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Abstract: The current work focuses on the development of a novel electrospun silk fibroin (SF) non-
woven mat as a GTR membrane with antibacterial, biomineralization and biocompatible properties.
The γ-poly glutamic acid (γ-PGA)-capped nano silver fluoride (NSF) and silver diamine fluoride
(SDF) were first synthesized, which were dip-coated onto electrospun silk fibroin mats (NSF-SF
and SDF-SF). UV-Vis spectroscopy and TEM depicted the formation of silver nanoparticles. NSF-SF
and SDF-SF demonstrated antibacterial properties (against Porphyromonas gingivalis) with 3.1 and
6.7 folds higher relative to SF, respectively. Post-mineralization in simulated body fluid, the NSF-SF
effectively promoted apatite precipitation (Ca/P ~1.67), while the SDF-SF depicted deposition of
silver nanoparticles, assessed by SEM-EDS. According to the FTIR-ATR deconvolution analysis,
NSF-SF portrayed ~75% estimated hydroxyapatite crystallinity index (CI), whereas pure SF and
SDF-SF demonstrated ~60%. The biocompatibility of NSF-SF was ~82% when compared to the
control, while SDF-coated samples revealed in vitro cytotoxicity, further needing in vivo studies for
a definite conclusion. Furthermore, the NSF-SF revealed the highest tensile strength of 0.32 N/mm
and 1.76% elongation at break. Therefore, it is substantiated that the novel bioactive and antibacterial
NSF-SF membranes can serve as a potential candidate, shedding light on further in-depth analysis
for GTR applications.

Keywords: nano silver fluoride; silver diamine fluoride; antibacterial efficacy; biomineralization;
in vitro cytotoxicity

1. Introduction

Periodontitis, a chronic inflammatory disease, is a condition caused by microorgan-
isms in the tissues supporting teeth, leading to progressive deterioration of ligament,
alveolar bone, thereby forming a deep periodontal pocket and gingival recession [1,2].
Periodontium regeneration can be achieved by various clinical therapies opted for treating
severe periodontitis lesions. Periodontal defect reconstruction via guided tissue regenera-
tion (GTR) membranes is one of the successful surgical techniques to resist proliferating
connective tissue from migrating into the defect site [3].
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The component used for the construction of the membrane used for GTR is a vital
aspect of its efficacy. Essentially, the membrane should fulfill the main designing criteria
for GTR, such as biocompatibility, cell occlusion, spaciousness, clinical manageability,
and tissue integration [4]. Regarding the membrane materials used, various examples
include synthetic polymers such as polytetrafluoroethylene (PTFE), polylactic acid (PLA),
polyglutamic acid (PGA), natural polymers such as collagen, chitosan, gelatin, etc. [5,6].
The resorbable materials offer the advantages over the non-resorbable membranes (such as
PTFE, titanium mesh, etc. [3]) of no further surgical interventions to remove the membrane,
and therefore are extensively used in different clinical situations [6]. A popularly used
natural polymer, silk fibroin (SF; drug-loaded, alone or functionalized) has noteworthy
mechanical properties, well-recognized biocompatibility, proteolytic degradability, min-
imum inflammatory reaction, and is cost-effective. Moreover, the efficacy of silk fibroin
towards protein and cell response mimics the extracellular matrix collagen, through the
production of nanofibers by the electrospinning process [7–9]. However, the disadvantage
of the produced SF lies in its brittleness, which restricts its utilization for flexible membrane
material [10,11]. Therefore, SF was blended or reinforced with other materials such as
polyethylene oxide and chitosan [12] to achieve desired mechanical or biological properties.
However, the intended material of use for this work, SF, lacks antibacterial property for
biomedical applications, for which, SF was enriched/modified by the use of functional
nanomaterials/carriers such as silver, chitosan, graphene, and graphene oxide [13–17].

The key to successful therapy involves the reduction/elimination of periodontal
pathogens (anaerobic bacteria) from the deep periodontal pocket [1,18]. Bacteria such
as Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis (P.gingivalis), occur
in the sub-gingival plaque/biofilm [19]. Microbial contamination of the GTR surgical
sites may impact the cellular attachment process for periodontal ligament [20,21] and
jeopardize the outcome of treatment, in terms of a hindrance towards the connective
tissue/bone formation [22]. It was observed that introduction of antibiotics such as amoxi-
cillin or tetracycline onto the membranes greatly reduced the bacterial adhesion [23]. Silver
nanoparticles (AgNPs), developed by various techniques, result in higher anti-microbial ac-
tivity in treating infections (due to unique chemistry, shape, and higher surface area) [24,25].
In tackling the infection, their applications include endodontics, dental, bone implantology
and prostheses, and GTR [24,26–29]. The effect of AgNP-GTR has even been compared
with the doxycycline (DOX-GTR) and found to be effective against several bacteria as-
sociated [29]. Silver diamine fluoride (SDF) and nano silver fluoride (NSF) are amongst
the effective antibacterial agents used for treating dental caries [30,31]. Furthermore, fluo-
ride also promotes remineralization. The efficacy of nano-silver constituting the fluoride
inclusion was considered equivalent to that of SDF, with an added advantage of lower
cytotoxicity than the SDF [30]. It is also suggested that the efficacy of NSF may be better
than conventional fluorides regarding the treatment of caries lesion owing to the antibac-
terial action and remineralization [32]. If indicated, there may be a need for a material
acting as a source of calcium or enhancing mineralization and aiding particle retention
in the early process of GTR, which may also help engineer new periodontium, while
restricting the gingival growth. The fabrication of such a kind of functional periodontal
membrane by the electrospinning technique may act as an implant/interface between
tissue and bone [33–35].

To date, no work has been reported for the application of NSF/SDF-coated materials
in the field of guided tissue regeneration. Therefore, considering these facts, this work aims
for the development of an NSF-coated electrospun SF and compared it with SDF-SF. The
coated-SF materials are believed to act as an efficient antibacterial material. Moreover, this
material may supposedly enhance tissue regeneration under the biomineralization process
and possess efficient mechanical properties.
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2. Materials and Methods
2.1. Materials

Starting powders, silver nitrate (99.85); sodium borohydride (98+%); ammonium
fluoride (96%); ammonia water (25%); sodium carbonate (99%); anhydrous lithium bromide
(99%); ammonium persulfate (98%); aniline monomer (99%); formic acid (98%); and Bombyx
mori silkworm cocoon were used as received without further purification. All reagents
were obtained from Sigma-Aldrich, New Taipei City, Taiwan.

2.2. Preparation of Degummed Silk Fibroin

Native silkworm (Bombyx mori) silk comprises dual silk fibroin fibers coated with
sericin. The sericin was removed by a degumming process, which implies boiling the
silkworm cocoons in 0.02 M sodium carbonate solution, for 30 min. Subsequently, the dried
degummed silk fibers were dissolved in a 9.3 M lithium bromide solution for 4 h at 60 ◦C.
The resultant fibroin solution was dialyzed using a dialysis cassette with 3500-MW cutoff
(MWCO) for 72 h, and then lyophilized for long-term storage.

2.3. Preparation of Silk Fibroin Nanofiber Mats

Silk fibroin nanofiber mats were prepared by using an electrospinning apparatus
detail reported elsewhere [36]. The formic acid was utilized to prepare 10 wt% silk fibroin
solutions. Subsequently, the resulting solution was ejected through a syringe with a
needle size of gauge 20. The feeding rate, applied voltage, and tip-target distance for
electrospinning were 0.15 mL/hr, 18 kV, and 12 cm, respectively. The fabricated electrospun
SF mats were treated with 90% ethanol, overnight, and then air-dried.

2.4. Synthesis of NSF and SDF, and Their Coating on SF

The AgNPs were synthesized by the reduction reaction of silver nitrate (AgNO3)
using sodium borohydride (NaBH4) and γ-PGA as a capping agent [30]. Typically, we
homogenized AgNO3 (1 mL, 0.11 M) and γ-PGA (27.5 mL, 1.7 mM), initially dissolved in
de-ionized water (DI) water, under magnetic stirring. Then, the mixture was subjected to
drop-wise addition of freshly prepared NaBH4 (0.5 mL, 0.3 M), while stirring vigorously.
The Ag+ ion reduction was triggered, and there was a change in the color of solution from
colorless to reddish brown. Ammonium fluoride (NH4F) (1 mL, 0.21 M) was added, under
constant stirring, overnight. The synthesized solution was 1% NSF (represented as NSF
throughout the manuscript), a dark brown colored solution, which was stored at 4 ◦C in
the refrigerator in a bottle covered with black plastic. The UV-Visible spectroscopy (JASCO
V-770 Spectrophotometer, Tokyo, Japan) was then performed for the confirmation of the
formation of AgNPs, and the size was estimated by transmission electron microscopy (TEM
HT7700, HITACHI, Tokyo, Japan).

The 38% SDF was prepared by adding 6.8 g of AgNO3 in 5 mL of DI water, mixed
homogenously by vortexing. This was followed by NH4F addition (1.47 g), and again
homogenized. Then, ammonia was introduced to the solution and the final volume of
13.2 mL was reached with DI water, keeping pH 7. The colorless solution was stored
in a bottle (wrapped with a black plastic) at 8 ◦C [37]. The 38% SDF (concentrated SDF,
represented as CSDF) was also diluted to 1% SDF (diluted SDF, represented as DSDF), in
order to have the same concentration as that of NSF (for comparison purposes).

The prepared NSF and SDF (CSDF, DSDF) were coated using the dip-coating process
on the SF mats for a period of 24 h under dark conditions and then oven-dried and stored
in the dark.

2.5. Antibacterial Activity of the Coated SF

The antibacterial property of the samples (SF, NSF, CSDF, DSDF-coated silk fibroin,
n = 3) was assessed using Gram-negative (P.gingivalis; ATCC 33277). In a typical experiment,
the samples were introduced into a 24-well plate (in two sets), and 100 µL of the bacterial
solution (0.1 optical density, OD) was seeded upon samples. The samples were incubated
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under anaerobic conditions, for 48 h, at 37 ◦C, after which, they were thoroughly rinsed
with PBS to remove the non-adherent bacterial cells. One of the sets of the cultured samples
was analyzed by SEM imaging for qualitative and morphological analysis. The adhered
bacteria were fixed with glutaraldehyde and incubated at 4 ◦C overnight. After thorough
washing with PBS, the samples were then dehydrated in a gradient alcohol series and
sputter-coated with gold for scanning electron microscopy (SEM, SU3500, HITACHI, Tokyo,
Japan) analysis. On the other set of cultured samples, the MTT analysis was carried out
and the absorbance was measured at 570 nm, for the quantitative assessment.

2.6. Biomineralization Studies

Simulated body fluid (SBF) was utilized as the immersion solution to perform the
biomineralization process on the samples. The 10× SBF was prepared by Tas and Bhaduri
method [38]. The chemicals and their sequence of mixing were according to Table 1, starting
from NaCl and ending with Na2HPO4. Just before the biomineralization experiment was
conducted, NaHCO3 was added to the solution and homogenized under constant stirring.
The 10× SBF was stored at 4 ◦C.

Table 1. Chemicals and their sequence of addition for the preparation of 10× SBF (1 L).

Sequence Chemicals Weight (g)

1. NaCl 58.443
2. KCl 0.373
3. CaCl2.2H2O 3.675
4. MgCl2.6H2O 1.016
5. Na2HPO4 1.199
6. NaHCO3 0.840

The electrospun samples (SF, NSF, CSDF, DSDF-coated SF, n = 3) were cut into
5 × 5 mm pieces, placed in 24-well plates and soaked into the 10× SBF for 24 h under
continuous stirring. After this, they were oven-dried, gold-coated and subjected to mi-
crostructural and elemental characterization under SEM-EDS.

The chemical characterization of the formed apatite crystals on the samples was per-
formed by the FTIR-ATR spectroscopy (Nicolet 6700, Thermo-Fisher-Nicolet Instruments,
Madison, WI, USA, coupled by mercury-cadmium-telluride (MCT) detector and infrared
synchrotron radiation as light source at BL14A1, National Synchrotron Radiation Research
Center (NSRRC) Taiwan, for 128 scans, resolution of 4 cm−1, and compared with the FTIR
spectra of the non-biomineralized original silk, and coated-silk samples. The spectra were
deconvoluted and peak fitting was carried out using peak fit software (Peakfit v. 4.11,
Systat Software, Inc., San Jose, CA, USA).

2.7. Biocompatibility Studies of the Extracted Medium and SF-Based Samples

The mouse fibroblasts cell line, L929 cell line (BCRC, RM60091, Bioresource Collection
and Research Center, Hsinchu City, Taiwan). The cells were first expanded in Dulbecco’s
modified eagles medium with 10% FBS (Gibco 10082147, ThermoFisher, Tokyo, Japan) and
3 µg/mL geneticin (G418, ThermoFisher, Tokyo, Japan) at 37 ◦C in a 95% humidity and 5%
CO2 incubator.

In a typical experiment, following a modified protocol of ISO10993-5 method [39],
1 × 106 cells/mL cells were incubated with extract of specimens (n = 3, 5 × 5 mm, earlier
incubated for 72 h at 37 ◦C for extraction process), in 24 well culture plate and allowed to in-
cubate for 24 h. Then, the medium was removed, and the wells were rinsed with phosphate
buffer saline (PBS). In order to determine the cell viability (through the metabolic activity
determination), MTT assay (MTT: (3(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide)) (Sigma Aldrich, St. Louis, MO, USA), was performed, for the quantitative
estimation. MTT: PBS (1:10 ratio) was then added to each well, and incubated for 4 h,
after which dimethyl sulphoxide (DSMO) was added to the wells, thereby dissolving the
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formazan crystals to develop a purple color. The absorbance of the formed, purple-colored
solution was read at 570 nm, by a microplate reader.

2.8. Mechanical Property Measurements

Tensile tests of the electrospun SF-based samples (dimension of 30 × 10 mm) were
carried out with a TA.XT plus Texture Analyser, Texture Technologies, Hamilton, MA, USA,
with a 50-N load cell, at a strain rate of 10 mm/min. The samples were mounted vertically
between the gripping units of the mechanical testing apparatus, with a gauge length of
20 mm for mechanical loading. Due to the porous nature of nonwoven, we were not able
to have the exact area of the cross-section to have the value of force/area (F/A). Therefore,
instead of F/A, we can use the F/width (N/10 mm) [40].

2.9. Statistical Analysis

The experiments were in triplicates, with mean ± standard deviation calculation, and
statistical significance determination by Student’s T-test (p < 0.05).

3. Results and Discussions
3.1. Characterization of the Silver Nanoparticles

The UV-Vis absorption spectra of the AgNPs (NSF) is represented in Figure 1a. The
characteristic peak at 403 nm depicts the formation of AgNPs from AgNO3 (in the presence
of γ-PGA) upon addition of NaBH4, indicating reduction of Ag+ ions to Ag0, which shows
the characterization of the synthesized AgNPs. The TEM micrographs in Figure 1b reveals
nano-sized spherical particles, ranging in between 3–6 nm, and capped by γ-PGA.
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Figure 1. (a) UV-Vis spectra and (b) TEM image of the synthesized NSF.

The current work involved the development of polyelectrolyte-based (involving elec-
trostatic interactions with positive silver ions) formulation, comprising of nano silver
fluoride, NSF. As reported, chitosan as a carrier was used for the NSF synthesis because of
its ability to form complex interactions with AgNPs [30] and proteins [41], thereby increas-
ing muco-adhesion. However, the γ-PGA used as an anionic polyelectrolyte is assumed to
interact electrostatically with the cationic Ag ions, thereby forming a stable complex.

3.2. Microstructural and Chemical Characterization of Uncoated and Coated SF

The colloidal AgNPs (NSF) and the elemental silver in SDF, after preparation, were
subsequently coated on electrospun SF webs, by overnight coating and then drying. The
AgNPs on SF were detected and confirmed by their morphological investigations through
SEM. Figure 2 represents SEM images of uncoated SF, and elemental Ag and AgNPs coated
SF (indicated by yellow arrows). The nonwoven electrospun nanofibres were reported
for preventing the cell infiltration, leading to occlusion, without depleting oxygen and
nutrients, thus justifying the role of electrospinning as a promising method for developing
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physical barrier. The NSF/SDF coated SF shows uniform distribution on the coated
electrospun fiber mats [42]. It is suggested that the high surface free energy of silver
nanoparticles, which leads to their instability, causes migration and aggregation of silver
nanoparticles [43].
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3.3. Antibacterial Efficacy Evaluation of SF-Based Samples

A Gram-negative and pathogenic bacteria P.gingivalis, occurring in the sub-gingival
plaque/biofilm, was utilized to examine the antibacterial activity of silk-based membranes.
The intertwined membranes after their immersion into bacterial suspension for 24 h, gave
rise to P.gingivalis adhesion and growth onto the surface, as presented in the SEM images
in Figure 3a–e. There is no adhesion of bacteria on the pure SF only when immersed
in the medium without bacteria (only medium and SF, MS), portraying no microbial
contamination of the medium. Further, upon exposing the uncoated SF to P.gingivalis broth,
the membrane surface (medium with silk fibroin and bacteria, MSB) is densely covered by
bacterial cells. On the other hand, the CSDF-SF sample shows negligible bacterial adhesion.
However, when diluted or 1% SDF was exposed to the bacteria, it can be observed that the
lowered silver content in DSDF samples apparently may not be enough to act against the
bacteria, leading to increased bacterial adhesion than that on CSDF-SF, however lower than
that on the pure SF sample. The NSF-SF sample displays effectively lower bacterial density
when compared to SF and DSDF matrices, although not as much as the CSDF-coated
matrix.
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The metabolic activity (hence the bacterial viability) of the P.gingivalis bacteria on
the electrospun silk fibroin-based samples (wherein the coated SF samples are denoted as
CSDF, DSDF, and NSF) as assessed by the MTT assay (Figure 3f), is found to be in the same
trend corresponding to the SEM images. The highest bacterial viability is on the SF sample
immersed in bacterial broth, which is considered to be 100%. From these findings it can
be noted that the 38% SDF coated sample (CSDF) is found to inhibit maximum bacterial
growth (6.7 folds lower than SF), attributing to its highest silver content. However, the NSF-
SF sample is also found to be a potential material controlling the P.gingivalis adhesion, as
portrayed by the significantly lower bacterial density of 3.1 and 1.9 folds, when compared
to SF and DSDF (1.6 folds lower than SF), respectively, yet 2.1 folds significantly higher
density relative to CSDF.

Apart from the role of SDF as a popular anti-caries agent [44], as recently reported by
Rams et al., 38% and 19% of SDF considerably inhibited in vitro activity of sub-gingival
pathogens extracted from severe periodontitis lesions, suggesting its potential in periodon-
tal infection management [45]. The silver ions have a broad spectrum of antimicrobial
activity. Their mode of action involves attacking the -SH groups of enzymes, obstructing
the pathway of protein synthesis. These ions also denature the bacterial DNA, causing a
bactericidal action, and were used as reinforcements/coatings [46–48]. Another widely
used caries inhibiting formulation is NSF with antimicrobial activity similar to SDF, which
has the advantage of its lower toxicity to eukaryotic cells on account of utilizing silver
nanoparticles [30]. The AgNPs, when synthesized using an appropriate capping agent may
be effective in controlling periodontal infections, with the added advantage of smaller size
as a criterion for enhanced antibacterial action against oral anaerobic pathogens [49]. The
GTR dressing coated with AgNPs leads to a reduction in bacterial adherence or penetration,
which may aid in the treatment of intra-bony defects and clinical success [50,51].

3.4. Effects of SBF on Coated and Uncoated Silk Observed by SEM-EDS and ATR-Spectroscopy

The apatite deposition on the silk fibroin-based membrane was proceeded by immers-
ing them into 10× SBF solution (for 24 h) for the biomineralization process as shown by the
SEM images (Figure 4a–d) and its corresponding elemental analysis spectra in (Figure 4e–h).
The molar Ca/P ratio of a porous and entangled matrix of pure SF (~2.1), CSDF-coated
(<0.5, 80%Ag), DSDF-coated (<0.5, 7.3% Ag) and NSF-coated SF (~1.67, negligible Ag)
following 24 h SBF immersion depicts high Ca and P deposition on pure SF and NSF-SF
samples, while negligible Ca, P and high Ag deposition on SDF-coated samples. Silver is
less reactive than hydrogen and can hardly replace H+ in a reaction. Thus Ag+ is inclined
to bind to a specific site of MMPs to inactivate their catalytic functions. The silver ions
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from SDF are also supposed to inhibit the metal metalloproteinase (MMP) and cathepsin,
thereby preventing collagen degradation [52].
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corresponding EDS spectra.

The Ca/P ratio obtained for the SF sample, higher than the ideal molar ratio of Ca/P
of hydroxyapatite (1.67), and that for the NSF-SF membrane can also be seen by Ca, P,
and O distribution in the elemental mapping images shown in Figure 5. The high Ca/P
ratio demonstrated calcium phosphate layer formation, resembling the mineral content of
natural bone and verified the biomimetic apatite formation [53]. The SDF-treated samples
present Ag deposition on the samples after biomineralization. The concentrated (38%)
and diluted (~1%) SDF-SF samples result in ~80% and ~7% precipitation of silver. The
aggregation of Ag is in the same line with in vitro studies reported for the reaction of
SDF with gelatin (as a collagen substitute) for deposition of metallic silver [54,55]. The
hydroxyapatite crystal deposition on the γ-PGA NSF-SF possesses a molar Ca/P ratio
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of ~1.67. The high apatite deposition on this sample may be accredited to the effect of γ-
PGA-capped NSF on the silk fibroin. The glutamic acid residues possess a negative charge,
which attracts more Ca+ ions from SBF, thereby attracting the PO4

− ions and enhance the
supersaturation such that they develop into HAp crystals [56,57].
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Figure 5. Elemental mapping showing the Ca (blue), P (turquoise), and O (green) distribution on
biomineralized (a) SF and (b) NSF-SF.

Further, in order to analyze the chemical composition of the samples, FTIR-ATR
spectroscopy was conducted. As shown in Figure 6, the ATR spectra of SF-based samples
depict the apatite deposition in the form of characteristic HAp absorption peaks/bands
observed at ~1130 cm−1 specifically corresponding to the P–O stretching of the PO4 [58,59].
This peak is observed for all samples, SF, CSDF-SF, DSDF-SF, and NSF-SF. Furthermore,
the additional distinctive peaks of PO4 are found to be appearing from 950–960 cm−1. The
apatitic phase at ~960 cm−1 relates to the γ1 (PO4) of the HAp, which may be of lower
intensity. Indeed, the 950 cm−1 peak portrays the amorphous calcium phosphate (ACP)
formation [59].

The estimated HAp crystallinity index (CI) is estimated as the ratio of absorbance A960
to (A960 + A950), which is found to be a maximum of ~75% for NSF-SF samples, depicting
the highest crystalline apatite deposition corresponding to the SEM-EDS data. Further, the
SF membranes elicit ~60% estimated HAp CI, and as also observed through the SEM-EDS,
the Ca/P ratio was ~2.1, because of which there may be a possibility of the presence of ACP
phase, which may not have completely transformed to HAp mineralization process, giving
rise to the high Ca/P ratio of ACP and HAp together. Noteworthy, in the case of CSDF-SF
samples, there occurs ~60% estimated HAp CI, which was not observed from the SEM-EDS.
This difference in the inference may be possibly attributed to the masking effect of the
silver ions (~80%) on the sample surface after the mineralization reactions. The effective
biomimetic mineralization invoked post 10× SBF treatment suggests the possible bone-
regeneration platform (owing to bone-bonding potential and biocompatibility) offered by
these electrospun SF-based constructs, with the highest estimated CI on NSF-SF [60–62].

The β-sheet content is assessed by the ratio of absorbance of β-sheet (1265 cm−1) to
the sum total of absorbance of β-sheet (1265 cm−1) and of the random coil (1235 cm−1),
as represented in Table 2, along with their full-width half maxima (FWHM). Figure S1 in
supporting information represents the FTIR-ATR spectra of the SF-based samples before
biomineralization. Table S1 shows the β-sheet/random coil ratio and their corresponding
FWHM values. An enhancement by ~1.7 folds of the β-sheet proportion before and after
mineralization for SF, and NSF-SF samples is revealed, while for the SDF-coated samples,
there is barely a difference noted.
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Figure 6. FTIR-ATR spectra of the silk-fibroin-based membranes after the biomineralization process
in 10× SBF for 24 h, showing the HAp and ACP peaks.

Table 2. Table for crystallinity index of HAp, silk fibroin, and its FWHM (unit: %), in the SF-based
biomineralized samples. ACP: 950 cm−1, HAp: 960 cm−1; random coil: 1235 cm−1 (amide III),
β-sheet crystal: 1265 cm−1 (amide III).

A960
A950 + A960

A1265
A1235 + A1256

FWHM A950 FWHM A960 FWHM A1235 FWHM A1265

SF 60 53 12.02 17.89 21.88 36.93
NSF 75 56 20.16 27.94 30.36 37.34

DSDF 50 56 40.56 30.09 24.24 23.63
CSDF 60 52 29.68 19.78 28.09 26.28

3.5. Response of Extracted Medium from the SF-Based Samples towards L929 Cell Line

The cytotoxic properties of the membrane-extracted substrates are represented in Figure 7.
It can be demonstrated that extract of SF (90.15 ± 7.02%) and NSF-SF (78.06 ± 4.00%) are not
cytotoxic in comparison to the control group (comprising cells and medium only). On the
contrary, the DSDF and CSDF-SF extracts elicit only 8.97 ± 1.36% and 11.61 ± 3.40% viable
cells, respectively, thereby displaying a cytotoxic phenomenon.
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An effective understanding of material-host interactions in terms of their biocom-
patibility is required for the functionality of a biomedical membrane. The excellent bio-
compatibility of natural silk-based materials has led to its increasing interest in medical
purposes. Further, the silk fibroin (SF) gels, micro- and nanonets, sponges, films have the
potential ability in therapeutic applications [63–65]. Therefore, the cellular response to a
newly-developed NSF/SDF-coated SF barrier membrane was investigated using the L929
cell line. The cytotoxic effects of the extracts [66] from both the SDF-coated membranes
could be justified by the role of Ag ions released during the 3-day pre-incubation of the
membranes with the medium. The role of 0.01% SDF on human gingival fibroblasts trig-
gered almost 100% cell death, depicting its potential cytotoxicity [67]. The SDF used in
this study is 38% (CSDF) and 1% (DSDF), which has a higher concentration of Ag, thereby
releasing more silver ions into the medium after exposure of 3 days. This accounts for
the SDF-induced cell death. However, the extracts from NSF-SF support the cell growth
(almost like SF and control samples), despite the presence of nano silver. This could be
plausibly attributed to the low concentration of Ag ions, which may have been released
after the 72 h exposure time. Therefore, the DSDF and SDF-SF samples raise concerns
regarding their in vitro cytotoxic properties. However, the long-term effects of the use of
SDF in vivo are still required for further conclusive statements [67]. SDF has also been
commonly used in the field of dentistry, which accounts for its no potential risks in humans,
due to the combined action of several factors as mentioned before. According to this study,
the NSF-SF membranes can be concluded to possess no deleterious effects or cytotoxicity
against L929 and the biocompatibility of SF remains unchanged by the NSF-coating on it.

3.6. Mechanical Property Analysis of the SF-Based Samples

The tensile strength of the coated and uncoated SF samples is represented in the
form of stress–strain curve in Figure 8. It can be observed that the tensile strength of SF
samples is 0.22 N/mm, which increases upon addition of NSF by 1.47 folds. Meanwhile,
the coating of DSDF and CSDF onto SF reduces the tensile strength to 0.09 and 0.02 N/mm,
respectively. Similarly, the elongation at break, indicating the elasticity of the membrane is
found to be highest for the NSF-SF (1.76%), followed by SF (1.51%), DSDF-SF (0.67%), and
CSDF-SF (0.99%).
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Mechanical properties are an important criterion for determining the applications
of materials. The variation in mechanical properties of materials should be compatible
with the healing or regeneration process. The silk fibroins are characterized as natural
polymers, with β-sheets or crystals responsible for stability and in turn the mechanical
properties [68]. In electrospun silk fibroins (with higher mechanical properties), treated
with ethanol, the β-sheet structure can be easily enhanced [68]. So is observed in our
study, wherein the ethanol-treated SF which when further coated by various materials
exhibited higher β-sheet content and crystallinity. The enhanced tensile strength of NSF-SF
samples could be attributed to the higher crystallinity than the SF samples. This may also
be accredited to the strong protective effect of low concentration of silver nanoparticles [69]
(in NSF), distributed evenly throughout the SF matrix. This may help in the possible
closure of the certain voids present in the membrane by the NSF particles, thus leading to
the strong reinforcing effect by the AgNPs, inhibiting polymer drawing, and increasing the
tensile strength. However, the lowered tensile strength of the CSDF and DSDF-SF samples,
despite the higher crystallinity may be due to the high concentration of the silver ions
in the DSDF and CSDF solutions, which likely led to the agglomeration and aggregation
of Ag+ ions onto the SF membranes. This, in turn, may lead to the stress concentration
effect, thereby deteriorating the tensile strength of the samples [69]. Therefore, it can be
concluded that the NSF-SF samples can be considered with the suitable balance between
the mechanical properties, which may behave as an apt candidate for GTR applications,
after in-depth analysis.

Scheme 1 represents the space making NSF-SF GTR membrane (and its required
properties), placed at the affected area, (a) its fabrication (from electrospinning of silk
fibroin to NSF dip coating on the SF membrane), subjected to in vitro studies, (b) antibac-
terial efficacy (against P.gingivalis), (c) bioactivity (mineralization in 10× SBF) analysis,
(d) biocompatibility analysis (cytotoxicity study by reaction of MTT reagent with L929 cell),
and (e) mechanical strength test (tensile stress and elongation at break). In this work, the
effective antibacterial activity of NSF, comparable with SDF, against P.gingivalis speculates
its budding potential in sub-gingival applications.
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4. Conclusions

The NSF/SDF-coated electrospun silk fibroin membranes were assessed for their
biological properties in GTR applications. The biomineralization process of the SF-based
samples demonstrated apatite precipitation. The antibacterial efficacy against P.gingivalis
concluded the bactericidal nature of all the silver-containing compounds when compared
to silk fibroin alone, with the NSF/SDF-coated samples as the most efficient amongst all
samples. The SEM-EDS analysis depicted Ca/P precipitation on NSF-SF and SF samples.
While the detailed surface analysis by FTIR-ATR spectroscopy portrayed the hydroxya-
patite deposition on all the samples, as seen by its corresponding peaks. The NSF-SF
membranes depicted the highest estimated CI, suggesting excellent bioactivity. Moreover,
the tensile strength of the NSF-SF samples was found to be the highest. Therefore, this
study corroborates the potent bioactive and antibacterial action of the novel NSF-coated
silk fibroin materials as GTR membranes.
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.3390/polym13162659/s1. Figure S1: FTIR-ATR spectra of pure SF-based samples, without biominer-
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