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Abstract

Bacterial evolution is characterized by frequent gain and loss events of gene families. These events can be inferred from

phyletic pattern data—a compact representation of gene family repertoire across multiple genomes. The maximum

parsimony paradigm is a classical and prevalent approach for the detection of gene family gains and losses mapped on

specific branches. We and others have previously developed probabilistic models that aim to account for the gain and loss

stochastic dynamics. These models are a critical component of a methodology termed stochastic mapping, in which

probabilities and expectations of gain and loss events are estimated for each branch of an underlying phylogenetic tree. In

this work, we present a phyletic pattern simulator in which the gain and loss dynamics are assumed to follow a continuous-
time Markov chain along the tree. Various models and options are implemented to make the simulation software useful for

a large number of studies in which binary (presence/absence) data are analyzed. Using this simulation software, we

compared the ability of the maximum parsimony and the stochastic mapping approaches to accurately detect gain and loss

events along the tree. Our simulations cover a large array of evolutionary scenarios in terms of the propensities for gene

family gains and losses and the variability of these propensities among gene families. Although in all simulation schemes,

both methods obtain relatively low levels of false positive rates, stochastic mapping outperforms maximum parsimony in

terms of true positive rates. We further studied the factors that influence the performance of both methods. We find, for

example, that the accuracy of maximum parsimony inference is substantially reduced when the goal is to map gain and loss
events along internal branches of the phylogenetic tree. Furthermore, the accuracy of stochastic mapping is reduced with

smaller data sets (limited number of gene families) due to unreliable estimation of branch lengths. Our simulator and

simulation results are additionally relevant for the analysis of other types of binary-coded data, such as the existence of

homologues restriction sites, gaps, and introns, to name a few. Both the simulation software and the inference methodology

are freely available at a user-friendly server: http://gloome.tau.ac.il/.
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Introduction

Gene Content Modifications among Microbial Species

Evolutionary biologists had long recognized that gain and

loss of genetic material are a central mechanism augment-

ing site-specific mutations in the evolution of microbial spe-
cies (Achtman and Wagner 2008). Recent advances in

genome sequencing elucidate the extent in which these

macro evolutionary events are responsible for microbial ge-

nome remodeling (Konstantinidis and Tiedje 2004; Koonin

andWolf 2008). Modifications inmicrobial gene content are

pivotal in the adaptation to new environments. Examples

include genome erosions that facilitate endosymbiosis

(Moran et al. 2009), the acquisition of novel genes that
are associated with adaptation to new ecological niches

(Gogarten and Townsend 2005), attainment of novel func-

tions (Pennisi 2004; Gogarten and Townsend 2005), expan-

sion of metabolic networks (Pal et al. 2005), speciation

(Lawrence 1999), and pathogenicity transformation (Jin

et al. 2002; Holden et al. 2004; Gal-Mor and Finlay 2006).

ª The Author(s) 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/

3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 3:1265–1275. doi:10.1093/gbe/evr101 Advance Access publication October 4, 2011 1265

GBE

http://gloome.tau.ac.il/


Three approaches are typically used to infer gene transfer
events, each suitable for inferring only a subset of all transfer

events. The so-called ‘‘phylogenetic incongruence’’ ap-

proach identified genes with incompatible evolutionary

history as compared with the inferred ribosomal trees

(Sicheritz-Ponten and Andersson 2001). This approach is

suitable for relatively widespread genes with ‘‘not too much

or too little’’sequence divergence (e.g., Graybeal 1994). The

so-called parametric genomic composition approach de-
tects genes that are significantly different from the rest of

the genome in some attributes such as GC content or codon

usage (Lawrence and Ochman 1998). This approach can on-

ly detect recent transfer events due to sequence ameliora-

tion (Koski et al. 2001; Wang 2001; Daubin et al. 2003).

Finally, phyletic pattern–based approaches rely on the avail-

ability of fully sequenced genomes and can capture the

emergence of new gene family on a background of their
absence in closely related species.

Phyletic Patterns and Detection of Gain and Loss Events

Comparative genomic analysis of gene gain and loss events

across multiple species requires compact representation of

gene content. A set of genomes is represented by amatrix of

binary characters that resembles a gap-free multiple se-
quence alignment and is often termed a phyletic pattern

or a phylogenetic profile. Rows correspond to species and

columns to gene families. The character in row i and column

j is either ‘‘1’’ or ‘‘0’’ depending on whether gene family j is
present or absent in species i, respectively.

Such a binary presence–absence matrix is used to repre-

sent numerous other biological data including restriction

sites (Templeton 1983; Nei and Tajima 1985; Felsenstein
1992), indels (Simmons and Ochoterena 2000), introns

(Csuros 2006; Carmel et al. 2007), and morphological char-

acters (reviewed in Ronquist 2004). Notably, even questions

in fields other than biology are amenable to such data

coding. For example, the evolution of human languages

was studied by analyzing the phyletic patterns of lexical

units (Gray and Atkinson 2003).

Following the development of realistic probabilistic mod-
els describing the evolution of DNA and protein sequences,

the analysis of phyletic pattern data has progressed from the

maximumparsimony criterion (Mirkin et al. 2003; Boussau et al.

2004) to models, in which the dynamics of gain (0 / 1) and

loss (1 / 0) events are assumed to follow a continu-

ous-time Markov process (Csuros 2006; Hao and Golding

2006). Recent advances in probability models for analyzing

gene content data allow more realistic description of the
evolutionary dynamics of gene family gains and losses. For

example, a recent model by Spencer and Sangaralingam

(2009) allows variability of the gain and loss rates among

branches to be explicitly accounted for. This model im-

provement is important for analyzing gene content

changes in lineage leading to parasitic bacteria, in which
massive gene losses are often observed (Moran 2003;

Charlebois and Doolittle 2004; Moran et al. 2009). In an-

other example, variability of both the gain and the loss

rates is allowed among gene families, thus alleviating

the unrealistic assumption that all gene families evolve

with a single gain–loss ratio (Cohen and Pupko 2010).

One of the goals when analyzing phyletic pattern data is

to map gain and loss events onto a phylogenetic tree. In
gene family analysis, this corresponds to inferring for each

gene family the branches in which this gene family was ac-

quired (gained the first copy of the gene) or lost (all copies

deleted). A prevailing branch-site detection methodology is

based on the maximum parsimony approach. Parsimony-

based mapping is used in many recent works (Kettler

et al. 2007; Cordero et al. 2008; Lercher and Pal 2008;

Ruano-Rubio et al. 2009; Yerrapragada et al. 2009; Kloesges
et al. 2011). However, an alternative methodology exists, in

which evolutionary events are mapped onto the phylogeny

within a probabilistic paradigm (Nielsen 2002; Huelsenbeck

et al. 2003; Bollback 2005; Minin and Suchard 2008). This

stochastic mapping methodology allows exact computation

of both the expectation and the probability of transitions

along each branch of a phylogenetic tree, given the evolu-

tionary models and the phyletic pattern data. All possible an-
cestral paths are accounted for, weighted by their likelihood

(Cohen and Pupko 2010).

It has been shown in several cases that using the maxi-

mum parsimony criterion for sequence analysis may be mis-

leading, in particular when there is substantial variability in

branch lengths (Felsenstein 1978; Yang 1996; Pol and

Siddall 2001; Swofford et al. 2001). However, although

the developers of the stochastic mapping approach had
performed initial performance evaluation (Nielsen 2002;

Huelsenbeck et al. 2003), a rigorous comparison between

maximum parsimony and the stochastic mapping for the

task of inferring gain and loss events to specific branches

is still missing. Here, we evaluated the performance of these

two approaches for detecting branch-site gain and loss

events under various evolutionary assumptions. We further

aimed to study the parameters that determine the inference
accuracy of each methodology. For this performance

evaluation, we have developed a simulation program,which

allows simulating phyletic pattern data under various

scenarios of gain and loss dynamics.

Materials and Methods

Simulations

The simulation software is given an underlying phylogeny

that represents the species tree and a set of assumptions

regarding the evolutionary dynamics of gain and loss events,

parameterized as a continuous-time Markov chain. In this
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analysis, for all sites, evolution is simulated along the same
tree. During simulations, all gain and loss events along each

branch for each site (gene family) are recorded.

In all simulations, stationarity was assumed, thus char-

acter frequencies at the root were set to the stationary

frequencies of the rate matrix. The rate matrix, sampled

for each site (gene family), governs the evolutionary

dynamics for this site and thus determines substitution

probabilities along the tree. The total rate of a specific
matrix is defined as the stationary frequency of 1 (p1)
times the gain rate plus the stationary frequency of

0 (p0) times the loss rate. All matrices were scaled so that

the average total rate over all simulated sites equals 1.

This ensures that the branch lengths used in the simulated

tree correspond to average number of gain and loss

events per site. Simulations were conducted under several

evolutionary scenarios starting with a naı̈ve scenario with
equal gain and loss rates and no rate variability among

different sites (ER_gEql).

Simulations with Variable Loss-to-Gain Ratio

The assumption that gain and loss rates are equal in all sites

is alleviated by sampling for each site the loss–gain rate ratio

from a uniform distribution. We simulated several variants,

in which we progressively introduced a bias toward a higher
loss-to-gain ratio. Specifically, the loss-to-gain rate ratio was

sampled from a uniform distribution in the interval

[0, 2 � expectedRatio]. Thus, when expectedRatio 5 1,

the loss-to-gain ratio was sampled from the interval

[0, 2], and the expectation of the ratio is 1. We denote this

simulation scenario as ER_gVrl_1, in which the suffix

number stands for the expectation of the loss-to-gain ratio.

Similarly, we simulated scenarios ER_gVrl_2, ER_gVrl_4, and
ER_gVrl_8. To avoid boundary conditions, ratios were sam-

pled uniformly from the interval [e, 2 � ratio � e], with e set

to 0.01. For each site, we derived the gain and loss rates

while maintaining the overall rate for that site equal to 1.

Simulations with Rate Variability among Sites

Additional scenarios further alleviated the assumption that

all sites evolve under the same total rate. The rate variability
among sites was implemented by sampling from a gamma

distribution, which was shown to capture well the rate var-

iability in gain and loss dynamics among gene families

(Cohen et al. 2008; Hao and Golding 2008b). All previous

scenarios that assume a single rate for all sites were mod-

ified to account for among sites rate variability (with name

prefix changed from ‘‘ER’’ to ‘‘VR’’). The rate variability may

be considered a ‘‘second layer’’ of variability in our imple-
mentation. We thus sampled two variables for each site:

the loss-to-gain rate ratio (as before) and the overall evolu-

tionary rate. For all simulations, we set the shape parameter

of the gamma distribution to 0.6, which is suited for the rate

variability found in gene families across microbial species

(Cohen et al. 2008; Hao and Golding 2008b; Spencer
and Sangaralingam 2009).

Simulations of Evolutionary Dynamics Derived from
COG Gene Families

We also simulated data with gain and loss dynamics based on

real data: phyletic pattern data including 4,873 gene families
across 66 microbial genomes extracted from the Clusters of

Orthologous Groups (COG) database (Tatusov et al. 2003) us-

ing the underlying phylogeny from the ‘‘Tree Of Life’’ project

(Ciccarelli et al. 2006). Based on this data set, two related

simulation scenarios were established. In simulation scenario

COGParsimony, maximum parsimony inference was used to in-

fer the evolutionary parameters (gene families’ rate distribu-

tions) in the simulations while using a cost matrix (gain:loss)
of 2:1 (Snel et al. 2002). This distribution was computed as

follows: for each gene family, the gain and loss rates were

proportional to the number of gain and loss events inferred

for that gene family, respectively. Simulations were then con-

ducted by sampling for each simulated site, a (gain, loss) pair

from the COG gene families with repetition. In COGModel, evo-

lutionary rateswerebasedon aCOG-fitted evolutionarymodel.

Specifically, a gain–loss mixture model was assumed, and the
model parameters were estimated using maximum likelihood

(ML) from the COGgene family data (Cohen and Pupko 2010).

The estimated parameters determine twogammadistributions,

one for the gain rate parameter and one for the loss rate pa-

rameter (see supplementary table S2, Supplementary Material

online). Simulations were then conducted in COGModel sce-

nario by sampling gain and loss rates from the gain and loss

gamma distributions obtained empirically.

Inference Methods

In the consecutive step, the resulting simulated phyletic pat-

tern and the species tree (only topology) are given as input for

both the maximum parsimony and the stochastic mapping
methods, which infer gain and loss events for each gene fam-

ily and for each branch. The stochastic mapping method as-

sumes an evolutionary model. Here, we used a stationary

model allowing variability among genes for both gain and

loss rates (Cohen and Pupko 2010). The model’s free param-

eters and phylogeny branch lengths are unknown and are

estimated numerically based on the simulated phyletic pat-

tern using the ML criterion. Maximum parsimony events de-
tection is based on the Sankoff reconstruction method with

adaptable cost matrix (Sankoff 1975).

Performance Evaluation

Performance of both methods is evaluated by considering

gain and loss inference as a binary classification problem.

For each branch and site, themethod has to correctly predict

whether a gain event has occurred or not and similarly for

loss events.
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Comparable Recalls Ratio Measure of Performance

Event detection by stochastic mapping is determined by

a varying cutoff value (posterior probability of event), thus

multiple classifications are possible with various levels of

sensitivity (5true positive rate [TPR]) and specificity

(51 � false positive rate [FPR]). However, maximum parsi-
mony detection results with a single classification. Thus,

instead of comparing Receiver Operating Characteristic

(ROC) curves and the consequent Area Under the Curve

(AUC), we used comparable recall—the sensitivity (recall)

of both methodologies while maintaining the same specific-

ity. To compute comparable recalls, the recalls of maximum

parsimony and stochastic mapping must be measured with

the same FPR. Thus, the recall of stochastic mapping was
measured with a cutoff that corresponds to an FPR, which

is equal to (or slightly lower than) that of the maximum par-

simony approach. In practice, given the finite number of

cutoff values, it was impractical to set the FPR of the stochas-

tic mapping approach to be identical to that of maximum

parsimony. Thus, the cutoffs used for stochastic mapping

(posterior probability for events occurrence) were chosen

to be conservative, that is, the FPR of the stochastic mapping
was always the highest possible cutoff that is still lower than

that of maximum parsimony.

Matthews Correlation Coefficient Measure of Performance

The Matthews Correlation Coefficient (MCC) is a relatively

balanced measure of classification performance. MCC val-

ues vary between�1 andþ1 and are interpreted as the cor-
relation between the set of predictions and the set

of simulations (Matthews 1975; Baldi et al. 2000). MCC

computations use all four numbers: true positive (TP), true

negative (TN), false positive (FP), and false negative (FN).

MCC5
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p :

Data Set Size in Simulations

For each scenario, we simulated 10,000 sites independently,

assembled into a phyletic pattern used for the inference by
bothmethods. The underlying tree used in these simulations

contains 66 species. Because inference is performed for

each site and each branch, the sample size in each simula-

tion equals the number of sites multiplied by the number of

branches, equals 1,300,000 for either gain or loss inference

and 2,600,000 when overall performance for both events is

considered.

Analyzing Factors That Determine Performance

When analyzing the evolutionary rate as the factor that de-

termines performance, we used the COGParsimony simulation

scenario and evaluated inference restricted to subsets of

gene families according to the total evolutionary rate.The

total rate of a specific matrix, as defined above, was used
to classify sites as either fast (rate higher than 1) or slow

(all the other sites) evolving.

When analyzing the number of sites in the data set as

a factor determining performance, we have performed in-

ference with only a limited number of sites (n). In this case,

the model parameters and branch lengths that are esti-

mated by stochastic mapping were based on n sites. The

total number of sites for performance analysis was
10,000 in all cases. Thus, we performed 10,000/n-replicated
simulations of the same scenario.

Results

Ourmain interest is to evaluate the performance of stochastic

mapping and maximum parsimony in accurately detecting

lineage-specific gain and loss events along a phylogenetic
tree. Inference of branch-site specific gain or loss events is

formalized as a classification task. Specifically, we used

two procedures to estimate detection performance. The first

comparative performance procedure measures the different

levels of sensitivity (recall or TPR) of bothmethodologies while

maintaining the same specificity (complement of FPR). The

FPR used in the comparison is determined by the maximum

parsimony method (i.e., the stochastic mapping detection
cutoff is set to match the maximum parsimony’s FPR). We

term this value Comparable Recalls Ratio (CRR, details in Ma-

terials and Methods). The second evaluation procedure em-

ploys the MCC, in which values of 1 and 0 represent perfect

correlation between simulated and inferred events and ran-

dom prediction capacity, respectively (Matthews 1975; Baldi

et al. 2000). We used these two measures to gain insights

regarding factors determining the accuracy of both mapping
methodologies.

Performance under Various Simulation Scenarios

We start by simulating phyletic pattern data under a naı̈ve

evolutionary model, in which all sites (e.g., gene families)

evolve with the same rate, and gain and loss rates are equal

to each other. In this simulation scheme, maximum parsi-

mony obtained overall FPR of 0.006 and TPR (recall) of

0.421. This detection rate is also evaluated with MCC value
of 0.563 (Matthews 1975). Given the same FPR, stochastic

mapping obtains TPR of 0.763 and MCC value of 0.809.

Thus, recall and MCC values for stochastic mapping were

81.2% and 43.5% higher compared with maximum parsi-

mony given the same FPR, respectively. These results are de-

picted in Table 1 (simulation scenario code name ER_gEql).

Performance under Variable Loss-to-Gain Ratio Variability

The simplified assumptions in the above evolutionary sce-

nario were relaxed in subsequent scenarios. We alleviated

the assumption that all sites evolve with the same gain

and loss rates and that the loss-to-gain ratio equals 1 for
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all sites. Instead, we allowed the loss-to-gain rate ratio to

vary among sites. To model this variation, we simulated un-

der the assumption that the loss-to-gain rate ratio is distrib-

uted uniformly between 0 and 2, so that the loss-to-gain
rate ratio has equal probabilities to be higher or lower than

1 (simulation scenario code name ER_gVrl_1, Table 1). In

subsequent simulations, we sampled the loss-to-gain ratio

from uniform distributions between 0 and either 4, 8, or

16, thus biasing the simulations to increasingly higher loss

rates (details in Materials and Methods). The increased ex-

pected loss-to-gain ratio is designated by median loss-to-

gain ratio of 2, 4, and 8 (simulation scenario code names
ER_gVrl_r, where ‘‘r’’ designates the median ratio).

Using the MCC to evaluate inference performance,

which allows comparison across different simulations, we

compare the performance given the increase in loss-to-gain

rates ratio. Our results indicate that increased loss-to-gain

ratio reduces the accuracy of both inference methods as

MCC values monotonically decrease as the loss-to-gain ratio

increases. To illustrate this trend, the MCC values dropped
from 0.529 to 0.37 and from 0.685 to 0.524, for maximum

parsimony and stochastic mapping, respectively, when com-

paring loss-to-gain ratio of 1 to loss-to-gain ratio of 8 (com-

pare ER_gVrl_1 with ER_gVrl_8, Table 1). These results

indicate that variable loss-to-gain ratio decreases accuracy

for both methods. Notably, in all of these simulation scenar-

ios, stochastic mapping had significantly higher perfor-

mance than maximum parsimony. However, there is no
consistent trend in the relative performances of both meth-

ods (measures in terms of CRR and MCC ratio) when the

loss-to-gain ratio increases.

Performance under Rate Variability among Sites

We further alleviated the assumption that all sites evolve un-

der the same total gain þ lost rate. We repeated the above-

mentioned five scenarios, but in these simulations,

gain þ loss rates variability among sites is allowed (details

in Materials and Methods). When the total gain þ loss rate

varies among sites, inference is more difficult for maximum
parsimony but not for stochastic mapping (compare code

name starting with ER with those starting with VR with the

same loss-to-gain ratio; Table 1). For example, the MCC max-

imum parsimony score dropped from 0.529 to 0.451 when

the total rate was allowed to vary (ER_gVrl_1 vs. VR_gVrl_1).

In contrast, for stochastic mapping, theMCC increased from

0.685 to 0.712. Thus, in all cases, the performance differ-

ence between stochastic mapping andmaximum parsimony
became higher when rate variability is allowed. The higher

performance of stochastic mapping over maximum parsi-

mony is most pronounced when comparing equal rates ver-

sus variable rates for higher loss-to-gain ratios (Table 1,

ER_gVrl_8 vs. VR_gVrl_8). CRR and MCC ratios are 1.675

and 1.416 for equal rates and 2.142 and 1.636 for variable

rates, respectively. These results suggest that maximum par-

simony is sensitive to variation both in the total rate and
in the loss-to-gain ratio, which together contribute to the

relative poor performance of maximum parsimony.

Simulation with Empirical Distributions of Gene Families
Dynamics

The above evaluation of performance is based on simula-

tions in which gain and loss rate distributions across sites

are based on theoretical distributions. Although in the more

complex simulation schemes above, we allowed both the

loss-to-gain rate ratio and the overall rate to vary among

sites, these are still oversimplified scenarios that may poorly

represent real evolutionary histories. Aiming for more real-

istic evolutionary simulations in terms of gain and loss dy-
namics, we simulated phyletic patterns with gain and loss

rates that were estimated from a real data set of microbial

Table 1

Evaluation of Stochastic Mapping and Maximum Parsimony Performance for Events Detection in Various Simulation Schemes

Simulation

Scenario

Code

Rate

Distribution

among Sites

Loss/Gain

Ratio in

Simulation CRR

MCCs

Ratio

MCC

Mapping

TPR

Mapping

FPR

Mapping

MCC

Parsimony

TPR

Parsimony

FPR

Parsimony

ER_gEql Equal 1b 1.812 1.435 0.809 0.763 0.005 0.563 0.421 0.006

ER_gVrl_1 Equal 1 1.515 1.296 0.685 0.577 0.005 0.529 0.381 0.006

ER_gVrl_2 Equal 2 1.588 1.345 0.666 0.563 0.006 0.495 0.354 0.006

ER_gVrl_4 Equal 4 1.709 1.426 0.616 0.503 0.007 0.432 0.294 0.007

ER_gVrl_8 Equal 8 1.675 1.416 0.524 0.381 0.006 0.37 0.227 0.006

VR_gEql Gamma 1b 1.834 1.463 0.729 0.651 0.005 0.498 0.355 0.006

VR_gVrl_1 Gamma 1 1.952 1.527 0.712 0.621 0.005 0.466 0.318 0.005

VR_gVrl_2 Gamma 2 2.007 1.557 0.702 0.608 0.005 0.451 0.303 0.005

VR_gVrl_4 Gamma 4 2.093 1.608 0.66 0.546 0.005 0.411 0.261 0.005

VR_gVrl_8 Gamma 8 2.142 1.636 0.593 0.446 0.004 0.362 0.208 0.004

COG_Parsimonyy Parsimonya 2.89 1.359 1.22 0.425 0.246 0.004 0.348 0.181 0.004

COG_Model Modela 4.63 1.802 1.456 0.576 0.419 0.004 0.396 0.232 0.004

a
Rates based on empirical estimation of COG gene families.

b
The gain-to-loss ratio is 1 and does not vary among sites.
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species’ phyletic pattern (based on COG gene families;
details in Materials and Methods).

Two simulation scenarios were used. In the first

(COGParsimony), the empirical gene family dynamics were es-

timated by maximum parsimony, whereas in the second

(COGModel), it was estimated using an evolutionary model

with parameters fitted to the data. Intuitively, COGParsimony

simulations may favor parsimony-based inference. Indeed in

this simulation scenario, the difference in performance was
smaller than all previous simulation scenarios. Nevertheless,

stochastic mapping performance was still significantly

higher than maximum parsimony. In this simulation, CRR in-

dicates 35.9% higher comparable TPR for stochastic

mapping–based inference over maximum parsimony-based

inference. The comparable MCC is also 22% higher. Under

COGModel, as expected, the comparable recalls and MCC

performance values were 80.2% (CRR) and 45.6%
(MCC) higher for stochastic mapping (Table 1).

Maximum Parsimony Cost Matrix

The results presented above were based on a naı̈ve maxi-

mum parsimony inference in which gain and loss events

were given equal costs. Several studies analyzing the evolu-

tion of gene families modified the cost matrix by assuming
that the cost of gain events is double that of loss events (Snel

et al. 2002; Pal et al. 2005). We repeated the analysis above

for the simulations based on rates estimated by maximum

parsimony from COG gene families (COGParsimony), this time

comparing the performance of maximum parsimony with

a cost matrix of 1:1 versus a cost matrix of 2:1 (i.e., the cost

of a gain event is twice that of a loss event). We observe

a relatively small difference in maximum parsimony perfor-
mance with gain cost double that of loss: the MCC values

were 0.348 and 0.337 for costs of 1:1 and 2:1, respectively

(Table 2).

Inference under higher costs for gain events should result

in more conservative inference of gain events and vice versa

for loss events (i.e., equivalent to higher gain inference

threshold and lower for loss). To test this expectation, we

repeated performance evaluation separately for gain detec-
tion and for loss detection. As expected, when the cost of

gain events is raised, the maximum parsimony number of

gain events inferred is decreased as evident with lower

TPR from 0.231 to 0.163 and lowered FPR from 0.003 to

0.001. The opposite trend is observed with loss detection

such that the increased gain cost results with more loss

events detected and thus higher TPR and FPR in loss perfor-

mance evaluation (Table 2). The trend exemplified in these
scenarios was observed in all simulation scenarios (supple-

mentary table S1, Supplementary Material online), namely

that modifying the cost matrix to reflect the simulation sce-

nario, loss-to-gain ratio does not necessarily improve the

overall performance of maximum parsimony. When the cost

matrix is adjusted to account for higher simulated loss pro-

pensity (by higher gain cost), the sensitivity for loss detection

is increased, whereas the sensitivity for gain detection is

decreased.

Detailed Performance Evaluation—Factors Determining
Performance

The results presented so far were averaged over all simu-

lated sites and branches. In this section, we study several

parameters that determine performance and reevaluate
the two methods with respect to these parameters. These

parameters include 1) internal versus external branches,

2) fast versus slowly evolving sites, and 3) the effect of data

set size. In all the results presented below, simulations were

conducted under the COGParsimony scenario and maximum

parsimony inference was based on equal gain and loss costs.

External versus Internal Branches

We compared the inference restricted with specific subsets

of branches. We inferred events either along external

branches (those leading to an extant species in the tree),

along internal branches (those not leading to an extant spe-

cies in the tree), or deep branches (branches that neither

lead to extant species nor to direct father of extant species).

In Table 3, we provide the performance of stochastic map-
ping and maximum parsimony for each of these subsets as

well as for all branches (called ‘‘Reference’’ in Table 3). Re-

sults for all other simulated scenarios are provided in supple-

mentary table S3 (Supplementary Material online). As

expected, our results indicate that for both methodologies,

inference along external branches is more accurate com-

pared with overall branches, which in turn is more accurate

than the inference along internal branches. Inference along
deep branches is even less accurate. However, the perfor-

mance of maximum parsimony was more substantially

reduced when moving toward internal branches as com-

paredwith stochasticmapping: performance ratios between

stochastic mapping and maximum parsimony (CRR) in-

creased from 1.208 (external branches) through 1.562 (in-

ternal branches) to 2.044 (deep branches). Similar results

are observed when MCC ratios are compared (Table 3).

Table 2

Maximum Parsimony Performance Separated for Gain and Loss

Detection under Two Parsimony Cost Matrices

Cost Matrix

(Gain:Loss) MCC TPR FPR

Overall inference Cost 1:1 0.348 0.181 0.004

Cost 2:1 0.337 0.18 0.004

Gain inference Cost 1:1 0.388 0.231 0.003

Cost 2:1 0.356 0.163 0.001

Loss inference Cost 1:1 0.322 0.131 0.001

Cost 2:1 0.339 0.197 0.003

NOTE.—The simulation scenario in all these evaluations is based on rates estimated

by maximum parsimony from COG gene families (COGParsimony).
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Weexplain these results by the observation that inference

of evolutionary events requires reconstruction of ancestral
states. In many cases, reconstruction of ancestral states is

more error prone at deeper nodes of the trees as the dis-

tance from the known states at the leaves increases. In other

words, uncertainty in ancestral states reconstruction may

pose a greater challenge to the maximum parsimony

method than the stochastic mappingmethod, resulting with

increased error rates.

Fast versus Slow Evolving Gene Families

We compared the performance of both methods for fast

versus slow evolving gene families (see Materials and Meth-

ods). Table 3 lists performance for each of these subsets as

well as for all gene families (called Reference in Table 3).

Our results indicate that higher underlying rate results
with lower performance. Comparing performance evalu-

ated for the low-rate groupwith that of the high-rate group,

the MCC values decreased from 0.44 to 0.297 and from

0.494 to 0.387 for maximum parsimony and stochastic

mapping, respectively. Importantly, accurate inference of

events occurring within gene families with higher evolution-

ary rate is more difficult for maximum parsimony than to

stochastic mapping. Thus, the comparative performance ra-
tios increased between the low- and the high-rate groups

—from 1.208 to 1.47 and from 1.123 to 1.301 for CRR

andMCCs ratio, respectively. These results may be explained

by the fundamental parsimonious principle—minimizing the

number of events (weighted by their cost). Thus, with sim-

ulations under higher mean rate, there is higher probability

for a violation of the parsimonious principle with evolution-

ary history that includes multiple events. Although such evo-
lutionary history is harder to reconstruct regardless of the

method used, our results indicate that stochastic mapping

inference is more robust with respect to higher evolutionary

rates.

Evaluating Performance with Variable Data Set Size

Here, we test one fundamental difference between stochas-
tic mapping and maximum parsimony inference methodol-

ogies. Maximum parsimony method is model free, whereas

stochastic mapping is based on an underlying evolutionary

model. Notably, maximum parsimony inference is conducted

under a specific cost matrix, but these costs are assumed

rather than evaluated from the data. The evolutionary model

and branch lengths are estimated from all simulated sites
as the first step of stochastic mapping inference (details in

Materials and Methods).

We repeated the COGParsimony simulation scenario but in-

stead of allowing stochastic mapping to use 10,000 simu-

lated sites to estimate the model parameters and branch

lengths, we replicated the simulation scenario, each time

with a smaller number of sites (for details, see Materials

and Methods). The results summarized in Table 4 depict per-
formance evaluation with variable number of sites used for

model estimation. Although maximum parsimony perfor-

mance did not vary as a function of the number of sites, sto-

chastic mapping performancemonotonically decreases with

smaller number of sites (Table 4). When the number of sites

was reduced from 10,000 to 10, comparative ratios

decreased dramatically—from 1.359 to 0.898 and from

1.22 to 0.941 for CRR and MCCs ratio, respectively. Thus,
when only 10 sites were available for the evaluation of

stochastic mapping’s required parameters, maximum parsi-

mony inference was more accurate. Interestingly, our results

indicate that with as few as 50 sites, stochastic mapping per-

formance surpasses that of maximum parsimony by 16.6%

and 10.6% for CRR and MCCs ratio, respectively.

A further simulation scheme reveals that the high error

rates by stochastic mapping with limited number of sites
is due to unreliable branch length estimation rather than

the evolutionary model parameters. When the input data

were limited to 10, and the ‘‘true’’ branch lengths were pro-

vided rather than estimated from the data, a remarkably

high performance was observed for stochastic mapping:

2.43 and 1.74 for CRR and MCCs ratio, respectively. Taken

together, these results suggest that small data set substan-

tially reduce the performance of stochastic mapping. How-
ever, these results also suggest that stochastic mapping

inference is highly robust to model parameter misspecifica-

tion, when branch lengths are given.

Evaluating Performance Reproducibility

Here, we evaluated the reproducibility of stochastic map-
ping performance. Because stochastic mapping requires

model parameters and branch length estimation, stochastic

mapping performance varies in each simulation depending

Table 3

Performance Evaluation in Various Subsets of Events

Evaluated Subset CRR MCCs Ratio MCC Mapping TPR Mapping FPR Mapping MCC Parsimony TPR Parsimony FPR Parsimony

Reference 1.359 1.22 0.425 0.246 0.004 0.348 0.181 0.004

External branches 1.208 1.125 0.543 0.378 0.003 0.483 0.313 0.003

Internal branches 1.562 1.352 0.357 0.185 0.004 0.264 0.119 0.004

Deep branches 2.044 1.795 0.242 0.11 0.005 0.135 0.054 0.005

Low rate 1.208 1.123 0.494 0.309 0.002 0.44 0.256 0.002

High rate 1.47 1.301 0.387 0.217 0.005 0.297 0.147 0.005

NOTE.—The simulation scenario in all these evaluations is based on rates estimated by maximum parsimony from COG gene families (COGParsimony).
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on the accuracy of these parameters. The COGParsimony sim-
ulation scenario was replicated 20 times, each replication

with 1,000 simulated sites. The performance of each repli-

cation was analyzed separately. Stochastic mapping perfor-

mancewas higher than that of maximumparsimony in all 20

replications. Remarkable reproducibility was observed indi-

cated with highly similar comparative ratios among replica-

tions. Average values were 1.34 and 1.21, standard errors

(SEs) were 0.008 and 0.005, and minimal values were 1.29
and 1.18, for CRR and MCCs ratio, respectively (for both

CRR and MCCs ratio, P value , 10�100, Z-test).
The COGParsimony is the simulation scenario in which the

difference in performance between stochastic mapping and

maximum parsimony is the smallest. Thus, the differences

between stochastic mapping and maximum parsimony

for all other scenarios (with 10,000 sites) are also highly

statistically significant (data not shown).

Running Times

Occasionally, users may favor a fast methodology over

a more accurate one, which is computationally intensive

and thus requires longer running times. We compared run-

ning times required for gain and loss inference for both

methods. Running times of the stochastic mapping ap-

proach depend on the number of discrete categories as-
sumed in the gain–loss mixture model. Here, we used

four discrete categories for gain events and four discrete cat-

egories for loss events (Cohen and Pupko 2010). To com-

pute running times, both methods inferred events for

1,000 sites along 130 branches. Computations were con-

ducted using an AMD Opteron Processor 2356 at

2.2 GHz. As expected, the maximum parsimony method

was substantially faster, taking on average 0.023 min
(SE 5 0.0017) compared with 9.56 min (SE 5 0.42) for

the entire stochastic mapping procedure. Notably, although

maximum parsimony is a much faster method, this analysis
shows that stochastic mapping inference can be obtained in

a couple of minutes for data sets of ordinary size.

Discussion

Recently, parsimony-based methods to analyze phyletic pat-

tern were augmented by several probabilistic evolutionary

models. The stochastic mapping method, based on such

models, allows explicit quantification of the probability

and expectation for gain and loss events for each site
and branch. In this study, we performed extensive evalua-

tions of the ability of the maximum parsimony and the sto-

chastic mapping approaches to accurately map such

lineage-specific events. Our simulation-based results reveal

various factors that determine inference accuracy by both

methodologies. We have used two comparative measure-

ments for performance accuracy—comparing recall rates

given the same FPR (termed CRR) and MCCs ratio
(Matthews 1975). These comparative values revealed simu-

lation schemes and factors resulting with higher or smaller

differences between these two methods. However, the

emerging conclusion is that in all but one case, stochastic

mapping performance is significantly higher.

Arguably, the higher performance by the probabilistic sto-

chastic mapping approach is expected, as it was often dem-

onstrated that ML outperforms maximum parsimony in
phylogeny and ancestral state reconstructions (Felsenstein

1978; Yang 1996; Pol and Siddall 2001; Swofford et al.

2001). However, our goal here was to rigorously study the

performance of both methods, focusing on phyletic patterns

analysis and the specific parameters that determine gain and

loss detection accuracy. For example, in phyletic pattern data,

the evolutionary dynamics depend on the gain–loss rate ratio

and the total rate variability. We demonstrated that the

Table 4

Performance Evaluation with Variable Data Set Size

Number of Sites

Used for Model and

Branch Lengths

Estimation CRR

MCCs

Ratio

MCC

Mapping

TPR

Mapping

FPR

Mapping

MCC

Parsimony

TPR

Parsimony

FPR

Parsimony

10,000 1.359 1.22 0.425 0.246 0.004 0.348 0.181 0.004

5,000 1.34 1.21 0.425 0.247 0.00354 0.352 0.184 0.00355

1,000 1.34 1.21 0.423 0.245 0.00352 0.35 0.183 0.00357

500 1.32 1.2 0.421 0.243 0.00351 0.351 0.183 0.00352

100 1.23 1.15 0.4 0.224 0.00354 0.349 0.182 0.00357

50 1.18 1.12 0.394 0.219 0.0035 0.353 0.185 0.00351

10 0.898 0.941 0.328 0.163 0.00328 0.349 0.181 0.00351

10a 2.43 1.74 0.604 0.44 0.00357 0.348 0.181 0.00359

NOTE.—Smaller number of sites available for model and branch length estimation results with lowered stochastic mapping performance. The simulation scenario in all these

evaluations is based on rates estimated by maximum parsimony from COG gene families (COGParsimony). In all cases, overall number of sites used for performance estimation was

10,000.
a
Branch lengths are given rather than estimated from the data.
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maximum parsimony performance varies substantially de-
pending on these factors, although stochastic mapping per-

forms well for a large set of scenarios. Additionally, we found

substantial accuracy reduction in detection of ancient events

(occurring along deep branches) and in detection of events

for fast evolving gene families (i.e., governed by fast gain

and loss rates). Our analyses also reveal that in these more

challenging conditions, maximum parsimony error rate be-

comes substantially higher than stochastic mapping. We ad-
ditionally illustrate the dependence of accurate stochastic

mapping on the number of sites in the phyletic data. We find

that for very small data sets, the expected error of stochastic

mapping is considerably large. Taken together, our study al-

lows better understanding of the factors that determine the

inference accuracy of both methods.

Inference, based on phyletic patterns, and our simula-

tions have a few limitations. First, our simulation study most
likely overestimates accuracy levels for both methods. Main

factors that are expected to reduce accuracy and are ig-

nored here include missed organisms by sampling and ex-

tinctions (e.g., Heath et al. 2008), uncertainty in

reconstruction of the phylogenetic tree for the extant spe-

cies (Ronquist 2004), and inaccurate classification of gene

families (Zhaxybayeva et al. 2007; Hao and Golding

2008a). However, there are no indications that these factors
differentially influence the two methodologies. Our results

indicate that stochastic mapping performance is highly de-

pendent on reliable branch length estimation. A Bayesian

approach for phyletic pattern analysis that takes into ac-

count uncertainty in branch lengths can alleviate this sensi-

tivity.

Our study focuses on the inference of gain and loss events

of gene families during the evolution of microbial species.
This presence-absence–based analysis is biologically justified

as it capturesmajor changes in the proteome composition of

the host genomes (Pal et al. 2005). Nevertheless, in such

a phyletic pattern representation of the data, the number

of paralogs for each gene family is ignored and duplications

or reductions in the number of paralogs cannot be detected.

Clearly, a richer Markovian model accounting for the num-

ber of genes within each gene family will better capture gene
family dynamics. Notably, a projection of such a richer model

onto a binary alphabet would result in a non-Markovian

behavior (i.e., pulling together all copy numbers greater than

zero into a single state 1 makes the process non-Markovian).

This argument suggests that our simulation settings, in which

a Markovian process is assumed both for the simulations and

the stochastic mapping inference, may overestimate the per-

formance of stochastic mapping–based inference. Clearly,
further work is needed to extend the stochastic mapping ap-

proach to analyze the evolution of the number of paralogs

along the tree. Nonetheless, there are many cases in which

the usage of phyletic patterns is not a compact representation

of copy number variation. To this end, our phyletic pattern

simulations results are also valuable for binary data such as
restriction sites (Felsenstein 1992), indels (Simmons andOcho-

terena 2000), introns (Csuros 2006; Carmel et al. 2007), mor-

phological characters (Ronquist 2004), and even gain and

losses of lexical units (Gray and Atkinson 2003).

Maximum parsimony is still a widely used approach for

analyzing phyletic data (Pal et al. 2005; Kettler et al. 2007;

Cordero et al. 2008; Lercher and Pal 2008; Ruano-Rubio

et al. 2009; Yerrapragada et al. 2009; Georgiades et al. 2011;
Kloesges et al. 2011). Our study shows that branch-specific

gain and loss events inference is more accurate with the

probabilistic stochastic mapping method compared with

maximum parsimony, for a wide range of evolutionary

scenario. The complete phyletic pattern analysis

methodology and the simulation software are freely avail-

able in a user-friendly web server (http://gloome.tau.ac.il/;

Cohen et al. 2010).

Supplementary Material

Supplementary tables S1–S3 are available at Genome Biol-
ogy and Evolution online ( http://www.gbe.oxfordjournals.

org/).
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