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Robust temporal pumping in a magneto-
mechanical topological insulator
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The transport of energy through 1-dimensional (1D) waveguiding channels can be affected by

sub-wavelength disorder, resulting in undesirable localization and backscattering phenomena.

However, quantized disorder-resilient transport is observable in the edge currents of 2-

dimensional (2D) topological band insulators with broken time-reversal symmetry. Topolo-

gical pumps are able to reduce this higher-dimensional topological insulator phenomena to

lower dimensionality by utilizing a pumping parameter (either space or time) as an artificial

dimension. Here we demonstrate a temporal topological pump that produces on-demand,

robust transport of mechanical energy using a 1D magneto-mechanical metamaterial. We

experimentally demonstrate that the system is uniquely resilient to defects occurring in both

space and time. Our findings open a path towards exploration of higher-dimensional topo-

logical physics with time as a synthetic dimension.
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The discovery that topological insulators host protected
boundary states has spurred significant research on their
metamaterial analogs due to attractive prospects in both

science and engineering. A particularly important feature is the
robust propagation that is observable in the chiral edge modes of
2D topological insulators having broken time-reversal symmetry,
otherwise broadly known as Chern insulators1–3. This class of
systems includes integer quantum Hall insulators4, the quantum
anomalous Hall insulator3,5, and their metamaterial analogs6–11,
all of which can produce quantized transport even with sig-
nificant disorder.

In this context, it was shown that periodic, adiabatic, spatio-
temporal modulations of a 1D periodic potential can also produce
quantized particle transport12 where the number of particles
pumped in one cycle is equal to the Chern number defined on the
(1 + 1)-dimensional Brillouin zone spanned by momentum and
time13. Thus, an adiabatic pumping process may be regarded as a
dynamical manifestation of a Chern insulator in one higher
dimension3, and as such is similarly topologically robust against
disorder and defects14. Topological pumps have been implemented
in a variety of systems including realization of Rice-Mele’s
model15,16, cold atomic gases17–20 and classical metamaterials21–23.
Significant explorations in photonic metamaterials include using
topological pumps to map the Berry curvature16,24, to demonstrate
transport of a localized mode in a quasiperiodic waveguide
array25,26, and to probe a four dimensional quantum Hall effect27.
However, to date, a temporally-controlled topological pump that
produces on-demand, disorder-resilient transport has not been
demonstrated in any metamaterial system.

Topological pumping can be understood as a consequence of the
spectral flow property28,29 of topological band structure. For the
conventional 1D topological pump, the band structure evolves from
topologically non-trivial to trivial and back during one pumping
cycle, and crucially, reflection and time-reversal symmetries are not
preserved. For a system with open boundaries an integer number of
eigenstates flow from a lower energy band to an upper energy band,
i.e. across the bulk energy gap, during this process, and the spatial
profile of the flowing modes migrates from one end of the system to
the other while carrying, e.g., charge, spin, or energy. Given a
pumping protocol we can calculate a well-known topological
invariant called the Chern number. This invariant dictates the
quantity of spectrally flowing modes, and hence the amount of, e.g.,
charge, spin, or energy that is robustly transported across the (meta)
material during one cycle of an ideal pump.

From a tight-binding model perspective30, a topological pump
can be produced through spatio-temporal modulation of the on-
site potentials and couplings between the constitutive elements of a
metamaterial platform. However, not all cyclic spatio-temporal
modulations generate non-vanishing Chern numbers. Even if a
protocol produces a Chern number, there are additional dynamical
constraints for achieving robust transport. Namely, this process
must be performed adiabatically to ensure that energy from the
spectrally flowing states does not leak to the bulk bands. At the
same time, since physical systems have finite loss, the topological
pump must complete a pump cycle faster than the decay time of
the state being transported. For photonic implementations, the
latter requirement necessitates extremely rapid modulation, which
is technically very challenging. To date, a workaround has been to
use space instead of time as the pumping parameter10,24–27,31. A
time-controlled classical topological pump has remained elusive to
date, and as a result, on-demand robust pumping of energy in a
classical metamaterial has not yet been achieved.

In this work, we demonstrate a temporal topological pump using
a 1D metamaterial composed of magnetically-coupled mechanical
resonators. Pumping is achieved by replicating a 2D Chern
insulator in one spatial dimension and one temporal dimension.

A non-contact approach is employed to produce the necessary
modulations of the couplings and on-site potentials using perma-
nent magnets and a high-permeability metal alloy mounted on a
common rotating shaft. This system can, in principle, be hand
cranked to pump energy on-demand, in a manner reminiscent of
an Archimedes Screw. We experimentally demonstrate that
mechanical energy can be robustly transported across the entire
metamaterial in exactly one pumping cycle, as long as dynamical
requirements listed above are met. We further demonstrate
through a series of experiments that the topological pump is robust
against disorder that may appear either in space or time.

Results
Prescription of the topological pump. We begin by developing
the prescription of the topological pump on a 1D array of iden-
tical resonators having couplings with alternating strengths
(dimerized) as depicted in Fig. 1a. Sub-lattices A and B corre-
spond to the resonator positions inside a unit cell, with intra-cell
coupling rate γ and inter-cell coupling rate λ. This system can be
described through the well-known Su-Schreefer-Heeger model for
polyacetylene32,33, which informs us of the existence of two dis-
tinct phases in the presence of inversion symmetry. The array is
in a topologically non-trivial phase when γ < λ, protected by the
approximate inversion or chiral symmetries, and is in a topolo-
gically trivial phase if γ > λ. A finite array composed of these unit
cells in the non-trivial phase supports a mid-gap mode confined
to each end of the chain. For a translationally invariant chain with
periodic boundary conditions the Bloch Hamiltonian of this
system is written as

HðkxÞ ¼ ðγþ λ cosðkxÞÞσ1 þ λ sinðkxÞσ2; ð1Þ
where kx is momentum along the array, and σ1 ¼ ð01 1

0Þ and σ2 ¼
ð0i �i

0 Þ are Pauli matrices. The above system can now be modu-
lated to produce the dynamic equivalent of a 2D Chern insu-
lator12 that is described by the momentum space Hamiltonian

Hðkx; ϕÞ ¼ ðγþ λ cosðkxÞ þ γm cosðϕÞÞσ1 þ λ sinðkxÞσ2 þ β sinðϕÞσ3 :
ð2Þ

Here we have introduced ϕ as an effective momentum in a sec-
ond, synthetic dimension. This parameter ϕ is in practice the
angular phase of the pumping cycle (which varies from 0 to 2π)
and is proportional to time. The modulation that introduces the
Pauli matrix σ3 ¼ ð10 0

�1Þ corresponds to odd-symmetric fre-
quency modulation of the sublattices. This term breaks inversion
symmetry during the pumping cycle and ensures that the
Hamiltonian remains gapped throughout. The parameters γm and
β are the modulation depths of the coupling rates and the on-site
potentials respectively.

Upon mapping from momentum space into real space, the
Hamiltonian for the topologically pumped 1D array can be
written as

HðϕÞ ¼
X

n

ðλ� γm cos ϕÞaynbn þ λbynanþ1 þ h:c:
�

þ β sin ϕðaynan � bynbnÞ þ
γm
2
cosϕðaynan þ bynbnÞ

�
;

ð3Þ

where an(ayn) and bn(b
y
n) are the annihilation and creation

operators of the modes of interest on the two sub-lattice sites
within the n-th unit cell. We achieve the above prescription by
keeping the inter-cell coupling λ fixed, while modulating the
intra-cell coupling as γðϕÞ ¼ λ� γm cos ϕ. Simultaneously, the
on-site potentials are modulated as Δf AðϕÞ ¼ �β sinϕ and
ΔfBðϕÞ ¼ þβ sin ϕ. The prescribed modulations of the coupling
and on-site potentials are graphically illustrated in Fig. 1a. The
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last term in Eq. (3), which we did not include in Eq. (2), arises
from behavior specific to our system34 as described in
Supplementary Note 1. However, since this term is identical on
all sites, it does not change the eigenmodes or any robust
properties of the topological pump, but only acts to shift the
mode frequencies as a function of the phase in the pumping cycle.

The pumping process can be illustrated as follows. Without
loss of generality let the pumping phase ϕ = 0 or 2π represent the
array in the topologically non-trivial phase, with two edge modes
within the bandgap that are degenerate in frequency and
positioned on opposite ends of the chain (see Supplementary
Note 8). We identify these modes as the lower edge mode (EML)
and the upper edge mode (EMU), due to the paths in frequency
they follow during the pumping cycle. As ϕ evolves away from 0,
both EML and EMU become dispersive and merge into the bulk
with EML decreasing in frequency and EMU increasing in
frequency (Fig. 1b). At exactly mid cycle ϕ = π the array recovers
inversion symmetry but is now in the topologically trivial phase.
As ϕ continues evolving towards 2π, the edge modes re-emerge
from the bulk bands, and have now migrated to the opposite
physical ends of the array from where they started (Fig. 1c). Since
H(ϕ) is gapped for all ϕ, we can calculate the Chern number of
the pumping cycle, which for our system is 1 (see Supplementary
Note 2). This means that the pumping process is topologically
protected and EML and EMU are topologically robust to disorder
and smooth changes of system parameters.

Experimental implementation. We implemented the topological
pump using an array of magnetically-coupled mechanical reso-
nators. Each resonator (Fig. 2a) is identically fabricated from
waterjet-cut aluminum. A neodymium magnet is bonded onto the
central platform and serves both as the resonant mass as well as

the mechanism by which adjacent resonators are magnetically
coupled. The serpentine spring provides the restoring torque and
sets the frequency for the torsional resonance mode at 132.4 Hz.
The magnetically induced torque between the resonator dipoles
couples their rotational degrees of freedom, and is used to pro-
duce the topological band structure. The coupling rate decays
cubically with distance and can also be modified by placing high-
permeability material between the resonators. Details on the
magnetic interaction and the equations of motion specific to this
system are presented in Supplementary Note 1. The typical −3 dB
bandwidth of our resonators is Δf ≈ 0.38 Hz which implies a
decay time constant of τ = 1∕(πΔf) ≈ 0.85 s. This timescale is not
sufficient for an experimental observation of topological pumping
since, as we discuss later (and in Supplementary Note 3) the
adiabaticity timescale of the system is around 1.6 s. Therefore, for
each resonator we implement an anti-damping circuit that pro-
vides a velocity-dependent feedback force to increase the decay
time to 3.5 s (details in Supplementary Note 5).

A single unit cell of the array is comprised of two resonators as
shown in Fig. 2b, corresponding to sub-lattice sites A and B. The
experiment employed four unit cells as illustrated in Fig. 2c. Prior
to experiments, we ensured the tuning of each resonator
frequency to within +/−0.05 Hz measurement resolution. The
anti-damping circuits were also individually tuned to provide a
Q-factor of 1440 ± 100. This iterative process is very time
consuming, e.g., can take several hours to complete for 8
resonators, and imposed a practical constraint on the experiment
size (see also Supplementary Note 11). A photograph of the
experimental setup is provided in the Supplementary Note 4. We
physically implemented the pump cycle using a rotating shaft
whose angular rotation directly represents the pump phase ϕ and
which can be in essence ‘cranked’ whenever the pump needs to be
activated. A clockwise (cw) rotation of the shaft corresponds to
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Fig. 1 Description of the topological pump. a A unit cell of a dimerized 1D array (sub-lattice sites A, B) having on-site potential fA, fB, intra-cell coupling γ
and inter-cell coupling λ. The pump is produced by modulating the intra-cell coupling with a cosðϕÞ trend, and modulating the on-site potentials with a
sinðϕÞ trend, where ϕ ∈ [0, 2π] is the pump phase. b Calculated band-structure for an array composed of 100 sites, as a function of the pump phase ϕ.
EMU and EML are the upper and lower trajectories over which the two edge modes evolve during the pump cycle. At ϕ = 0, 2π the system is in the
topologically non-trivial phase while at ϕ = π the system is in the topologically trivial phase. c Evolution of the EML (red) and EMU (blue) eigenmodes
during the pump cycle. Dots represent the magnitude of the eigenmode at each site. EML is localized on the left edge at ϕ = 0 and transports to the right
edge. In contrast, EMU is transported from the right edge to the left edge. The solid black line represents the centroid of the eigenmode calculated through
∑i i ⋅ ψmi where ψmi is the normalized weight of the mth eigenmode at position i.
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increasing ϕ from 0 to 2π, while counter-clockwise (ccw) rotation
corresponds to decreasing ϕ from 2π to 0. This shaft is designed
so that its rotation simultaneously produces the required coupling
modulations and the required frequency (on-site potential)
modulations without any physical contact with the resonator
array, by means of only magnets and ferromagnetic materials.
The on-site frequency modulations are implemented by lever-
aging the magneto-static spring effect34. This effect originates
from the angular displacement-dependent torque acting on the
magnetic harmonic oscillator in a non-uniform background
magnetic field. Here we place permanent magnets on appropriate
facets of the shaft to induce the required ϕ-dependent frequency
modulation (see Supplementary Note 6 for details). We similarly
modulate the intra-cell resonator coupling γ using high-
permeability mumetal sheets mounted off-axis on the modulation
shaft (Fig. 2b). During rotation these sheets enter the gap between

the site A and B resonators and change the coupling as a function
of ϕ. The specific geometry of the coupling modulation sheets is
discussed in Supplementary Note 7. An animation of how the
coupling-modulators and on-site potential modulators act during
rotation of the shaft is provided in the Supplementary Movie 1.
Each resonator is equipped with a Hall sensor that measures its
angular displacement. All eight resonators in the array are
measured simultaneously so that both the magnitude of
displacement and the relative phase can be known. During
experiments, the excitation of the mechanical motion of any
resonator is achieved using a sinusoidal magnetic field produced
by a drive coil placed nearby.

Demonstration of topological pumping. We begin the experi-
ment by performing a quasi-static characterization of the band
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localized topological modes on the left and right edges (modes 4, 5) are highlighted. g Temporal heat map representing the modal energy fractions (Emode #)
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structure of the magneto-mechanical states through the pumping
cycle. The magneto-mechanical susceptibility (density of states) for
any site in the array can be measured by actuating with a coil and
measuring the calibrated angular displacement as a function of
excitation frequency. These susceptibility measurements are then
averaged over all resonators to produce a visualization of the
mechanical density of states, as a function of shaft angular position,
i.e., pump phase ϕ. The experimentally measured band structure
for the system composed of 4 unit-cells is shown in Fig. 2d, and
matches very well with the theoretical band structure which we
modeled using couplings to nearest and next-nearest neighbors.
This quasi-static measurement confirms that the band gap remains
open throughout the pump cycle, and that mid-gap topological
edge modes are present at ϕ = 0 and 2π. We provide additional
discussion on this band structure in Supplementary Note 8.

We can now demonstrate the dynamic pumping cycle and
show that the energy in the left edge mode is robustly transported

across the array to the right edge. We start each pumping
experiment by exciting the left edge resonator at the frequency of
the topological edge mode. The excitation continues until a
steady state response is reached. The excitation is then turned off
and the modulation shaft is immediately activated to undergo
one complete rotation, thereby evolving ϕ from 0 to 2π. An example
of a typical measured angular displacement as a function of time for
all 8 resonators is presented in Fig. 2e. In the representative example
shown, mechanical energy is observed to transport across the array
and localize on the right edge (resonator #8).

Of key interest to this study is to quantify the localization of the
mechanical energy through the pumping cycle, with special
attention placed on the two edge modes in the topologically non-
trivial configuration at ϕ = 0 and ϕ = 2π. We therefore establish
the ϕ = 0 eigenmode set (Fig. 2f) as a convenient basis in which
we can analyze the modal energy distribution. Here we can also
define an energy fraction for a mode (Emode #) as the fraction of
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total mechanical energy in the array projected onto the selected
mode. The energy fraction for all 8 modes is traced throughout
the pump cycle using overlapping 0.25 sec time segments (see
Supplementary Note 9) – an example temporal heat map from an
experimental measurement is presented in Fig. 2g. At the
beginning of the pumping cycle the mechanical energy primarily
sits on basis mode 4, corresponding to the left edge mode, while
at the end of the cycle the energy transports to basis mode 5
which corresponds to the right edge mode. To further
quantitatively analyze the pumping cycle we define a transport
fidelity parameter FL→R = E5(ϕ = 2π) ∕ E4(ϕ = 0) as the ratio
between energy fraction in the right edge mode at the end of the
cycle, and the energy fraction in the left edge mode at the
beginning of the cycle. This parameter quantifies how much of
the initial energy in the left edge mode has transported across the
array, and is a measure of the performance of the pump.
Similarly, the parameter FL→L = E4(ϕ = 2π) ∕ E4(ϕ = 0) indicates
how much mechanical energy remains in the left edge mode at
the end of the cycle. In an ideal pump cycle we expect FL→R = 1
and FL→L = 0. For the specific example shown in Fig. 2g the
measured transport fidelity is FL→R = 0.96 demonstrating a
successful pumping cycle. As we discuss below, the transport
fidelity remains very high even in the presence of disorder as long
as the adiabatic timescale is respected.

Importance of adiabaticity. Having demonstrated on-demand
temporal pumping in the magneto-mechanical resonator array,
we turn to illustrate the importance of adiabaticity. The pumping
process timescale is characterized by the frequency ωm which also
corresponds to the angular rotation rate dϕ ∕ dt of the shaft.
Intuitively, the adiabatic condition is such that the frequency of
the Hamiltonian modulations during the pumping process must
be smaller than the frequency gap between a given eigenmode
(EML or EMU in our case) and the rest of the eigenmodes, to
mitigate transitions between the modes. Quantitatively, we cal-
culate a critical pump frequency ωcrit ≈ 0.6 Hz above which the
adiabaticity of the system breaks down35 (calculation in Supple-
mentary Note 3). We expect that it is only in the adiabatic regime
that the pumping process is characterized by non-vanishing
Chern number of 1 (Supplementary Note 2) and is therefore
topologically protected. To show the breakdown of adiabaticity
we experimentally measured values of FL→R and FL→L as a
function of increasing pump frequency ωm. Figure 3a presents the

measured fidelities averaged over 10 consecutive experiments. We
observe that pumping is achieved (FL→R approaches 1) below the
theoretically calculated ωcrit ≈ 0.6 Hz, and diminishes past this
threshold. The example insets show how the energy transports
from mode 4 (left edge) to mode 5 (right edge) in the adiabatic
pumping regime, but disperses amongst other bulk modes in the
non-adiabatic pumping regime.

A limiting case where the adiabatic condition necessarily
breaks is if the band gap closes at some point during the pumping
cycle. In this situation, there is not a well-defined Chern number
associated with the pumping process and the reliable transfer of
energy between edge states requires precise timing since it is a
result of the coupling between the two edge modes instead of a
topological pump. To illustrate this non-adiabatic process, we
modify the modulation shaft to turn off the resonator frequency
modulations and only retain the coupling modulations. As a
result, the Hamiltonian for the system (Eq. 2) no longer contains
the σ3 term, and the band gap closes twice during the pump cycle,
i.e., the system transits through a (bulk) conducting phase, as
illustrated in Fig. 3b (see also Supplementary Fig. 9). Once again,
Fig. 3b presents experimental measurements of the transport
fidelity as a function of pump frequency ωm. The values of FL→R

and FR→L are seen to be irregular with no clear regime of pump
frequency separating high and low values. Moreover, the example
insets show that the mechanical energy oscillates between the two
edge modes (modes 4 and 5) during the cycle, confirming that the
transport of mechanical energy is timing-dependent.

The results presented in Fig. 3 are for cw rotation of the
modulation shaft (ϕ increasing), i.e., pumping along EML. An
additional set of experiments with ccw rotation (ϕ decreasing)
implying a pumping trajectory along EMU are presented in
Supplementary Note 12 along with supporting simulations in
Supplementary Note 10. As expected, ccw pumping also confirms
the same adiabaticity characteristics.

Robustness to spatio-temporal disorder. Since the adiabatic
pump is characterized by a non-vanishing Chern number, we
expect the process to be robust to defects that deform the band
structure but do not close the band gap. One class of static defects
that satisfy this criterion is the detuning of on-site potential, for
which we present two specific examples in Fig. 4. The first
example has a single resonator frequency detuned by 1 Hz. The
second example uses a randomized detuning of ±0.2 Hz, which is
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quite large compared to a 2 Hz bandgap. Results from pumping
experiments show high transport fidelity FL→R for both cases. A
wide range of additional experimental cases are presented in
Supplementary Note 13 and exhibit consistent robustness against
non-time-varying on-site potential disorder. Since the array size
is limited in our experiments, we have added a discussion on
larger disordered arrays in Supplementary Note 11.

As mentioned previously, the Hamiltonian describing the
system is effectively that of a Chern insulator with one real
spatial dimension and one synthetic frequency dimension (See
Eq. (3)). Therefore, the system should exhibit robustness
against defects that deform the pseudo-space-frequency edge
of the equivalent 1+ 1D Chern insulator. To find this pseudo-
edge, we analyzed the spatio-temporal trajectory of the
EMU and EML modes by visualizing their centroids in space

(resonator site) and time (pump phase ϕ) as shown in Fig. 1c
for 100 sites and in Supplementary Fig. 14 for 8 sites. This
visualization reveals the approximate space-time coordinates of
mechanical energy through the pump cycle and helps to
position the defects. At the beginning and the end of the cycle
the mechanical energy is mostly localized near the left and right
edge respectively, while in the middle of the cycle the
mechanical energy propagates through the bulk. Based on this
analysis, we experimentally implemented on-site potential
defects to coincide with the EML centroid trajectory at site 1
at time ϕ = π ∕ 4, and at site 8 at time ϕ = 7π ∕ 4. The defects
were designed to be a simple momentary perturbation of on-
site potential (i.e., Δf1, Δf8 respectively in Fig. 5a, b) by
modifying the permanent magnets on the shaft at the
corresponding sites and phase angle ϕ. The experimental
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measurements presented in Fig. 5a, b show that pumping
fidelity FL→R remains very high in both of the above cases.
Heuristically, the effective chiral edge mode simply avoids the
defects and robustly pumps across the array without back-
scattering. A series of additional experiments implementing this
type of temporal on-site potential defect are shown in
Supplementary Note 13, Supplementary Figs. 16 and 17.
Finally, we also implemented a coupling defect that mimics a
phase boundary deformation, i.e. an intrusion of a trivial phase
into the bulk of the 1+ 1D Chern insulator. This type of defect
would act to deform the edge of the effective 2D system, and we
would still expect the chiral edge state to adapt and travel
around the new boundary geometry. This defect was imple-
mented by momentarily increasing the intra-cell coupling γ4 at
the 4th unit cell at time ϕ = 7π ∕ 4. An intuitive visualization of
this defect is presented in Supplementary Fig. 18. Experimental
results from pumping in this array (Fig. 5c) show that
mechanical energy temporarily re-localizes in the penultimate
unit-cell, but the overall transport fidelity FL→R at the end of
the cycle remains very high. All these experiments confirm the
unique form of robustness of this topological pump against
defects occurring in both space and time.

Discussion
Linear waveguides are a foundational technology that enable
modern systems for communications, sensing, and fundamental
science. However, disorder that is frozen-in during fabrication,
or appears dynamically in the form of fluctuations, can result in
undesirable scattering36–38 and localization39 in these systems.
While spatial topological pumps can address these concerns,
the introduction of time as a pumping parameter offers
unprecedented control and reconfigurability over the transport
of energy in space17,18 and even in frequency40. Moreover, the
use of alternative pumping protocols or multiple incommen-
surate temporal drives can potentially open up a wide config-
uration space41,42, allowing the synthesis of larger Chern
numbers for increased pumping capacity43–47, the generation of
higher Chern numbers in higher synthetic dimensions48, and
the exploration of dynamic phase transitions between topolo-
gical phases in time49–51.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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