADOPT, A Dynamic HbA1c EndpOint Prediction Tool
model; BASI, basal insulin secretion; CLG, insulin-independent glucose; CLGI, insulin-dependent glucose; EGP, endogenous glucose
production; FFH, FPG-FSI-HbA1c model; FHH, FPG-Hb-HbA1c model; IGRH, Integrated Glucose-RBC-HbA1c model; INCR, incretin
release.
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stability reasons (could not reach successful minimization).

This will only marginally affect our investigations as the

changes in glucose were instantaneous and effect steady-

state on glucose and insulin would have been reached in

between the first and second observations. However, it

should be noted that if the effect of steady-state on glucose

and insulin is not reached between the first and the second

observations, due to a delayed concentration-effect relation-

ship, the full FFH should be used.
The study design was biased toward the IGRH model,

because this model was used to simulate HbA1c data. The

IGRH model represents the most mechanistic description

of current knowledge of physiology and glycation of hemo-

globin and, hence, the most appropriate choice for simulat-

ing HbA1c. Unsurprisingly, this model showed the most

consistent estimates of HbA1c. However, a model misspeci-

fication was intentionally introduced between creation and

analysis when the number of RBC compartments was

reduced, and, thus, the impact of the favor toward IGRH

was decreased.

General
This work does not include all but rather a representative

selection of published HbA1c models. The simplest HbA1c

model, in which linked indirect response models describe

both FPG and HbA1c, is not explicitly presented. However,

in the FHH model, FPG is described with a regular turnover

model and, in the FFH model, FPG is linked to a regular

indirect response model of HbA1c, although the FPG model

is more mechanistic. Thus, the properties of this simplest

model can be derived from the FHH and FFH models. In

identifying drug effects, this simplest model should behave

as the FHH model with a good ability to identify the nonlin-

earity of glucose with effects on kin or kout depending on

drug effect SoA. In terms of power, the behavior should

resemble that of the FHH for the drug effect related to insu-

lin and that of FFH for drug effects unrelated to insulin.

This model is, although better than a t-test, not in the top

of the investigated models. As prognosis was good for all

models, there is no reason to believe otherwise for the sim-

plest model, however, it is likely to incur the same extrapo-

lation problems as the FFH model: underpredicting the time

to steady-state from 12-week data, consequently overpre-

dicting the drug effect at week 26.

Final remarks
One extension of this work would be to investigate combi-

nations of drug effects, as many drugs have several mech-

anisms of action. For example, metformin, the current

standard-of-care, has been hypothesized to affect both

EGP and CLGI. The power to distinguish both primary and

secondary drug effects also applies to add-on therapies.
All models investigated in this work performed well in

one or several aspects (Table 1). For many purposes, the

model choice will not impact results greatly but for certain

drug SoAs there is lots to be gained in terms of identifica-

tion, power, and predictive performance. The model choice

will also guide what biomarkers to sample.
A good source for published models is the Drug Disease

Model Resource (DDMoRe) model repository (http://repository.

ddmore.eu).
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