
Cell Death & Differentiation (2018) 25:2071–2085
https://doi.org/10.1038/s41418-018-0094-7

ARTICLE

Hif1a inactivation rescues photoreceptor degeneration induced by a
chronic hypoxia-like stress

Maya Barben1,2
● Divya Ail1,7 ● Federica Storti1 ● Katrin Klee1,3 ● Christian Schori1,3 ● Marijana Samardzija 1

●

Stylianos Michalakis 4
● Martin Biel4 ● Isabelle Meneau5

● Frank Blaser5 ● Daniel Barthelmes5,6 ●

Christian Grimm 1,2,3

Received: 22 September 2017 / Revised: 13 February 2018 / Accepted: 21 February 2018 / Published online: 17 April 2018
© The Author(s) 2018. This article is published with open access

Abstract
Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the
retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function
and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD).
Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting
increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model
chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von
Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal
degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution
of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly
mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients.

Introduction

Several blinding diseases of the retina are characterized by
the progressive loss of photoreceptors and retinal pigment
epithelium (RPE) cells. Underlying causes are manifold and
include gene mutations, age-related tissue changes, sys-
temic alterations and environmental factors. Another rele-
vant condition that can lead to retinal pathology is hypoxia.
Reduced tissue oxygenation is causative for the production
of vascular endothelial growth factor (VEGF), a main factor
involved in the development of diabetic macular oedema
and neovascularization in age-related macular degeneration
(AMD) [1–3]. However, tissue hypoxia may also be of
significance for retinal pathologies not associated with
abnormal vessel growth such as the highly prevalent non-
exudative form of AMD [4–6]. Reduced choroidal blood
flow in the ageing eye [7, 8] and in the foveolar region of
AMD patients [9], choroidal ischemia in dry AMD [9–11]
and the correlation between drusen accumulation and
decreased choroidal blood volume in AMD [12] has led to
the hypothesis that reduced oxygen availability to retinal
cells might be a significant factor that contributes—likely
together with other factors—to disease development and
progression [4, 13]. Since both rods and cones have an
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extraordinarily high demand for energy [14], their function
and survival might be especially sensitive to reduced tissue
oxygenation.

Hypoxia-inducible transcription factors (HIFs) are the
major regulators of the cellular response to reduced oxygen
levels [15]. They are composed of a constitutively expressed
β-subunit (HIFB) and an oxygen-labile α-subunit (HIFA). In
the presence of O2, prolyl hydroxylases hydroxylate the α-
subunit that is then recognized by the von Hippel Lindau
(VHL) protein complex. An E3 ligase in this complex ubi-
quitinates the hydroxylated HIFAs targeting them for rapid
proteasomal degradation. In hypoxia, HIFAs are less hydro-
xylated, escape recognition by VHL, ubiquitination and

degradation, and can thus function as transcription factors [16,
17]. Prominent HIF target genes are VEGF and erythropoietin
(EPO). Both play eminent roles in the response to hypoxia
and are key factors for neovascularization and the increase in
haematocrit, respectively. Although HIF1 and HIF2 share
several common targets, they also have their own set of genes
for specific regulation [18].

Inactivation of VHL prevents degradation of HIF-
alpha subunits and leads to increased HIF1 and HIF2
activity. This allows to model a major part of the mole-
cular response to hypoxia in normoxic conditions. Inac-
tivation of the Vhl gene in retinal cells already during
development causes a severe vessel phenotype and retinal

Fig. 1 Expression of HIF
controlled genes in the human
retina. a, b Ct-values of
housekeeping genes GAPDH,
RPL28, and ACTB in the central
and peripheral retina of 13 donor
eyes. The central retina included
the macular region whereas
peripheral tissue was isolated
from the mid periphery of the
nasal retina. Ten nanogram
cDNA were used as template. c,
d Expression of HIF-regulated
genes in the central and
peripheral retina of 13 donor
eyes relative to the expression
level in a 17-year-old donor. e, f
Expression of rod-specific and
cone-specific genes in the
central and peripheral retina of
13 donor eyes relative to the
expression level in a 17-year-old
donor. Expression of genes was
normalized to ACTB and the
housekeeping gene RPL28
served as control (c–f). Dots:
individual values. Lines: linear
regression through all values.
Note the tendency of hypoxia-
regulated genes to be expressed
at higher levels and
photoreceptor-specific genes to
be expressed at lower levels in
aged human retinas
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degeneration [19, 20]. Deletion of Vhl in rods after
postnatal development, however, leads to a late onset and
age-dependent loss of photoreceptors and retinal function

[21]. Inactivation of Vhl in the RPE alters RPE mor-
phology and metabolism leading to cell death in a HIF2-
dependent manner [22].
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Here, we show that the ageing human retina may
indeed experience increased hypoxic stress, identify
HIF1 as the factor being mainly responsible for photo-
receptor degeneration in a model of chronic hypoxia-like
conditions and demonstrate that AAV-mediated RNA
interference targeting Hif1a mitigates the degenerative
phenotype.

Results

Increased expression of hypoxia-related genes in
the aged human retina

Reduced choroidal blood flow and tissue changes may
reduce oxygen availability for photoreceptors in the aged
retina. To test this hypothesis, we analysed expression of
hypoxia-related genes in the central and peripheral retina
from 13 human donors between the age of 17 and 92 years
without diagnosed retinal pathologies (Table S1). Although
post-mortem times differed considerably, Ct-values of the
housekeeping genes glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH), ribosomal protein L28 (RPL28) and
beta-actin (ACTB) were relatively similar in all samples
(Fig. 1a,b). Expression levels of genes of interest, however,
varied strongly between donor eyes. Although R2 values
were low (not shown), linear regression indicated a ten-
dency for an age-dependent increased retinal expression of
the hypoxia-regulated HIF-target genes adrenomedullin
(ADM), VEGFA and to a lower extent also of pyruvate
dehydrogenase kinase 1 (PDK1) and glucose transporter 1
(GLUT1) (Fig. 1c,d). In contrast, rod and cone-specific
genes involved in phototransduction including rhodopsin
(RHO), G protein subunit alpha transducin 2 (cone trans-
ducin, GNAT2) and rod phosphodiesterase 6A (PDE6A)
showed the opposite trend and seemed to be expressed at
reduced levels in the aged retina. The only exception was
cone phosphodiesterase 6C (PDE6C) in the central retina

that followed expression of the reference gene RPL28
(Fig. 1e,f). Thus, the aged human retina may upregulate
expression of hypoxia-related factors and reduce expression
of photoreceptor-specific genes. Given that photoreceptors
receive their oxygen largely from the choroidal blood with
its reduced flow in older eyes, it is plausible that photo-
receptors contribute to the upregulation of hypoxia-induced
HIF target genes in response to a mild but chronic hypoxia
that may develop during ageing.

HIF1-dependent rod photoreceptor degeneration

Since rods are among the first cells to die in AMD [23] we
inactivated Vhl specifically in rods to model a state of
chronically activated HIF transcription factors in photo-
receptors as it may be found in the aged human retina.
Excision of floxed sequences starts at around PND7 and
affects about 50% of rods at around 6 weeks [21, 24].
Although increased HIF1A levels were detected already at
3 weeks of age (Fig. S1A), expression of the HIF1 target
genes Adm and Vegf was significantly increased only by 6
(Adm; Fig. S1B) and 11 weeks (Vegf; Fig. 5), respectively.
At 3 and 6 weeks of age, ONL thickness, retinal mor-
phology and expression of photoreceptor-specific as well as
of survival (Lif, Fgf2), and stress (glial fibrillary acidic
protein; Gfap) related genes were not affected in rodΔVhl

mice (Fig. S1B-F), suggesting that development of retinal
cells in rodΔVhl mice was not disturbed.

Genomic excision of floxed sequences was verified by
PCR (Fig. S2A) and normoxic stabilization of HIF1A and
HIF2A confirmed by Western blotting in retinas of
11-weeks-old rodΔVhl mice (Fig. S2B) [21]. Additional
inactivation of Hif1a and/or Hif2a resulted in increased
levels of HIF2A in rodΔVhl;Hif1a, of HIF1A in rodΔVhl;Hif2a, or
in unchanged levels of both HIFA transcription factors in
rodΔVhl;Hif1a;Hif2a mice (Fig. S2B). Rod-specific inactivation
of Vhl caused a late onset and slowly progressing retinal
degeneration reaching its maximal extent around 6 months
of age (Fig. 2a,b). Since only about 50% of rods express Cre
[21, 24], it is likely that surviving photoreceptors were Cre-
negative and may thus not have activated HIF transcription
factors. In contrast to other models of retina-specific Vhl
inactivation [19, 20], rodΔVhl mice lacked a strong vessel
phenotype. However, since some retinal sections suggested
the presence of very few displaced vessels in the ONL (not
shown), we cannot completely rule out that the retinal
vasculature of rodΔVhl mice was mildly affected as well.

Although an earlier cohort of rodΔVhl mice showed no
functional loss or degeneration at 17 weeks of age [21], we
detected photoreceptor degeneration already at 4 months in
the cohort presented here (Fig. 2a). This slightly accelerated
degeneration may be based on the prolonged light period
(14 h instead of 12 h) and slightly increased light levels in

Fig. 2 Consequences of chronically activated HIF transcription factors in
rods. a Retinal morphology was tested at 11 weeks, 4 months, 6 months,
and 1 year of age as indicated. Cre-negative Vhlflox/flox mice served as
controls. RPE retinal pigment epithelium, POS photoreceptor outer seg-
ments, PIS photoreceptor inner segments, ONL outer nuclear layer, INL
inner nuclear layer. Scale bar: 50 μm. N ≥ 3. b ONL thicknesses in indicated
strains were determined at 11 weeks and 6 months of age and are presented
as spidergrams. Shown are means ± SD of N ≥ 3, except for Vhlflox/flox mice
at 6 months (N= 2). c Expression of Gnat1 and Gnat2 in rodΔVhl (V),
rodΔVhl;Hif1a (VH1), rodΔVhl;Hif2a (VH2), and rodΔVhl;Hif1a;Hif2a (VH1H2) mice
at 11 weeks and 6 months of age. Expression levels were calculated relative
to their respective Cre-negative controls (set to 1; dotted line). Shown are
means ± SD of N= 3-4. *P< 0.05; **P< 0.01. Individual comparisons
between Cre-positive and Cre-negative mice of each genotype and time
point were done using Student’s t-test
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our new animal facility. Interestingly, aged control mice
that were housed under the same conditions showed a slight
thinning of the ONL with time (Fig. 2a,b). Importantly,
however, the slowly progressing, age-dependent photo-
receptor degeneration in rodΔVhl mice was completely res-
cued by the additional inactivation of Hif1a or of Hif1a and
Hif2a together, whereas inactivation of Hif2a alone had
only a minor protective effect (Fig. 2a,b).

We tested expression of Gnat1 and Gnat2 as correlates
for the presence of rods and cones, respectively. Both genes
were expressed at control levels in rodΔVhl mice up to
6 weeks of age (Fig. S1B). At 11 weeks only rodΔVhl;Hif2a

mice showed a slight reduction of Gnat1 expression

(Fig. 2c). At 6 months, however, Gnat1 was significantly
reduced in both rodΔVhl and rodΔVhl;Hif2a mice. Gnat2 was
not affected up to 6 months of age. These data support the
conclusion that the degenerative phenotype had a late onset,
primarily affected rods and depended on HIF1. HIF1-
dependency was also reflected by the retinal stress marker
GFAP that was elevated in rodΔVhl and rodΔVhl;Hif2a retinas
but remained at basal levels when Hif1a was inactivated
(Fig. S4).

Surprisingly, rodΔVhl mice also showed an RPE phe-
notype, albeit with variable severity and only in isolated
areas. Fundus imaging detected few pale flecks that
appeared in the OCT scans as hyperreflective regions in or

Fig. 3 RPE phenotype in rodΔVhl mice at 4 months of age. a Fundus
imaging and OCT scans of rodΔVhl;Hif1a mice (left, served as controls)
and rodΔVhl mice (right) at 4 months of age. Red lines indicate the
positions of the OCT scans. White arrows point to RPE irregularities in
rodΔVhl mice. b Morphology of a control and three different rodΔVhl

mice at 4 months of age. Shown are the focused regions where RPE
irregularities were detected. Arrows: examples of pyknotic nuclei. c

Higher magnifications of the RPE of a control and a rodΔVhl mouse.
Red lines indicate borders of the RPE. d RPE flatmounts of rodΔVhl;
Hif1a and rodΔVhl mice as indicated. Green: F-actin stained with phal-
loidin. Blue: nuclei stained with DAPI. RPE retinal pigment epithe-
lium, POS photoreceptor outer segments, PIS photoreceptor inner
segments, ONL outer nuclear layer, INL inner nuclear layer, Scale
bars: 100 μm (a) and 50 µm (b–d)
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close to the RPE at 4 months of age (Fig. 3a). Similar
flecks and hyperreflective OCT signals were also descri-
bed for human retinal degenerative diseases such as
Stargardt dystrophy [25]. Thus, even in the presence of
causative gene mutations for instance in ABCA4, degen-
eration of retinal cells and fundus appearance may not
always be uniform across the retina. Cross sections of
rodΔVhl retinas showed that the RPE was thicker and

multi-layered in focused regions. Here, RPE cells
appeared more heavily pigmented, partially vesiculated
and enlarged (Fig. 3b,c). Some RPE cells had a less reg-
ular shape and made contact to an unusually high number
of neighboring cells (Fig. 3d). Photoreceptors below
affected RPE regions seemed less viable as many pyknotic
nuclei were detectable in the ONL (Fig. 3b, arrows). Since
this RPE phenotype was never observed in rodΔVhl;Hif1a

Fig. 4 Scotopic retinal function of rodΔVhl, rodΔVhl;Hif1a, rodΔVhl;Hif2a,
and rodΔVhl;Hif1a;Hif2a mice at 6 months of age. a Scotopic ERG traces
were recorded after light stimuli of increasing light intensities. Shown
are representative traces. Cre-negative Vhlflox/flox mice served as con-
trols. b Scotopic a-wave and b-wave amplitudes plotted as a function

of stimulus intensity. Control mice were Cre-negative littermates of the
respective strains. Shown are averages ± SD. N= 6 eyes (3 mice),
except for controls of rodΔVhl;Hif2a (N= 5) and of rodΔVhl;Hif2a (N= 7),
and for rodΔVhl;Hif1a;Hif2a (N= 4). *P < 0.05. Two-way ANOVA with
Sidak’s multiple comparison test
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mice we conclude that chronic activation of HIF1 in rods
not only caused cell death in cis but also affected neigh-
boring RPE cells in some parts of the retina.

The tissue phenotype was mirrored by retinal function.
At 6 months of age, rodΔVhl and rodΔVhl;Hif2a mice had
significantly reduced scotopic a- and b-wave amplitudes
at higher flash intensities. Mice lacking Hif1a in addition
to Vhl (rodΔVhl;Hif1a and rodΔVhl;Hif1a;Hif2a mice), however,
retained normal function (Fig. 4). This shows that adult
photoreceptors do not require HIF1 for function or sur-
vival. Although Vhl inactivation was rod-specific, cone-
driven photopic b-wave amplitudes at higher light inten-
sities were also reduced in rodΔVhl mice suggesting that
loss of VHL in rods affected cone function or survival.
Interestingly, the reduction in cone-driven ERG responses
was prevented by the additional inactivation of Hif1a and/
or Hif2a (Fig. S3). The reason for this is unclear but may
point to mechanisms in rods that can affect cone function
in a HIF1- and HIF2-dependent manner. However, this
needs further testing.

The transcriptomic response

Increased expression of the HIF1 targets Adm, Vegf, Glut1,
Pdk1, and Egl-9 family hypoxia-inducible factor 1 (Egln1)
in rodΔVhl and rodΔVhl;Hif2a mice verified that HIF1 was
transcriptionally active at 11 weeks of age (Fig. 5). Normal
expression levels of these genes in rodΔVhl;Hif1a and rodΔVhl;
Hif1a;Hif2a mice confirmed their HIF1-dependency. Expres-
sion of these genes was less increased at 6 months, most
likely because most rods lacking Vhl have already degen-
erated at this time point (Fig. 2a). BCL2 interacting protein
3 (Bnip3), caspase-1 (Casp1), leukemia inhibitory factor
(Lif), endothelin-2 (Edn2), fibroblast growth factor-2 (Fgf2),
signal transducer and activator of transcription-3 (Stat3) and
Gfap are upregulated in degenerating retinas and connected
to cell death or cell survival [26–29]. These genes were
activated exclusively in the degenerating retinas of rodΔVhl

and rodΔVhl;Hif2a mice. It is noteworthy that LIF, and to a
lesser extent also EDN2 and CASP1, showed a trend of
increased expression in the aged human retina (Fig. 6)

Fig. 5 Retinal gene expression. Retinal expression of indicated genes
was tested in retinas of rodΔVhl (V), rodΔVhl;Hif1a (VH1), rodΔVhl;Hif2a

(VH2), and rodΔVhl;Hif1a;Hif2a (VH1H2) mice at 11 weeks, 4 months and
6 months of age. Expression levels were calculated relative to their

respective Cre-negative controls (set to 1; dotted line). Shown are
means ± SD of N= 3-4. *P < 0.05; **P < 0.01; ***P < 0.001. Indivi-
dual comparisons between Cre-positive and Cre-negative mice of each
genotype were done using Student’s t-test
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pointing to a stress response that is more likely to be acti-
vated in the senescent retina.

In addition to HIF1A and HIF2A, levels of pSTAT3
were also increased in rodΔVhl and rodΔVhl;Hif2a mice
(Fig. S4). HIF1 may cooperate with STAT3 to regulate
HIF1-specific gene expression [30], may increase STAT3
activity through decreasing suppressor of cytokine signal-
ling 3 (SOCS3) [31] and may directly interact with con-
stitutively active STAT3 [32]. Thus, regulation of genes in
rodΔVhl and rodΔVhl;Hif2a mice may be attributed to HIF1,
STAT3 or to both transcription factors.

To detect novel genes that were regulated by
chronically active HIFs in rods, we determined the
retinal transcriptomes of rodΔVhl, rodΔVhl;Hif1a and of
Vhlflox/flox;Hif1aflox/flox controls at 11 weeks of age
(Fig. S5). Tables S2-S4 show the top up-regulated and
down-regulated genes, and list genes that may be
regulated by HIF1, HIF2 or STAT3, or a combination of
those (Table S2); by HIF1, STAT3 or both of them
(Table S3); and by mainly HIF2 (Table S4). For a
detailed description of the transcriptomic data, see

the supplemental information including Tables S2-S7
and Files S1-S3. Among the top upregulated genes in
rodΔVhl mice we identified and verified Adm and Edn2
by real-time PCR (Fig. 5). Among the genes with less
well known functions, we verified lysyl oxidase like 4
(Loxl4), ladinin 1 (Lad1) and smoothelin like 2 (Smtnl2)
establishing them as HIF-responsive genes in mouse
rods (Fig. 5).

Gene expression in the human retina

The gene expression pattern in mice may be relevant to
understand ageing processes in human retinas. LIF levels
were not only increased in the stressed (degenerating)
mouse retina (Fig. 5) but also in the aged human retina.
EDN2, another gene of the LIF-signalling pathway [27],
and CASP1, a proinflammatory protein [33] implicated in
inflammasome-triggered pyroptosis [34], also revealed
trends of increased expression in aged human retinas pro-
viding evidence of potential inflammatory and stress-related
processes in the old eye (Fig. 6a,b).

Fig. 6 Age-dependent gene expression in the human retina. a, b
Expression of LIF, CASP1, FGF2, and EDN2 in the central and per-
ipheral human retina of 13 donor eyes. c, d Expression of LOXL4,
LAD1, and SMTNL2 in the central and peripheral human retina of 13

donor eyes. Expression levels were normalized to ACTB and are
shown relative to the levels in the retina of a 17-year-old donor. The
housekeeping gene RPL28 served as control. Dots: individual values.
Lines: linear regression through all values
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Although LAD1 was detected in only five of the central
and nine of the peripheral retinal samples, it showed a clear
tendency of increased expression with age. LAD1 encodes
an anchoring filament [35] and might thus be involved in
the structural adaptation to reduced oxygen levels in rods.
Expression of LOXL4 and SMTNL2 followed a similar trend
as observed for RPL28 and were thus without apparent
regulation during ageing (Fig. 6c,d). LOXL4 encodes a lysyl
oxidase-like protein implicated in collagen remodelling and
metastasis formation in cancer [36]. Its expression in the
retina has not yet been described but it might be involved in
extracellular matrix remodelling during hypoxic periods.
Even less is known about SMTNL2, except that it may be a
target for c-Jun N-terminal kinase [37]. It will be of interest

to localize these proteins in the normal and hypoxic retina
and to elucidate their functions.

Anti-Hif1a gene therapy

To reduce toxic levels of HIF1 and protect photoreceptors
in rodΔVhl mice by a gene therapy approach, we used AAV-
mediated expression of an shRNA against Hif1a. Test of the
shRNA and corresponding siRNA in NIH3T3 cells showed
a highly efficient downregulation of HIF1A, whereas
STAT3 was not affected (Fig. 7a). AAV2/8(Y733F) viral
particles carrying the sh-Hif1a or a scrambled sequence (sh-
ctrl) as well as an Egfp expression cassette (Fig. S6) were
injected into the subretinal space of rodΔVhl mice at 5 weeks

Fig. 7 Efficacy of RNA interference and anti-Hif1a gene therapy. a
NIH3T3 cells were transiently transfected with si-Hif1a RNA or stably
transfected with sh-Hif1a, or treated with the respective scrambled
controls as indicated, followed by exposure to 0.2% oxygen (hypoxia)
or normoxia. Not transfected cells (nt) exposed to hypoxia served as
controls. Levels of HIF1A, STAT3, and ACTB were detected by
Western blotting. b Fluorescent fundus imaging (upper panels) and
OCT scans (lower panels) of eyes that received a subretinal injection
of AAV2/8(Y733F) particles expressing either the control sh-RNA
sequence (left, sh-ctrl) or the sh-Hif1a sequence (sh-Hif1a, right)
together with EGFP. The red line in the fundus image indicates the
position of the OCT scan. c Retinal cross sections of mice injected
with the control (left, sh-ctrl) or the sh-Hif1a virus (right, sh-Hif1a).

Lower panels are higher magnifications of retinal areas marked with a
white square in the upper panels. White arrow: damage due to injec-
tion. Scale bar: 50 µm. d Spidergram of the ONL thickness 5 months
after injection of the control (black line, sh-ctrl) or the sh-Hif1a virus
(blue line, sh-Hif1a). All mice were injected at 5 weeks and analysed
at 6 months of age. Areas of obvious injection-inflicted damage (see
white arrow in (c) as an example) were excluded from quantification.
Shown are means ± SEM. N= 6. e Quantification of the ONL thick-
ness of sh-Hif1a (blue bar) and sh-ctrl (black bar) virus injected mice
at 6 months of age. All data points (115 for sh-Hif1a; 99 for sh-ctrl)
shown in (d) were included. Shown are means ± SEM. **P < 0.01.
ONL outer nuclear layer
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of age. Fundus fluorescence imaging at 6 months showed
surprisingly widespread EGFP expression (Fig. 7b) that was
largely confined to ONL and RPE (Fig. 7c). OCT scans
indicated a more regular ONL layering and measurements
showed significantly increased ONL thickness in retinas of
sh-Hif1a injected eyes. The strongest effect was observed in
the ventral retina and dorsally close to the optic nerve head
(Fig. 7d,e). These data strongly support the hypothesis that
an anti-Hif1a therapy may protect photoreceptors
in situations of chronic tissue hypoxia.

Discussion

Tissue hypoxia is relevant for many pathologies affecting
the retinal and choroidal vasculature in diseases such as
diabetic retinopathy and neovascular AMD. Targeting the
HIF-regulated growth factor VEGF shows great benefit for
patients suffering from wet AMD. However, chronic
hypoxia may also develop in the normal retina during
ageing as indicated by the increased expression of HIF
target genes in retinas of older donors (Fig. 1). Since
chronic HIF activity led to age-dependent photoreceptor
degeneration in mice, we and others hypothesize that
chronically increased HIF activity in aged human retinas
may be involved in AMD pathogenesis in at least some
patients [4, 13]. This hypothesis, however, does not imply
that elevated HIF activity is toxic per se but that it may be
one of several factors contributing to multifactorial pathol-
ogies found in diseases such as dry AMD. Thus, reducing
HIF levels may be a potential strategy to eliminate one of
the disease-contributing factors. This may lessen the burden
for cells and potentially result in delaying or even pre-
venting disease onset and/or progression.

Earlier we showed that a short period of systemic
hypoxic preconditioning induces a response that protects
photoreceptors [38]. Protection is either HIF-independent or
requires HIF activity in cells other than photoreceptors
[39, 40]. Also, after mice are removed from acute hypoxia,
retinal HIF1A returns to basal levels in less than one hour
allowing cells to quickly re-establish a normoxic gene
expression profile [38, 41]. In contrast, the degeneration-
inducing chronic activation of HIF1 in rods over weeks or
months may induce lasting changes in the cellular meta-
bolism, which may lead to deficits such as reduced energy
production and finally to cell death. Indeed, increased
expression of Pdk1 and Glut1 in rodΔVhl mice indicated a
metabolic shift that may have resulted in reduced oxidative
phosphorylation and thus reduced production of ATP in
rods. If long-lasting, this may curtail metabolic support and
weaken the cells’ ability to survive periods of stress.

Gene expression profiling revealed that HIF1-induced
degeneration in rodΔVhl mice followed similar signalling

mechanisms as detected in other models of retinal degen-
eration. This included activation of the Lif/Edn2/Fgf2
pathway [27, 28, 42] with a late increase in Casp1
expression [29]. In addition, we detected a variety of dif-
ferentially expressed HIF1 target genes in retinas of rodΔVhl

mice, even before the onset of extensive degeneration.
Among those, LAD1, LOXL4, and SMTNL2 were also
detected in the human retina, with LAD1 showing a ten-
dency of increased expression with age.

Photoreceptor degeneration in rodΔVhl mice depended on
intrinsic HIF1, with only a minor contribution of HIF2. This
is of relevance and in marked contrast to RPE cells where
chronically active HIF2, but not HIF1, leads to RPE loss
[22]. Intriguingly, the changes in cellular metabolism
resulting from chronically active HIF1 in rods or HIF2 in
RPE not only caused cell death in cis but also affected
neighboring cells (Fig. 3 and [22]) either through secreted
factors, accumulation of toxic cellular debris or reduced
metabolic support. The differential toxicity of chronically
active HIF1 and HIF2 for rods and RPE may reflect the
highly divergent function of these two cell types and indi-
cates that different aspects of the hypoxic response can be
toxic. These might be altered lipid handling for RPE cells
[22] and energy metabolism (see above) or other factors for
rods.

Our rescue experiments showed that inactivation of
HIF1A led to a thicker ONL in rodΔVhl mice. This could
result either from prevention of cell death or from cell
proliferation leading to tissue regeneration. However, the
second explanation is unlikely since the ONL in mice
lacking HIF1A in rods (rodΔVhl;Hif1a (Fig. 2), rodΔHif1a and
rodΔHif1a;Hif2a mice [39, 40]) retained a comparable thickness
to the ONL in wild type mice. Even the inactivation of
Hif1a in most retinal cells during development does not
increase ONL thickness [43]. Thus, lack of Hif1a may not
affect cell proliferation but rescues rods by preventing cell
death.

Although it will be important to define the processes that
lead to HIF1-dependent rod cell death and to HIF2-
dependent degeneration of RPE cells, their detailed
knowledge might not be essential to establish therapeutic
approaches. Our genetic experiments showed that inacti-
vation of Hif1a at the beginning of the hypoxic response
rescued photoreceptor cells. Patients, however, may seek
medical advice only once pathological processes have
commenced. Thus, it is important to establish an interven-
tional therapy. We showed that an RNA interference strat-
egy through the AAV-based delivery of an sh-RNA against
Hif1a may be an applicable strategy to protect photo-
receptors in conditions of chronic HIF activity. However,
from our data and data published by others [22] it seems
clear that a therapy targeting solely Hif1a in photoreceptors
will not be sufficient for patients. Since reduced choroidal
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blood flow in the ageing eye affects oxygenation of both
photoreceptors and RPE, a combination therapy that targets
both cell types and both HIF1 and HIF2 transcription fac-
tors may be needed. For a therapy to be successful it is
therefore mandatory that inactivation of HIF1 and HIF2 in
adult photoreceptors and RPE does not lead to toxic effects.
We recently showed that Hif1a and Hif2a can be safely
inactivated in adult rods [39]. Similarly, inactivation of Hif1
alone in RPE cells had no obvious consequences [44] and
we have collected preliminary evidence that simultaneous
inactivation of both Hif1a and Hif2a did not adversely
affect RPE (not shown). This is further supported by the
normal appearance of the retina and RPE in mice lacking
Vhl, Hif1a and Hif2a in the RPE [22]. However, since a
beneficial effect of Hif1a after retinal detachment has been
suggested [45], it may be advisable not to inhibit HIF1
completely but to merely reduce its expression or activity.

In conclusion, our data show that a chronic activation of
HIF transcription factors in photoreceptors induces retinal
degeneration in a HIF1-dependent manner. Since several
hypoxia-related genes may be expressed at higher levels in
the retina of older donors, hypoxia-related mechanisms may
be relevant in the ageing human retina and contribute to
retinal diseases such as AMD. As HIF transcription factors
do not seem essential for adult photoreceptors and RPE,
anti-HIF therapies may prove beneficial for patients.

Materials and methods

Mice, genotyping and excision of floxed sequences

All mice were maintained as breeding colonies at the
Laboratory Animal Services Center (LASC) of the Uni-
versity of Zurich in a 14 h: 10 h light-dark cycle with lights
on at 6 am and lights off at 8 pm. Mice had access to food
and water ad libitum. Average light intensity at cage levels
was 60–150 lux, depending on the position in the rack.

Vhlflox/flox [46], Hif1aflox/flox [47], Hif2aflox/flox [48], and
OpsinCre (LMOPC1; [24]) mice were intercrossed to obtain
rodΔVhl (Vhlflox/flox;OpsinCre), rodΔVhl;Hif1a (Vhlflox/flox;Hif1a-
flox/flox;OpsinCre), rodΔVhl;Hif2a (Vhlflox/flox;Hif2aflox/flox;
OpsinCre), and rodΔVhl;Hif1a;Hif2a (Vhlflox/flox;Hif1aflox/flox;
Hif2aflox/flox;OpsinCre) mice. All breeding pairs were het-
erozygous for OpsinCre and pups without OpsinCre served
as littermate controls. Rod-specific Cre expression in
OpsinCre mice starts around postnatal day 7 and increases
up to 6 weeks of age [24]. All mice were homozygous for
the Rpe65450Leu variant [49]. Genotyping was performed by
conventional PCR using pairs as specified in Table S8. To
detect alleles carrying CRE-mediated deletions of the floxed
sequences, genomic DNA was isolated from retinal tissue
and amplified by PCR using the primer pairs shown in

Table S9. All PCR products were run on agarose gels and
visualized using ethidium bromide.

Human retina samples

Peripheral nasal retina and central retina including the
macula were isolated and frozen separately. RNA was iso-
lated using the RNeasy kit (Qiagen, Hilden, Germany).
cDNA synthesis and real-time PCR were performed as
described for the mouse samples (see below) using human-
specific primer pairs (Table S10).

Western blotting

Isolated retinas were sonicated in 200 µl of 100 mM Tris/
HCl (pH 8,0). After centrifugation (1000 × g; 3 min) protein
concentrations were determined in the supernatants using
Bradford reagent (BioRad, Hercules, CA, USA). Standard
SDS-PAGE and Western blotting were performed using the
following primary antibodies: rabbit anti-HIF1A
(1:2000–1:4000, NB100-479, Novus Biologicals, Cam-
bridge, UK); rabbit anti-HIF2A (1:1000, PAB12124,
Abnova, Aachen, Germany); rabbit anti-pSTAT3Tyr705
(1:500, #913L, Cell Signaling Technology, Danvers, MA,
USA); rabbit anti-STAT3 (1:1000, D3Z2G, Cell Signaling
Technology); mouse anti-GFAP (1:1000, G3893-Clone G-
A-5, Sigma, Buchs, Switzerland); mouse anti-ACTB
(1:10,000, A5441, Sigma). Primary antibodies were dilu-
ted in 5% non-fat blocking milk (BioRad, Cressier, Swit-
zerland) in TBST, added to the membrane and incubated
over night at 4 °C with gentle agitation. Appropriate HRP-
conjugated secondary antibodies were added and signals
detected using the Western lightning chemiluminescence
reagent (PerkinElmer, Waltham, MA, USA). Signals were
analysed using X-ray films.

Morphology, RPE flatmounts, and
immunofluorescence

Eyes were marked at the dorsal limbus, enucleated, fixed in
glutaraldehyde (2.5% in cacodylate buffer) for 12–24 h at 4
°C, trimmed, post-fixed in 1% osmium tetroxide and
embedded in Epon 812 as described [28]. Tempero-nasal
cross-sections of 0.5 µm were cut through the optic nerve
head, stained with toluidine blue and analysed by light
microscopy (Zeiss, Axioplan, Jena, Germany). The thick-
ness of the outer nuclear layer was measured at indicated
distances from the optic nerve head using the Adobe Pho-
toshop CS6 ruler tool (Adobe Systems, Inc., San Jose, CA,
USA). RPE flatmounts were prepared and stained as
described [50]. Briefly, eyes were enucleated and incubated
in 2% paraformaldehyde for 5 min. After removal of cornea
and lens and incubation in phosphate buffer containing 140
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mM NaCl and 2.7 mM KCl for 20 min, the detached retina
was gently removed and the eyecup prepared for flat
mounting by making four incisions. The resulting clover-
leafed eyecup was post-fixed in 4% PFA for 1 h. Alexa
Fluor 488-phalloidin (1:100, A12379, Thermo Fischer
Scientific, Waltham, MA, USA) was applied for 2 h and
nuclei stained with DAPI for 30 min. Flatmounts were
analysed using a fluorescence microscope (Axioplan 2,
Zeiss, Switzerland).

Electroretinography, fundus imaging, and OCT

Pupils of dark-adapted mice were dilated with Cyclogyl 1%
(Alcon Pharmaceuticals, Fribourg, Switzerland) and Neo-
synephrine 5% (Ursapharm Schweiz GmbH, Roggwil,
Switzerland). Mice were anesthetized by a subcutaneous
injection of ketamine (85 mg/kg, Parke-Davis, Berlin,
Germany) and xylazine (4 mg/kg, Bayer AG, Leverkusen,
Germany). A drop of atropin 0.5% (Thea Pharma, Schaff-
hausen, Switzerland) was applied to each cornea just prior
to placing gold ring electrodes onto each cornea. Record-
ings were done with an LKC UTAS Bigshot unit (LKC
Technologies, Inc. Gaithersburg, MD, USA) using flash
intensities from −50 db (0.000025 cd*s/m2) to 15 db (79
cd*s/m2) for scotopic and from −10 db (25 cd*s/m2) to 25
db (790 cd*s/m2) for photopic responses. Before photopic
responses were recorded, mice were light-adapted for 5 min.
Ten recordings were averaged per light intensity.

For fundus imaging and OCT scans, pupils were dilated
and mice anesthetized as described above. A drop of 2%
methocel (OmniVision AG, Neuhausen, Switzerland) was
applied to keep eyes moist. Fundus images and OCT scans
were acquired using the Micron IV system (Phoenix
Research Labs, Pleasanton, CA, USA) as described [51].

RNA isolation, gene chip analysis, and semi-
quantitative real-time PCR

Total RNA was purified from retinas using RNA isolation
kits (RNeasy, Qiagen, Hilden, Germany; Macherey-Nagel,
Düren, Germany) with an on-column DNAse treatment.
RNA concentrations were measured using a Nanodrop
spectrophotometer (Thermo Fisher Scientific). The retinal
transcriptomes of 11-weeks-old rodΔVhl, rodΔVhl;Hif1a, and
Vhlflox/flox;Hif1aflox/flox (controls, ctrl) mice were determined
at the Functional Genomics Center of the University of
Zurich using 'Agilent Mouse 4 × 44k V2' gene chips. RNA
isolates from four individual mice per genotype were
analysed.

For real-time PCR, cDNA was prepared from total RNA
using oligo(dT) and M-MLV reverse transcriptase (Pro-
mega, Dübendorf, Switzerland). Ten nanogram cDNA was
amplified in a LightCycler480 with SYBR Green I master

mix (Roche Diagnostics). Primer pairs (Table S10) avoided
known SNPs and were designed to span large intronic
regions. Levels were normalized to Actb as reference gene
and relative expression was calculated using the compara-
tive threshold cycle method (ΔΔCT). At least three mice per
strain were used for each time point and strain. Deletion
strains were compared to their respective control strain,
which expression was set to 1 for each time point.

siRNA and shRNA-mediated gene silencing in
NIH3T3 cells

NIH3T3 cells (ATCC® CRL-1658™) were plated on 6-well
plates and grown in DMEM+ 10% heat-inactivated fetal
bovine serum (FBS, Gibco, Thermo Fisher Scientific) and
1% penicillin-streptomycin (Gibco) at 37 °C and 5% CO2

for 24 h. Cells were transfected with 80 pmol anti-Hif1a
siRNA (5′-GUGGAUAGCGAUAUGGUCAUU-3′) using
lipofectamine RNAiMAX (Invitrogen, Thermo Fisher Sci-
entific) and Opti-MEM (Gibco). A scrambled sequence
(AllStars negative control siRNA; Qiagen) served as con-
trol. Twenty four hours after transfection, cells were or were
not exposed to hypoxia (0.2% O2, 5% CO2) at 37 °C for 6 h.
After washing with pre-warmed PBS, cells were collected
with sample buffer and Western blotting was performed as
described above.

To test the efficiency of the corresponding anti-Hif1a
shRNA, we used lentivirus-pseudotyped particles that were
produced using HEK293T cells (ATCC® CRL-3216). Briefly,
cells were plated in 75 cm2 culture flasks and co-transfected
with anti-Hif1a shRNA or non-target shRNA (Sigma) using
the ViraPower lentiviral expression vector system and lipo-
fectamine 3000 (Invitrogen, Thermo Fisher Scientific). The
following day, the medium was replaced with fresh medium
containing 10% FBS and 1% penicillin-streptomycin. The
supernatant was collected 72 h post transfection, centrifuged to
pellet large particles and debris, and filtered through a 0.45 μm
filter (Merck&Cie, Schaffhausen, Switzerland). The filtrate
was used to transduce NIH3T3 cells with lentiviral particles
containing sh-Hif1a or sh-ctrl and 6 μg/mL polybrene, fol-
lowed by selection with 2 μg/mL puromycin. To test sh-Hif1a-
mediated downregulation of HIF1A in hypoxia, cells were
exposed to 0.2% O2 for 6 h and harvested immediately
thereafter. Protein homogenates were used for Western blot-
ting as described above.

AAV–mediated shRNA expression and analysis

pAAV2.1-U6-shHif1a-CMV-EGFP (3 × 1011 vector gen-
omes (vg)/μL) and pAAV2.1-U6-shcontrol-CMV-EGFP
(3 × 1010 vg/μL) (Fig. S6) were packaged as AAV2/8Y733F
and produced as described recently [52]. For subretinal
injections, the pupils were dilated and mice were
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anesthetized as described above. Viscotears (Bausch &
Lomb Swiss AG, Zug, Switzerland) were applied to keep
the eyes moist. 1.5 × 1010 total vg were injected into the
subretinal space using the NanoFil Intraocular Injection Kit
(WPI, Berlin, Germany). To visualize and control the
injection, we added a small amount of fluorescein (0.1 mg/
mL, Akorn Inc., IL, USA) to the AAV solution. Mice were
injected at 5 weeks and analysed at 6 months of age. After
euthanasia, eyes were marked nasally, enucleated and fixed
in 4% paraformaldehyde for 1 h at 4 °C as described [53].
Dorsoventral cryosections (12 μm) were cut, counterstained
with DAPI (4′,6-Diamidine-2′-phenylindole dihy-
drochloride, Roche, Basel, Switzerland) and analysed by
fluorescence microscopy (Axioplan; Zeiss, Jena, Germany).
The thickness of the outer nuclear layer was measured as
described above. Tissue areas that were damaged due to
injections were excluded from measurements. The average
ONL thicknesses after treatment with sh-Hif1a (115 mea-
surements) or sh-ctrl (99 measurements) viruses, excluding
the optic nerve head, were calculated [54] and compared.

Statistical analysis

a-wave and b-wave amplitudes of ERG recordings were
tested using 2-way ANOVA with Sidak’s multiple com-
parison test. Gene expression in deletion strains was com-
pared to their respective control strains at each time point
individually and evaluated by Student’s t-test (GraphPad
Prism, San Diego, CA, USA). Student’s t-test was also used
to compare the overall ONL thickness of sh-Hif1a and sh-
ctrl treated mice. P-values < 0.05 were considered to show
significant differences. Linear regression of gene expression
in human samples was calculated using Prism software
(GraphPad, La Jolla, USA).

Study approval

Mouse experiments were performed in accordance with the
regulations of the Veterinary Authority of Zurich (ZH109/
2013; ZH219/2012; ZH216/2015; ZH141/2016) and with
the statement of ‘The Association for Research in Vision
and Ophthalmology’ for the use of animals in research.
Human retinas were collected from donor eyes that were
enucleated post-mortem at the University Hospital Zurich,
Switzerland. Collection of retinas was approved by the
ethics committee of Zurich, Switzerland (BASEC-Nr:
PB_2017-00550) and adhered to the tenets of the Declara-
tion of Helsinki.
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