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ABSTRACT The management of breast cancer, one of the most common and heterogeneous malignancies, has transformed with the advent of 
precision medicine. This review explores current developments in genetic profiling, molecular diagnostics, and targeted therapies that 
have revolutionized breast cancer treatment. Key innovations, such as cyclin-dependent kinases 4/6 (CDK4/6) inhibitors, antibody-
drug conjugates (ADCs), and immune checkpoint inhibitors (ICIs), have improved outcomes for hormone receptor-positive (HR+), 
HER2-positive (HER2+), and triple-negative breast cancer (TNBC) subtypes remarkably. Additionally, emerging treatments, such 
as PI3K inhibitors, poly (ADP-ribose) polymerase (PARP) inhibitors, and mRNA-based therapies, offer new avenues for targeting 
specific genetic mutations and improving treatment response, particularly in difficult-to-treat breast cancer subtypes. The integration 
of liquid biopsy technologies provides a non-invasive approach for real-time monitoring of tumor evolution and treatment response, 
thus enabling dynamic adjustments to therapy. Molecular imaging and artificial intelligence (AI) are increasingly crucial in enhancing 
diagnostic precision, personalizing treatment plans, and predicting therapeutic outcomes. As precision medicine continues to evolve, 
it has the potential to significantly improve survival rates, decrease recurrence, and enhance quality of life for patients with breast 
cancer. By combining cutting-edge diagnostics, personalized therapies, and emerging treatments, precision medicine can transform 
breast cancer care by offering more effective, individualized, and less invasive treatment options.
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Introduction

Breast cancer is among the most prevalent and biologically 
diverse malignancies globally, and accounts for a substan-
tial portion of cancer diagnoses and deaths among women1. 
Despite decades of research and advancements in screen-
ing and treatment, breast cancer remains a leading cause of 
 cancer-related mortality in women1. The disease is character-
ized by its heterogeneity, including various subtypes with dif-
fering tumor biology, prognosis, and response to treatment. In 

2000, Perou et al.2 introduced molecular subtyping, classifying 
breast cancer into luminal-like, HER2-enriched, basal-like, 
and normal-like types. This landmark discovery facilitated the 
development of subtype-specific therapies, such as endocrine 
therapy (ET) for luminal-like tumors and anti-HER2 therapy 
for HER2-enriched tumors. Subsequently, gene expression 
analysis by Sørlie et al.3 further refined the luminal-like sub-
type by dividing it into 2 distinct subgroups, luminal A and 
luminal B, on the basis of differences in prognosis and treat-
ment response. The 2011 St. Gallen Conference built on these 
findings by establishing an immunohistochemical classifica-
tion system for streamlining clinical application, on the basis 
of markers such as estrogen receptor (ER), progesterone recep-
tor (PR), HER2, and Ki-674. Historically, breast cancer treat-
ment was relatively uniform, relying on standard protocols 
such as surgery, chemotherapy (ChT), and radiotherapy, with 
limited consideration of individual tumor biology. This “one-
size-fits-all” approach often resulted in suboptimal outcomes, 
particularly for patients with aggressive or advanced disease.
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The advent of precision medicine has revolutionized breast 
cancer treatment by offering a personalized approach5-7. 
Precision medicine involves tailoring treatments according 
to the genetic, molecular, and environmental factors unique 
to each patient’s cancer8. This approach transcends the tradi-
tional “one-size-fits-all” approach to therapy, by using specific 
biomarkers, genetic testing, and advanced technologies to 
guide treatment decisions. The shift from conventional treat-
ment paradigms to precision-based strategies has significantly 
improved patient outcomes, particularly regarding survival 
and quality of life9. Advances in molecular diagnostics10 and 
genetic profiling11 have been central to this transformation, by 
enabling the identification of key biomarkers and actionable 
mutations that can guide treatment decisions. In particular, 
the ability to classify tumors according to specific genetic and 
molecular features, such as HER2-low expression12 and muta-
tions in BRCA1/213-15, has expanded therapeutic options and 
enabled more targeted interventions.

Recent breakthroughs in technologies such as next- 
generation sequencing (NGS) have facilitated deeper under-
standing of tumor biology and enabled the identification of 
novel molecular targets16. These discoveries led to the devel-
opment of targeted therapies, including cyclin-dependent 
kinases 4/6 (CDK4/6) inhibitors17, antibody-drug conjugates 
(ADCs)18, and immune checkpoint inhibitors (ICIs)19, which 
have shown considerable promise in overcoming treatment 
resistance and improving outcomes in advanced and met-
astatic breast cancer. For example, CDK4/6 inhibitors have 
been shown to delay disease progression in hormone recep-
tor-positive (HR+) breast cancer20. Simultaneously, ADCs 
such as trastuzumab deruxtecan have demonstrated efficacy 
in HER2-low and HER2-ultralow breast cancer21,22, a subtype 
that previously had limited treatment options. ICIs, particu-
larly in triple-negative breast cancer (TNBC), are also opening 
new avenues for treatment23,24 and offering hope for patients 
with a subtype historically associated with poor prognosis.

The integration of diagnostic tools, such as genetic profil-
ing and liquid biopsies, has markedly enhanced the precision 
medicine approach in breast cancer care. Genetic profiling 
assays, including Oncotype DX25,26 and MammaPrint27,28, 
offer valuable insights into recurrence risk and poten-
tial ChT benefits, and empower clinicians to make more 
informed treatment decisions. Liquid biopsies provide crit-
ical information through analysis of circulating tumor cells 
(CTCs)29 and circulating tumor-derived materials such as 
circulating tumor DNA (ctDNA)30, circulating miRNA31, and 

extracellular vesicles32. Together, these tools enhance per-
sonalized  treatment strategies, support the early detection of 
therapeutic resistance, and increase the likelihood of timely 
and effective interventions.

This review explores the current state of precision medicine 
and therapies for female breast cancer, focusing on advanced 
treatments and diagnostics and future developments in this 
field.

Precision medicine in early breast 
cancer (EBC)

In recent years, breast cancer mortality rates have declined 
in many countries, particularly among younger popula-
tions, primarily because of advancements in earlier detection 
and precision therapy strategies33. However, despite these 
improvements, breast cancer remains the leading cause of 
cancer- related deaths among women worldwide1, including 
in China34. Most patients with breast cancer are diagnosed in 
early stages (stage I–III) and undergo potentially curative treat-
ments. These treatments typically include surgery followed by 
systemic treatments such as neoadjuvant and/or adjuvant ChT, 
ET, radiotherapy, or combinations of these approaches. The 
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) 
conducted a comprehensive analysis of patients with EBC 
diagnosed between 1990 and 2009, on the basis of their exten-
sive database35. The risk of distant recurrence among patients 
with EBC diagnosed after the year 2000 was approximately 
20% lower than the risk of those diagnosed in the 1990s. This 
improvement is attributed to advancements in diagnostic and 
treatment methods, particularly the development of adjuvant 
therapies. Next, we discuss recent advancements in systemic 
treatment for EBC.

HR+/HER2-negative (HER2–) EBC

HR+/HER2− breast cancer, the most common subtype, rep-
resents approximately 60%–70% of all breast cancer cases36. 
This subtype responds well to ET, and ChT may be used in 
high-risk patients. In the past decade, substantial advance-
ments in precision medicine have reshaped the treatment 
landscape for HR+/HER2− EBC by providing new therapeu-
tic options aligned with patients’ tumor biology and individ-
ual risk factors. These options include extended ET, CDK4/6 
inhibitors, and poly (ADP-ribose) polymerase (PARP) 
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inhibitors, all of which decrease recurrence and improve 
overall survival (OS)37.

ET is the essential treatment for HR+/HER2− EBC
ET, a core treatment approach for HR+/HER2− EBC, lever-
ages the hormone dependence of these tumors to curb growth 
and decrease recurrence risk. This therapy targets hormonal 
pathways that drive tumor proliferation and has been found to 
significantly improve long-term outcomes for patients38.

For premenopausal women with HR+/HER2− EBC at low 
risk, the ER selective modulator tamoxifen is often used as the 
primary ET without ChT39-41. However, for high-risk patients 
with HR+/HER2− EBC, tamoxifen alone might have dimin-
ished effectiveness in patients who have retained ovarian func-
tion, because their ovaries continue to produce estrogen. In 
these patients, ovarian function suppression (OFS) with gon-
adotropin-releasing hormone analogues, such as leuprolide, 
can help decrease estrogen production and enhance tamox-
ifen’s effects42,43. The Suppression of Ovarian Function Trial 
(SOFT) and Tamoxifen and Exemestane Trial (TEXT) evalu-
ated OFS combined with tamoxifen or exemestane in premen-
opausal women44,45. The SOFT trial found that tamoxifen with 
OFS, compared with tamoxifen alone, improved outcomes, 
particularly in high-risk women. The TEXT trial showed 
that exemestane plus OFS achieved better outcomes than 
tamoxifen plus OFS among high-risk premenopausal women, 
thereby supporting the use of aromatase inhibitors (AIs) in 
this group. For postmenopausal women, ET often includes AIs 
such as anastrozole, letrozole, and exemestane. AIs block aro-
matase, an enzyme responsible for converting androgens into 
estrogen, and thereby effectively decrease estrogen levels in 
the body and consequently the stimulation of HR+ breast can-
cer cells, which depend on estrogen for growth46. AIs  therapy 
has been shown to decrease recurrence rates, particularly in 
postmenopausal women with high recurrence risk, and to 
have greater efficacy than tamoxifen47,48.

Extending ET beyond the standard 5 years has been another 
key strategy for decreasing long-term recurrence risk in 
patients with HR+/HER2− EBC. Trials such as MA.1R have 
shown that extending AIs therapy beyond 5 years significantly 
decreases recurrence, particularly in high-risk patients, such 
as those with lymph node involvement49. However, this ben-
efit must be weighed against the potential for adverse effects, 
including bone density loss and increased fracture risk. 
Consequently, extended ET is considered on a case-by-case 
basis, through shared decision-making between clinicians and 

patients to balance the benefits and risks. Interestingly, a mul-
tigene prognostic genomic assay, Breast Cancer Index (BCI), 
helps predict recurrence risk and guide the duration of ET in 
patients with HR+ EBC with high hormone receptor/insu-
lin-like growth factor (H/I) ratios, who significantly benefit 
from extended treatment50.

Ongoing studies are also exploring selective estrogen recep-
tor degraders51, such as fulvestrant52 and elacestrant53,54, 
which have shown promise in metastatic HR+ breast cancer 
and are currently being tested in high-risk early-stage disease.

These advancements highlight the importance of person-
alized ET in improving outcomes in patients with in HR+/
HER2− EBC by tailoring treatments to specific tumor charac-
teristics and patient profiles.

CDK4/6 inhibitors improve prognosis for  
HR+/HER2− EBC with high recurrence risk
Despite the effectiveness of ET, many patients with HR+/
HER2− EBC experience recurrence, particularly those with 
high-risk features, such as large tumors or multiple lymph 
node involvement55. Genetic profiling has revealed that these 
patients almost always maintain retinoblastoma function; 
therefore, the primary pathway targeted by CDK4/6 inhibitors 
remains intact56. In addition, CCND1, which encodes cyclin 
D1, is a direct target gene of the ER and consequently is fre-
quently overexpressed in ER-positive cancers57. Therefore, the 
addition of CDK4/6 inhibitors has been a major advancement. 
CDK4/6 inhibitors, primarily palbociclib, abemaciclib, riboci-
clib, and dalpiciclib, inhibit CDK4/6’s activity and halt cancer 
cell growth at a critical point in the cell cycle, thus preventing 
proliferation.

Palbociclib
The first CDK4/6 inhibitor approved for HR+/HER2− 
advanced breast cancer (ABC), palbociclib, has become stand-
ard in metastatic settings20,37. However, in the early-stage 
setting, the PALLAS trial, evaluating palbociclib with ET in 
stage II or III HR+/HER2− EBC, has indicated that this therapy 
has no significant benefit over ET alone in preventing recur-
rence58 (Table 1). Similarly, the PENELOPE-B trial, assessing 
palbociclib plus ET in patients with high-risk HR+/HER2− 
EBC with residual disease after neoadjuvant ChT, compared 
with ET alone, did not improve invasive disease-free survival 
(iDFS)59 (Table 1). Despite these early-stage setbacks, palbo-
ciclib remains promising in metastatic settings, and ongoing 
research is exploring its full potential in EBC.
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Ribociclib
Ribociclib has shown efficacy in both metastatic and 
 early-stage HR+/HER2− breast cancer. The NATALEE trial 
demonstrated significant improvements in iDFS with the 
addition of  ribociclib to ET for early-stage HR+/HER2− breast 
cancer, including node-positive cases61 (Table 1). With a 
favorable safety profile, including low rates of neutropenia and 
gastrointestinal adverse effects, ribociclib has broad applica-
bility, including for patients with low-risk disease, and there-
fore may benefit a wide population.

Abemaciclib
The most recent CDK4/6 inhibitor approved for adjuvant 
treatment in HR+/HER2− EBC, abemaciclib, has achieved 
significant improvements in iDFS for high-risk patients. In the 
MONARCH-E trial, abemaciclib decreased the risk of distant 
recurrence by 30.4%, and was found to benefit patients with 
high-risk features such as elevated Ki-67 levels or large tum-
ors60,64,65 (Table 1). Continuous administration of abemaciclib, 
in contrast to other CDK4/6 inhibitors, enhances treatment 
efficacy but also increases the incidence of gastrointestinal 

adverse effects, notably diarrhea, which requires careful man-
agement64,66. Despite these challenges, abemaciclib remains 
a critical treatment option for patients with high-risk HR+/
HER2− EBC, particularly those with node-positive or aggres-
sive disease.

Dalpiciclib
Dalpiciclib, although widely used in regions such as Asia for 
advanced HR+/HER2− breast cancer, is not currently approved 
for EBC treatment in many areas. Studies in metastatic settings 
have demonstrated its efficacy in prolonging progression-free 
survival (PFS) when combined with ET, similarly to the other 
CDK4/6 inhibitors67,68. Its potential use in EBC remains under 
exploration in clinical trials aimed at determining its efficacy 
in preventing recurrence and improving outcomes in patients 
with high-risk EBC62,63 (Table 1). The distinct characteristics 
of dalpiciclib, such as its lower rates of gastrointestinal adverse 
effects than abemaciclib, may make it a future candidate for 
broader applications in metastatic and early-stage settings.

Each CDK4/6 inhibitor offers unique benefits and chal-
lenges in treating HR+/HER2− breast cancer. Abemaciclib 

Table 1 Trials on CDK4/6 inhibitors in patients with HR+/HER2– EBC

Trial   Intervention   Outcomes   Percentage of patients with selected any-grade 
adverse events (grade ≥ 3 events)

PENELOPE-B 
(NCT01864746)59

  Patients without pCR after taxane-
containing NACT and at high risk of 
relapse (clinical pathological staging-
ER grading score ≥ 3 or 2 and ypN+) 
randomized (1:1) to 13 cycles of palbociclib 
vs. placebo in addition to ET

  3-year iDFS 81.2% vs. 
77.7% (HR 0.93, 95% 
CI 0.74–1.17; P = 0.525)

  Anemia 73.9% (0.3%) vs. 30.3% (0.2%); leukopenia 
99.2% (56.1%) vs. 69.9% (0.7%); neutropenia 
95.7% (70.0%) vs. 23.4% (1.0%); thrombocytopenia 
56.6% (0.8%) vs. 16.2% (0.3%); fatigue 66.4% 
(2.7%) vs. 51.1% (1.5%); infection 59.9% (3.2%) vs. 
51.1% (3.9%); hot flushes 43.8% (0.8%) vs. 50.9% 
(1.0%); arthralgia 41.2% (0.8%) vs. 46.8% (1.5%)

PALLAS 
(NCT02513394)58

  Patients with stage II or III disease 
randomized (1:1) to 2 years of palbociclib 
plus standard ET vs. standard ET

  4-year iDFS 84.2% vs. 
84.5% (HR 0.96, 95% 
CI 0.81–1.14; P = 0.65)

  Neutropenia 82.8% (61.3%) vs. 4.9% (0.4%); 
leukopenia 54.6% (30.2%) vs. 7.5% (0.1%); fatigue 
40.5% (2.1%) vs. 19.3% (0.3%); 42.2% of patients 
in the experimental arm discontinued treatment

MONARCH-E 
(NCT03155997)60

  Patients with ≥ 4 positive nodes or 1–3 
positive nodes and tumor size ≥ 5 cm/
histologic grade 3/central Ki-67 ≥ 20% 
randomized (1:1) to 2 years of adjuvant 
abemaciclib plus standard ET vs. standard ET

  2-year iDFS 92.2% vs. 
88.7% (HR 0.75; 95% 
CI 0.60–0.93; P = 0.01)

  Diarrhea 83.5% (7.8%) vs. 8.7% (0.2%); 
neutropenia 46.0% (19.7%) vs. 6.5% (0.8%); 
leukopenia 37.7% (11.4%) vs. 6.3% (0.4%); fatigue 
40.9% (2.9%) vs. 17.9% (0.1%); 18.0% of patients 
in the experimental arm discontinued treatment

NATALEE 
(NCT03701334)61

  Patients with stage II or III disease 
randomized (1:1) to 3 years of adjuvant 
ribociclib plus a NSAI vs. an NSAI alone

  3-year iDFS 90.4% vs. 
87.1% (HR 0.75; 95% 
CI 0.62–0.91; P = 0.003)

  Neutropenia 62.2% (43.8%) vs. 4.5% (1.0%); 
arthralgia 36.5% (1.0%) vs. 42.5% (1.0%); liver 
dysfunction 25.4% (8.3%) vs. 10.6% (2.0%)

DARLING-02 
(NCT06107673)62,63

  Patients randomized (1:1) to dalpiciclib 
plus letrozole vs. standard intervention

  Ongoing   Ongoing

pCR, pathological complete response; NACT, neoadjuvant chemotherapy; ER, estrogen receptor; ET, endocrine therapy; iDFS, invasive 
disease-free survival; HR, hazard ratio; CI, confidence interval; NSAI, non-steroidal aromatase inhibitors.
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is currently a leading candidate because of its effectiveness 
in patients with high-risk early-stage tumors, particularly 
those with aggressive biology. Ribociclib provides a favorable 
balance of efficacy and safety, and therefore is suitable for a 
broader patient population. Although palbociclib and dal-
piciclib remain under evaluation in early-stage disease, both 
remain crucial in the management of metastatic HR+/HER2− 
breast cancer.

Exploration of immunotherapy for high-risk  
HR+/HER2− EBC
Immunotherapy, which was traditionally focused on treating 
TNBC, is currently being explored in HR+/HER2− breast 
cancer, particularly for high-risk patients. ICIs are being 
tested with standard therapies to improve immune responses 
in patients with HR+/HER2− tumors, which typically exhibit 
relatively low immune activity.

Key trials, including KEYNOTE-756 and CheckMate 7FL, 
have shown promising results. KEYNOTE-756, a phase III trial 
evaluating pembrolizumab combined with neoadjuvant ET 
and ChT, has demonstrated improved pathological complete 
response (pCR) rates69 (Table 2). Similarly, the CheckMate 
7FL trial, investigating nivolumab with neoadjuvant ChT 
followed by adjuvant ET, has shown improvements in pCR 
and decreases in residual cancer burden, and offered hope 
for patients with high-risk HR+/HER2− tumors70 (Table 2). 
Although immunotherapy for HR+/HER2− breast cancer 
remains in its early stages, these trials suggest that ICIs might 
enhance the effectiveness of existing therapies; therefore, fur-
ther research is warranted to identify the optimal combina-
tions and the patient populations that would benefit most.

PARP inhibitors are recommended for high-risk 
BRCA1/2-mutated EBC
For patients with germline BRCA1 or BRCA2 mutations, 
PARP inhibitors, such as olaparib, provide an effective adju-
vant treatment option. The OlympiA trial has demonstrated 
that olaparib decreases recurrence risk and improves OS in 
patients with high-risk BRCA-mutated EBC, thus reaffirming 
its role in precision medicine for this subgroup76-78.

HER2-positive (HER2+) EBC

Approximately 15%–20% of breast cancers are classified as 
HER2+79. This subtype is more aggressive than the HER2− 
subtype. In recent years, breast cancer subtypes have been 
found to exist not only within the traditional HER2+ and 

HER2− categories but also within a spectrum including 
HER2-low and HER2-ultra-low cancers80. These distinc-
tions are aiding in further refinement of treatment strategies, 
particularly through the use of precision medicine-tailored 
treatments based on tumor molecular characteristics. Key 
elements of precision medicine for HER2+ EBC are described 
below.

Dual HER2 blockade has superior efficacy to single 
HER2 blockade
A significant breakthrough in treating HER2+ EBC has been 
dual HER2 blockade combining trastuzumab and pertu-
zumab. The APHINITY trial highlighted that adding pertu-
zumab to trastuzumab and ChT significantly improves iDFS, 
particularly in patients with high-risk, lymph node-positive 
tumors81. At 6-year follow-up, patients treated with this dual 
blockade experienced 4.5% greater iDFS and 24% lower recur-
rence risk or death rates than those who did not receive pertu-
zumab (HR 0.76)82. Furthermore, the third interim OS of the 
APHINITY trial, updated in 202483, showed that pertuzumab 
addition resulted in an absolute 4.9% improvement in 8-year 
iDFS in the node-positive cohort, whereas no iDFS benefit 
from pertuzumab was observed in the node-negative cohort. 
Additionally, no evidence of late-onset cardiac toxicity asso-
ciated with pertuzumab addition was found, thus providing 
critical clinical insights for the management of patients with 
HER2+ EBC.

Additionally, the FDChina study further refined dual HER2 
blockade by evaluating a fixed-dose combination of pertu-
zumab and trastuzumab for subcutaneous injection84. This 
approach achieved the same efficacy as intravenous admin-
istration in total pCR rates while simplifying the treatment 
process, decreasing patient burden, and maintaining a similar 
safety profile84. This innovation offers patients a more conven-
ient treatment option without compromising outcomes.

ADCs are recommended for patients with HER2+ 
EBC who do not achieve pCR
Trastuzumab emtansine (T-DM1) has become a foundational 
therapy for patients with HER2+ EBC who do not achieve 
pCR after neoadjuvant treatment (Table 3). The critical 
KATHERINE trial has shown that T-DM1, compared with 
trastuzumab, significantly decreases the risk of invasive dis-
ease recurrence or death by 50.0%, achieving a 3-year iDFS 
rate of 88.3% for T-DM1 vs. 77.0% for trastuzumab alone85. 
In 2024, 8.4-year follow-up data further confirmed T-DM1’s 
sustained benefit, with an iDFS rate of approximately 81.0%, 
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compared with 67.0% for trastuzumab86. This benefit extends 
across various subgroups, including patients with differing 
nodal and HR status. Additionally, updated OS data have 
shown a 34% decrease in mortality risk of patients treated 
with T-DM186.

Moreover, trastuzumab deruxtecan (T-DXd) has shown 
substantial potential in HER2-low EBC. The TALENT trial, 
designed to evaluate the neoadjuvant use of T-DXd, either 
alone or in combination with ET, reported highly promising 
early results in 202321. The overall response rate was 75% in 
patients receiving T-DXd monotherapy and 63.2% in those 
receiving T-DXd combined with anastrozole21. Additionally, 
neoadjuvant administration of T-DXd is under evaluation in 
the DESTINY-Breast11 trial in locally advanced or inflamma-
tory HER2+ breast cancer (NCT05113251). Adjuvant use of 
T-DXd is currently being explored in the ongoing DESTINY-
Breast05 trial, in which its effectiveness is being compared 
with that of T-DM1 in patients with residual invasive HER2+ 
breast cancer after neoadjuvant therapy (NCT04622319). 
Furthermore, the SHAMROCK study will assess the use of 
neoadjuvant T-DXd in early-stage HER2+ breast cancer by 
incorporating strategies for both escalating and de-escalating 
therapy87.

These advances in ADCs, both in HER2+ and HER2-low 
breast cancer, reflect the growing influence of precision med-
icine in providing more tailored and effective treatments that 
improve long-term outcomes for patients across the HER2 
spectrum.

Tyrosine kinase inhibitors (TKIs) are recommended 
for patients with HER2+ EBC at high recurrence 
risk after completion of standard HER2-targeted 
therapies
TKIs, such as lapatinib, tucatinib, and neratinib, are used 
primarily in the adjuvant setting for HER2+ breast cancer. 
However, they have also been explored in the neoadjuvant 
setting in some trials. Neratinib is approved for extended 
adjuvant therapy in HER2+ EBC, particularly in patients 
who have completed  trastuzumab-based treatment. The 
ExteNET trial has demonstrated that 1 year of neratinib sig-
nificantly improves iDFS, particularly in HR+ patients, and 
decreases the risk of distant recurrence88. This treatment is 
recommended after completion of trastuzumab in the adju-
vant setting, to minimize recurrence. Although TKIs are 
less frequently used in the neoadjuvant setting, some stud-
ies have investigated their potential. For example, lapatinib Ta
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has been explored as a neoadjuvant option in combination 
with trastuzumab and ChT in HER2+ breast cancer. The 
NeoALTTO trial has demonstrated that adding lapatinib to 
trastuzumab before surgery (neoadjuvant therapy) achieves 
a significantly greater pCR rate than trastuzumab alone89. 
However, owing to mixed results and adverse effects, lap-
atinib has not gained widespread use in the neoadjuvant 
setting.

TNBC EBC

TNBC lacks ER, PR, and HER2 expression90, thus limiting the 
effectiveness of hormonal therapies and HER2-targeted agents 
widely used in other breast cancer subtypes. Consequently, 
TNBC has been associated with poor prognosis91,92, high 
risk of early recurrence93,94, and limited treatment options. 
However, recent advances in targeted therapies, immuno-
therapy, and personalized medicine are beginning to shift this 
paradigm, particularly for patients with high-risk early-stage 
TNBC. This movement toward individualized care, focusing 
on the specific biological traits of the tumor and the patient’s 
genetic profile, has been instrumental in improving outcomes 
in early TNBC95. The rapid evolution of precision medicine in 
TNBC offers hope to patients with this aggressive and tradi-
tionally challenging subtype.

Immunotherapy improves pCR, EFS, and OS rates 
in early TNBC
Immunotherapy has emerged as a promising treatment option 
for TNBC. The primary focus of immunotherapy in early 
TNBC is on ICIs, particularly anti-PD-1 and anti-PD-L1 ther-
apies, to enhance the immune system’s ability to recognize and 
destroy cancer cells96.

Pembrolizumab (Keytruda)
Pembrolizumab is among the most studied ICIs in early TNBC. 
The KEYNOTE-522 trial (Table 2), a phase III study, evaluated 
pembrolizumab in combination with neoadjuvant ChT in ear-
ly-stage, high-risk TNBC. This treatment significant improved 
pCR rates (64.8% in the pembrolizumab group vs. 51.2% in 
the ChT-only group)71. The trial also demonstrated improved 
event-free survival (EFS)72; consequently, pembrolizumab has 
become a cornerstone of early TNBC treatment. The final OS 
results of the KEYNOTE-522 trial were presented in 202473. 
In patients with early-stage TNBC receiving neoadjuvant ther-
apy, adding pembrolizumab to ChT significantly improved the 
5-year OS, from 81.7% to 86.6%. Moreover, long-term benefits 

of EFS were also observed. These findings further support the 
efficacy of pembrolizumab.

Atezolizumab (Tecentriq)
Another checkpoint inhibitor, atezolizumab, was evaluated in 
the IMpassion031 trial (Table 2), in combination with nab-pa-
clitaxel, followed by doxorubicin plus cyclophosphamide as 
neoadjuvant treatment in early TNBC. Addition of atezoli-
zumab achieved a higher pCR rate (58.0%) than placebo plus 
ChT (41.0%)74. Consequently, atezolizumab has been estab-
lished as a potential neoadjuvant option for early-stage TNBC.

Avelumab (Bavencio)
The A-BRAVE trial (Table 2), a phase III study, examined ave-
lumab in the adjuvant setting for patients with early TNBC at 
high recurrence risk. Although avelumab did not significantly 
improve DFS, it achieved a meaningful improvement in OS by 
decreasing the risk of death and distant metastases in high-risk 
patients. These findings support its potential use in selected 
patients’ post-neoadjuvant therapy75.

ICIs are part of a growing arsenal against early TNBC. These 
therapies have shown promise both in neoadjuvant and adju-
vant settings, and herald a major shift toward personalized 
immunotherapy improving outcomes in a subtype of breast 
cancer with previously limited therapeutic options.

PARP inhibitors are recommended in patients with 
high-risk early-stage BRCA-mutated TNBC
In 2005, 2 groundbreaking studies showed that synthetic 
lethality can be exploited in BRCA1/2-deficient tumors: cells 
lacking homologous recombination are selectively killed 
when PARP is inhibited97,98. In 2009, the phase I trial of the 
PARP inhibitor olaparib demonstrated objective responses 
in patients with advanced breast, ovarian, and prostate can-
cers bearing germline BRCA1/2 mutations99. Subsequent tri-
als also indicated substantial promise of PARP inhibitors in 
treating patients with early TNBC with BRCA1/2 mutations. 
The OlympiA trial demonstrated that 1 year of olaparib treat-
ment significantly improved both iDFS and OS in patients 
with high-risk early-stage BRCA-mutated TNBC77. Olaparib 
decreased the risk of disease recurrence and death, and was 
the first PARP inhibitor demonstrated to achieve an OS ben-
efit in this setting. The trial results emphasize the importance 
of PARP inhibitors in personalizing treatment for patients 
with TNBC.

Precision medicine in early TNBC has transformed the 
treatment landscape by incorporating immunotherapy, PARP 
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inhibitors, and ADCs, and surpassing traditional ChT in 
improving survival and recurrence. These therapies, which 
target the unique biology of TNBC and subgroups, are moving 
the field closer to personalized treatment options that extend 
beyond standard ChT. Although challenges remain, such as 
understanding resistance mechanisms and identifying optimal 
combination therapies, these advances provide a more hope-
ful outlook for patients with TNBC, particularly those at high 
recurrence risk.

Continued research on the tumor microenvironment, 
genetic mutations, and emerging biomarkers should further 
refine these approaches and enable greater personalization in 
the future. For patients with early TNBC, these precision med-
icine strategies signify a shift toward more effective, targeted 
care aimed at decreasing recurrence, improving survival, and 
profoundly affecting treatment for this challenging breast can-
cer subtype.

Precision medicine in ABC

HR+ ABC

HR+ ABC typically responds well to ETs, which are founda-
tional in its management. However, because resistance mech-
anisms frequently develop over time, additional targeted 
therapies are frequently required.

ETs provide an initial therapy for ABC
In clinical practice, ETs are favored for their ability to man-
age advanced disease with a relatively favorable adverse effect 
profile, in contrast to ChT. These treatments are valuable for 
patients requiring long-term management, because they can 
be administered over extended periods to control disease 
progression.

ET is often used as a monotherapy in patients with indo-
lent disease, or in combination with targeted therapies such as 
CDK4/6 inhibitors in patients with high-risk features or those 
who exhibit resistance to first-line therapies. Extending the 
duration of ET in patients who continue to benefit is a com-
mon approach, provided that the patient tolerates the treat-
ment well.

Despite the broad application of ETs, clinical challenges 
arise from the development of resistance, particularly in 
patients with mutations, such as ESR1100. For such cases, novel 
therapies, such as oral selective estrogen receptor degrad-
ers (e.g., fulvestrant52 and elacestrant53,54), provide new 

treatment avenues when traditional endocrine therapies fail. 
The EMERALD trial has demonstrated that elacestrant sig-
nificantly improves PFS in patients with ESR1-mutant ABC53. 
Therefore, this treatment may provide an essential option in 
cases in which tumors no longer respond to standard ETs101.

CDK4/6 inhibitors combined with ET 
are the standard treatment for HR+ ABC
CDK4/6 inhibitors represent a major advancement in treat-
ing HR+ ABC, particularly for patients who experience dis-
ease progression under ET. When combined with ET, these 
 inhibitors—palbociclib, ribociclib, abemaciclib, and the 
emerging dalpiciclib—have achieved substantial improve-
ments in PFS and OS102 (Table 4).

Palbociclib, ribociclib, and abemaciclib are combined with 
ETs, particularly for patients with high-risk disease or signifi-
cant tumor burdens. Clinical trials including PALOMA-2105,106 
and MONALEESA-2109,110 have demonstrated that adding 
CDK4/6 inhibitors to letrozole extends PFS by 10–11 months 
beyond ET alone. These inhibitors have become standard care 
for advanced HR+ breast cancer.

Dalpiciclib, a newer addition to the CDK4/6 inhibitor class, 
has shown promise in improving outcomes for patients with 
HR+ ABC. Clinical studies such as the DAWNA-1 trial have 
demonstrated that, when combined with ET, this treatment 
significantly prolongs PFS, particularly in patients with endo-
crine-resistant or heavily pretreated disease67. Additionally, 
dalpiciclib exhibits a manageable safety profile, in which neu-
tropenia is a notable but manageable adverse effect67. As ongo-
ing trials evaluate its efficacy and potential applications63,68, 
dalpiciclib offers another valuable option that broadens the 
available therapeutic strategies for managing HR+ ABC.

PI3K/AKT/mTOR inhibitors are effective options 
for endocrine-resistant HR+ ABC
Targeting the PI3K/AKT/mTOR pathway is critical in manag-
ing HR+ ABC, particularly for patients who develop resistance 
to ETs because of mutations in the PIK3CA gene119,120. This 
pathway is a central component in cellular growth, metabo-
lism, and survival, and its dysregulation is associated with 
resistance mechanisms in HR+ breast cancer, thus contribut-
ing to disease progression despite standard treatments121.

PI3K inhibitors, including alpelisib and inavolisib, have 
emerged as key therapeutic agents for overcoming resist-
ance in HR+ breast cancer driven by PIK3CA mutations122. 
Alpelisib, a selective PI3K inhibitor, has notable efficacy in 
PIK3CA-mutant HR+ breast cancer, and its combination with 
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ET has become a common treatment approach123. In the sem-
inal SOLAR-1 trial, patients with PIK3CA-mutant HR+ breast 
cancer who received alpelisib plus fulvestrant experienced a 
significant improvement in PFS over that observed in patients 
receiving ET alone124. Similarly, inavolisib, another selective 
PI3K inhibitor, has shown efficacy in combination with aro-
matase inhibitors, by significantly extending PFS in patients 
with PIK3CA-mutant tumors125. These inhibitors provide 
essential options for patients with endocrine-resistant disease, 
and offer an alternative strategy for targeting the PI3K path-
way and delaying disease progression.

AKT inhibitors, such as capivasertib, offer a distinct 
approach targeting the PI3K/AKT/mTOR pathway126. 
Capivasertib has shown promising results in combination 
with ET, by improving PFS in patients with disease progres-
sion under prior treatments127,128. As an AKT inhibitor, capiv-
asertib directly targets a downstream component of the PI3K 
pathway, thus providing an alternative therapeutic option for 
patients with HR+ breast cancer resistant to other treatments.

Another agent, everolimus, is an mTOR inhibitor that 
targets a downstream component of the PI3K/AKT/mTOR 
pathway, thereby offering an alternative mechanism to com-
bat resistance to CDK4/6 inhibitor and ET129,130. Everolimus 
is frequently used alongside exemestane in advanced HR+ 
breast cancer, particularly in patients with disease progres-
sion under prior ETs. The BOLERO-2 trial has emphasized 
the clinical benefits of adding everolimus, which significantly 
extended PFS, particularly in heavily pretreated patients who 
would otherwise have had limited therapeutic options131. This 
combination is valuable for patients with advanced disease, 
because it not only helps manage resistance but also maintains 
quality of life by delaying progression.

These targeted therapies provide essential options for man-
aging HR+ breast cancer and addressing the critical need for 
effective treatments in patients with endocrine-resistant dis-
ease driven by PI3K pathway mutations.

ADCs provide promising treatment options 
for advanced HR+ breast cancer after multiple 
therapies fail
For patients whose disease progresses after multiple lines 
of endocrine and targeted therapies, ADCs provide a new 
approach132. These therapies deliver cytotoxic ChT directly to 
tumor cells and consequently minimize systemic exposure133.

T-DXd, initially developed for HER2+ breast cancer, 
has shown efficacy in HR+ breast cancer with low HER2 

expression (Table 3). The DESTINY-Breast04 trial has 
demonstrated significant improvements in PFS for patients 
with advanced HR+ disease who have exhausted other treat-
ment options22.

Sacituzumab govitecan (SG), targeting Trop-2, has also 
shown promising results in heavily pretreated HR+ patients 
with breast cancer. The ASCENT trial has indicated extended 
OS and consequently brought hope to patients with few 
remaining therapeutic options134,135.

ETs remain a fundamental part of managing advanced 
HR+ breast cancer, particularly in patients with relatively less 
aggressive disease or those who would benefit from long-term 
treatment with fewer adverse effects. When ETs are combined 
with targeted treatments such as CDK4/6 inhibitors, PI3K/
AKT/mTOR pathway inhibitors, and ADCs, the outcomes 
improve significantly. New therapies, such as doruciclib and 
elacestrant, provide promising solutions for patients with 
resistant disease, by making precision medicine an essential 
component of ABC care. As research progresses, refining 
these therapies and addressing resistance mechanisms will 
be critical to further improving survival and quality of life for 
advanced patients with breast cancer.

HER2+ ABC

Since the discovery of HER2/neu136, precision medicine for 
advanced HER2+ breast cancer continues to make major 
strides, primarily through the development of targeted thera-
pies such as monoclonal antibodies, ADCs, and small molecule 
TKIs. These treatments are highly tailored to the molecular 
characteristics of HER2+ tumors, and have been found to 
improve survival rates and address resistance mechanisms.

Trastuzumab and pertuzumab provide an initial 
therapy for metastatic HER2+ breast cancer
Monoclonal antibodies, such as trastuzumab, have been 
foundational in advanced HER2-positive breast cancer treat-
ment137. Trastuzumab blocks HER2 receptor signaling, and 
consequently prevents tumor growth and engages the immune 
system to destroy cancer cells138. Pertuzumab, a monoclo-
nal antibody that blocks HER2 dimerization, is often com-
bined with trastuzumab for dual HER2 blockade139. The 
CLEOPATRA trial has demonstrated that this combination, 
along with ChT, significantly improves PFS and OS in patients 
with metastatic HER2+ breast cancer140. This regimen remains 
the first-line standard of care for most patients.
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ADCs provide a second-line treatment for  
HER2+ ABC
ADCs represent a major advancement in precision medicine 
by combining targeted HER2 inhibition with ChT. T-DM1, 
the first ADC for HER2+ breast cancer, links trastuzumab to 
a cytotoxic agent that specifically kills HER2+ cancer cells141. 
The EMILIA trial established T-DM1 as the preferred sec-
ond-line treatment after trastuzumab, by showing significant 
improvements in PFS and overall safety142 (Table 3).

More recently, T-DXd, a more potent ADC, has shown 
superior efficacy. The DESTINY-Breast03 trial has demon-
strated that T-DXd achieves a median PFS longer than 25 
months, as compared with 7 months for T-DM1; there-
fore, this treatment is the preferred second-line option143. 
Furthermore, the DESTINY-Breast04 trial extended T-DXd’s 
use to patients with HER2-low expression, thus broadening 
its applicability beyond traditional HER2+ breast cancer22,144. 
The DESTINY-Breast06 trial evaluated T-DXd in patients with 
HER2-ultralow breast cancer, and might enable expansion of 
this potent ADC to a broader patient population145 (Table 3).

TKIs enhance treatment for HER2+ ABC, including 
brain metastases
In HER2+ ABC, TKIs have become a crucial component of 
treatment, particularly for patients resistant to traditional 
HER2-targeted therapies, such as trastuzumab or pertu-
zumab. TKIs are small molecules that specifically inhibit the 
tyrosine kinase activity of the HER2 receptor, a protein that 
drives tumor cell growth and proliferation in HER2+ breast 
cancer146. By blocking this activity, TKIs effectively disrupt 
the signaling pathways essential for tumor survival and conse-
quently provide a more targeted therapeutic option.

Lapatinib was among the first TKIs approved for HER2+ 
breast cancer and is often used in combination with capecit-
abine147. However, newer TKIs, such as tucatinib, neratinib, 
and pyrotinib, have since expanded the treatment landscape 
by providing more potent options with enhanced specific-
ity and efficacy. Tucatinib has shown particularly impressive 
results in patients with brain metastases common and chal-
lenging complications in HER2+ breast cancer, because of its 
ability to cross the blood-brain barrier more effectively than 
other HER2-targeted drugs148,149. The HER2CLIMB trial has 
demonstrated that the combination of tucatinib with trastu-
zumab and capecitabine significantly improves PFS and OS 
in patients with HER2+ breast cancer with or without brain 
metastases150.

Pyrotinib is another potent HER2-targeted TKI that inhib-
its HER1 and HER4, and consequently broadly disrupts 
HER family signaling pathways151. Clinical trials such as the 
PERMEATE152 and PHOEBE153 trials have demonstrated that 
pyrotinib in combination with capecitabine improves PFS and 
response rates in patients whose disease previously progressed 
under other HER2-targeted therapies. This broad-spectrum 
activity makes pyrotinib a promising option, particularly for 
patients with brain metastases or those who have experienced 
disease progression on traditional HER2-targeted agents.

Although TKIs provide potent options, they can have 
adverse effects, such as diarrhea, rash, and liver enzyme ele-
vations, which often require monitoring and management154. 
However, the clinical benefits of TKIs, particularly their ability 
to address CNS involvement and enhance outcomes in heav-
ily pretreated patients, underscore their value in the HER2+ 
breast cancer treatment landscape. As research continues 
to explore new TKIs and combination strategies, TKIs are 
anticipated to play an increasingly prominent role in treating 
HER2+ ABC, by extending survival and improving quality of 
life for many patients.

Advanced TNBC

ChT remains a foundational treatment for advanced TNBC155. 
However, precision medicine is transforming this field by 
tailoring treatment strategies to the unique molecular char-
acteristics of individual tumors. Unlike other breast cancers, 
TNBC lacks common therapeutic targets, and its historically 
restricted treatment options have contributed to its aggres-
sive progression and higher relapse rates. Recent advances in 
genomics and molecular profiling have led to the discovery of 
distinct TNBC subtypes, thus facilitating the development of 
targeted therapies, immunotherapies, and novel drug deliv-
ery systems156. These approaches are reshaping TNBC man-
agement and bringing new hope for improved outcomes in 
advanced and metastatic stages.

Immunotherapy has transformed TNBC treatment
Immunotherapy has transformed TNBC treatment, particu-
larly in tumors expressing PD-L1. ICIs, such as pembroli-
zumab and atezolizumab, enable the immune system to attack 
cancer cells by blocking the PD-1/PD-L1 pathway157. In the 
KEYNOTE-355 trial, pembrolizumab combined with ChT has 
been found to significantly improve PFS in PD-L1-positive 
metastatic TNBC (9.7 vs. 5.6 months)23 (Table 5). Similarly, 
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in the IMpassion130 trial, atezolizumab combined with 
nab-paclitaxel has been found to improve PFS in patients with 
PD-L1-positive TNBC (7.5 vs. 5.0 months)24. These findings 
further established immunotherapy as a critical tool for TNBC 
treatment (Table 5).

Preliminary results from Future-C-PLUS have indicated 
promising increases in overall response rate and PFS with 
this therapy compared with ICI monotherapy, particularly in 
 difficult-to-treat cases (Table 5)158. This combination strategy 
highlights the potential of “immune-priming” approaches to 
enhance checkpoint inhibitor efficacy across TNBC subtypes 
and to expand the benefits of immunotherapy to a broader 
patient population. The study exemplifies the evolving role of 
combination therapies in precision medicine for TNBC, and 
underscores the need for continued research into optimizing 
and individualizing immunotherapy strategies in this aggres-
sive cancer type.

ADCs are advancing TNBC treatment, improving 
outcomes in advanced, resistant cases
ADCs, which combine monoclonal antibodies with ChT, 
have become a promising treatment for TNBC. SG, targeting 
 Trop-2, has been particularly effective159. In the ASCENT trial, 
SG has been found to improve PFS (5.6 vs. 1.7 months) and 
OS (12.1 vs. 6.7 months) in patients with heavily pretreated 
metastatic TNBC134. ADCs, such as trastuzumab deruxtecan, 
initially used for HER2+ cancer, are being explored for HER2-
low TNBC, and have shown promising early results160 that 
may open new avenues for treatment.

Identifying new targets is essential for advanced 
TNBC
A key component of precision medicine in TNBC is iden-
tifying molecular subtypes that exhibit unique biological 
characteristics and therapeutic vulnerabilities. The Fudan 
Classification divides TNBC into 4 primary subtypes: basal-
like immune-suppressed, basal-like immune-activated, 
mesenchymal, and luminal androgen receptor161. Each 
subtype has distinct gene expression profiles and pathways 
that can inform tailored treatment approaches. For exam-
ple, basal-like immune-activated tumors show signs of 
immune activation with increased immune cell infiltration 
and therefore are likely to respond to immunotherapies161. 
In contrast, luminal androgen receptor subtypes express 
androgen receptor signaling and therefore are candidates 
for anti- androgen therapies161. By aligning treatments with 
the molecular characteristics of each subtype, precision 

medicine can maximize efficacy while minimizing unnec-
essary adverse effects.

Targeted therapies have become a cornerstone of preci-
sion medicine in TNBC. Drugs inhibiting specific signaling 
pathways, such as the PI3K/AKT/mTOR pathway, are being 
developed for TNBC subgroups with mutations in genes, such 
as PIK3CA and PTEN162. For instance, PI3K inhibitors, such 
as alpelisib, are being studied in patients with TNBC bearing 
these genetic alterations163. Additionally, PARP inhibitors, 
including olaparib164,165 and talazoparib166,167, have shown 
success in patients with TNBC with BRCA1 or BRCA2 muta-
tions. In the OlympiAD trial, olaparib, compared with stand-
ard ChT, has been found to significantly improve PFS in 
patients with BRCA-mutated TNBC (7.0 vs. 4.2 months)165. 
Similarly, in the EMBRACA trial, talazoparib extended PFS 
in this subgroup (8.6 vs. 5.6 months), thereby confirming the 
value of PARP inhibitors in BRCA-mutated TNBC167. These 
trials underscore the potential of targeted therapies in preci-
sion medicine to extend survival and decrease disease burden 
for specific TNBC subtypes.

Advancements in precision medicine have transformed 
the treatment of advanced TNBC, by overcoming histor-
ical limitations arising from a lack of therapeutic targets. 
Immunotherapy, remarkably ICIs, have improved survival 
in PD-L1-positive TNBC, particularly in combination with 
ChT. ADCs, such as SG, offer promising options for resistant 
or metastatic disease. Molecular profiling, such as the Fudan 
classification, enables tailored treatments with targeted thera-
pies, such as PARP and PI3K inhibitors for specific subgroups. 
These innovations highlight the growing value of precision 
medicine in optimizing TNBC management and improving 
outcomes. Ongoing research will be critical to expanding and 
refining these strategies.

In conclusion, the precision diagnosis and treatment of breast 
cancer have made remarkable strides in recent  decades (Figure 
1). Key milestones include the discovery of ER in 196738, the 
approval of tamoxifen in 197740, and the identification of 
HER2 in 1984136. The 1990s brought notable breakthroughs, 
such as the discovery of BRCA1/BRCA2 (1994–1996)13,14 
and the approval of trastuzumab (Herceptin) in 1998137. The 
early 2000s saw the proposal of molecular subtypes in 20002, 
followed by the launch of multi-gene testing tools, such as 
MammaPrint in 200227. In the 2010s, advancements continued 
with the approval of therapies such as olaparib in 2014168 and 
T-DXd in 2020144, whereas the use of NGS technology16 and 
pembrolizumab71 further personalized treatment strategies. 
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More recently, the standardization of liquid biopsy technology 
in 2021169 marked an important step in non-invasive diagnos-
tics. In the future, emerging technologies including artificial 
intelligence (AI), multi-omics, molecular imaging, and cell 
therapy are poised to push breast cancer diagnosis and treat-
ment to even more precise and individualized levels.

The future and emerging frontiers of 
precision medicine in breast cancer

Although current advancements are reshaping breast cancer 
diagnosis and treatment, the full potential of precision med-
icine continues to unfold. Emerging technologies—such as 
large-scale omics studies170, AI171, molecular imaging172, cell-
based therapies173, and mRNA innovations174—are poised to 
drive transformative breakthroughs that may lead to the next 
generation of personalized therapies (Figure 2). Below, we 
explore key directions for the evolution of precision medicine 
in breast cancer and the exciting frontiers that could become 
the next breakthrough of cancer treatment.

The next breakthrough of breast cancer 
treatment in the era of precision medicine

Precision medicine has already revolutionized breast can-
cer treatment, but the next major breakthrough is likely to 
emerge from integrating large-scale omics data and advanced 
AI. Analysis of comprehensive molecular, genetic, and phe-
notypic data should provide unprecedented understanding of 
breast cancer biology and enable more precise, personalized 
interventions.

Large-scale omics studies
•    Genomics: whole-genome sequencing and whole- exome 

sequencing are expected to become routinely used to 
uncover rare mutations, identify new driver genes, and 
enhance understanding of how genetic alterations (e.g., 
TP53, BRCA1/2, and PIK3CA) drive cancer progression  175 . 
These insights should fuel the development of highly tar-
geted therapies that are more effective and less toxic. 

•   Proteomics and transcriptomics: mapping of protein 
 expression  176- 178 , post-translational modifications  179 , and 
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gene expression profiles  180  is expected to further reveal 
breast cancer ’ s heterogeneity and enable the creation of 
personalized treatment plans considering the dynamic pro-
teome of a patient ’ s cancer, rather than its genetic makeup 
alone. 

•   Metabolomics: investigating metabolic reprogramming in 
breast cancer cells, such as shifts in glycolysis and oxidative 
phosphorylation, should lead to the identification of new 
therapeutic targets and precision therapies tailored to the 
metabolic vulnerabilities of each tumor  181- 184 .   

AI and machine learning integration
AI is expected to play a crucial role in analyzing the vast data 
from omics technologies, medical imaging, and patient histo-
ries, thereby providing deeper insights into cancer behavior. 
Key applications include the following:

•    Predicting treatment response: machine learning models 
can predict how breast cancer subtypes will respond to spe-
cific treatments, thus enabling earlier optimization of ther-
apy and minimizing adverse effects  185- 187 . 

•   Identifying novel targets: AI can identify novel drug tar-
gets and biomarkers by analyzing complex genetic  188 ,  189  
and proteomic data  190 , and can suggest drug repurposing 
opportunities for specific subtypes of breast cancer  191 ,  192 .    

Emerging therapies: cell therapies and mRNA 
innovations

Two of the most exciting frontiers in precision medicine are 
cell-based therapies and mRNA treatments, particularly for 
advanced and metastatic breast cancer.

Figure 2 Precision medicine for breast cancer. This figure illustrates a personalized treatment framework that integrates diagnostic and 
therapeutic strategies for patients with breast cancer, regardless of metastasis presence. Tissue and blood samples are analyzed with immu-
nohistochemistry (IHC), fluorescence in situ hybridization (FISH), multi-omics approaches (genomics, proteomics, and transcriptomics), and 
liquid biopsy techniques (ctDNA/CTCs). Molecular imaging is used to visualize tumor markers, whereas artificial intelligence (AI) aids in data 
interpretation and decision-making. On the basis of the molecular subtypes, personalized therapies are tailored, including endocrine therapies 
with or without CDK4/6 inhibitors for HR+/HER2− tumors, HER2-targeted therapies (e.g., trastuzumab) for HER2+ tumors, ChT or immuno-
therapy for TNBC, and innovative cell/mRNA-based therapies.
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Cell therapies
•    Personalized immunotherapy: CAR-T cell therapy, which 

involves genetically modifying a patient ’ s T cells to target 
tumor-specific antigens, has revolutionized treatment of 
hematological cancers  193 . For breast cancer, particularly 
TNBC, tumor-infiltrating lymphocyte (TIL) therapies have 
substantial promise  194 . Personalized TIL therapy has the 
potential to dramatically improve outcomes, particularly in 
resistant or metastatic cases  195 . 

•   Oncolytic virus therapy: Genetically modified viruses that 
selectively infect and kill cancer cells are another promis-
ing approach. These oncolytic viruses can be engineered to 
enhance immune responses and can be paired with ICIs, 
thus providing a multi-pronged strategy to eliminate breast 
cancer cells  195- 198 .   

mRNA therapies
The success of mRNA vaccines for COVID-19 has paved the 
way to treatments for cancers including breast cancer.
•    mRNA cancer vaccines: These vaccines can be designed to 

encode tumor-specific antigens that stimulate the immune 
system to target and destroy cancer cells  199 . Tailoring vac-
cines to each patient ’ s tumor profile offers a form of person-
alized immunotherapy  200 ,  201 . 

•   mRNA as therapeutic agents: Beyond vaccines, mRNA-
based therapies can directly target cancer by delivering 
genetic instructions to cells, and enabling them to produce 
proteins that either inhibit tumor growth or trigger cancer 
cell death  202 . Although still in the early stages, this approach 
has substantial promise for treating HR+ and HER2+ breast 
cancer.    

The road to personalized medicine: when 
and how will it arrive?

Although precision medicine is already influencing breast 
cancer treatment, fully personalized medicine might require 1 
or 2 decades to mature. Key milestones include the following.

Comprehensive genomic profiling
Routine genetic testing, such as NGS of both tumor and nor-
mal tissue, is expected to become standard. This testing should 
help tailor therapies based on somatic mutations and germline 
mutations, which can influence treatment responses and pre-
dispose individuals to cancer203.

Liquid biopsies
Advances in liquid biopsy technology, which analyzes can-
cer DNA in blood, should allow for non-invasive moni-
toring of tumor evolution and therapy response169. This 
monitoring would enable real-time treatment adjustments 
and early recurrence detection, even before clinical symp-
toms appear204.

AI-powered personalized treatment plans
AI systems are expected to integrate genetic, molecular, and 
clinical data to produce fully personalized treatment plans 
optimizing efficacy and minimizing toxicity205,206. This 
approach could combine multiple therapies—e.g., ChT, immu-
notherapy, targeted therapy, and hormone therapy—according 
to each patient’s unique tumor profile.

Molecular imaging
As precision medicine evolves, molecular imaging is expected 
to become more integrated into breast cancer diagnosis and 
treatment207. Advanced imaging technologies would allow 
for real-time visualization of tumor molecular features, 
such as specific receptors208-212, mutations213, and metabolic 
 activity214. Techniques such as PET scans, magnetic resonance 
spectroscopy, and optical imaging are expected to enable early 
detection of tumors, treatment response monitoring, and 
tumor evolution tracking.

Precision medicine is shaping the future of breast can-
cer treatment, driven by breakthroughs in omics studies, AI, 
molecular imaging, and novel therapies, such as cell-based 
immunotherapies and mRNA treatments. In the coming 
years, therapies are expected to become increasingly personal-
ized, through tailoring to each individual’s genetic, molecular, 
and immune profile. Although the timeline for widespread 
personalized medicine is uncertain, we are on the cusp of a 
revolution promising more targeted, effective, and individual-
ized treatments leading to better outcomes and fewer adverse 
effects for patients.

Conclusions

Precision medicine has fundamentally transformed breast 
cancer management by recognizing its molecular heteroge-
neity and tailoring therapies to distinct disease subtypes215. 
This shift has led to the identification of key mutations, such 
as BRCA1/2216 and PIK3CA217, driving the development of 
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highly targeted therapies that are more effective and less toxic. 
Advances in genetic profiling, biomarkers, and technologies, 
such as liquid biopsies, have significantly enhanced diagnos-
tic accuracy and treatment personalization. Simultaneously, 
insights into the tumor microenvironment have informed the 
growth of immunotherapy strategies. These innovations have 
markedly improved survival rates and quality of life, particu-
larly for patients with challenging subtypes, such as triple- 
negative and HER2+ breast cancer.

Key advancements in areas including CDK4/6 inhibitors, 
PARP inhibitors, and ADCs have precisely targeted oncogenic 
pathways, and improved DFS and OS. The integration of ICIs 
underscores the increasing importance of immunotherapy 
in precision oncology. However, challenges such as therapy 
resistance and the need for reliable predictive biomarkers 
remain major hurdles in fully harnessing the potential of pre-
cision medicine.

Emerging technologies are expected to drive the next 
wave of breakthroughs. Large-scale omics studies, including 
genomics, proteomics, and metabolomics, offer comprehen-
sive understanding of breast cancer at the molecular level, and 
can uncover rare mutations and metabolic pathways that may 
become therapeutic targets. AI is expected to complement 
these studies by analyzing complex datasets to predict treat-
ment responses, identify new drug targets, and personalize care 
for individual patients. Moreover, cell-based therapies, such 
as CAR-T and TIL therapies, are advancing immunotherapy, 
particularly for resistant or metastatic cases. Simultaneously, 
oncolytic viruses offer novel ways to target and destroy can-
cer cells directly. Moreover, mRNA innovations, inspired by 
the success of COVID-19 vaccines, promise breakthroughs 
in personalized cancer vaccines and therapeutic applications, 
by enabling the immune system to recognize and eliminate 
tumor-specific antigens218.

Molecular imaging is likely to become increasingly impor-
tant in precision medicine, by allowing real-time monitoring of 
tumor behavior and treatment responses207. This monitoring 
would enable dynamic treatment adjustments and enhanced 
personalization of therapies, particularly in detecting resist-
ance early and tracking tumor evolution219. By integrating AI 
with molecular imaging, clinicians can create more accurate, 
individualized treatment plans that optimize efficacy while 
minimizing adverse effects.

In summary, precision medicine has become a corner-
stone of modern breast cancer treatment, by offering more 

effective, less invasive, and highly personalized care. With 
the rapid evolution of omics studies, AI, cell-based thera-
pies, mRNA technologies and molecular imaging, the field 
promises to deliver transformative outcomes that improve 
survival rates and quality of life for patients at every stage of 
the disease.
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