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Despite the current standard of care, breast cancer remains one of the lead-

ing causes of mortality in women worldwide, thus emphasizing the need

for better predictive and therapeutic targets. ABI1 is associated with poor

survival and an aggressive breast cancer phenotype, although its role in

tumorigenesis, metastasis, and the disease outcome remains to be eluci-

dated. Here, we define the ABI1-based seven-gene prognostic signature that

predicts survival of metastatic breast cancer patients; ABI1 is an essential

component of the signature. Genetic disruption of Abi1 in primary breast

cancer tumors of PyMT mice led to significant reduction of the number

and size of lung metastases in a gene dose-dependent manner. The disrup-

tion of Abi1 resulted in deregulation of the WAVE complex at the mRNA

and protein levels in mouse tumors. In conclusion, ABI1 is a prognostic

metastatic biomarker in breast cancer. We demonstrate, for the first time,

that lung metastasis is associated with an Abi1 gene dose and specific gene

expression aberrations in primary breast cancer tumors. These results indi-

cate that targeting ABI1 may provide a therapeutic advantage in breast

cancer patients.

Abbreviations
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1. Introduction

Breast cancer is the most commonly diagnosed noncu-

taneous cancer in American women, causing an esti-

mated 200 000 deaths and over 40 000 new diagnoses

each year [1]. Despite current treatment modalities that

combine surgical intervention, radiation, and adjuvant

chemotherapy, many patients relapse after years of

treatment and present with metastatic and often incur-

able diseases. Metastasis of breast tumors accounts for

the majority of breast cancer-related deaths [2]. Thus,

there is an urgent need to identify novel molecular tar-

gets for the development of new treatments against

breast cancer.

The critical role of actin polymerization in breast

tumor progression and invasion is well established, but

the underlying mechanisms remain to be elucidated.

Candidate mechanisms of tumor progression involving

actin include cell–matrix interactions, invadopodia for-

mation, and increased cell motility, which can all be

attributed to increased actin polymerization in invad-

ing cells [3,4]. The WAVE complex is a heteropen-

tameric nucleation-promoting factor of F-actin

polymerization and comprises WAVE proteins (1/2/3),

Abelson interactor (1/2/3), SRA1/CYFIP1, NAP1, and

BRK1/HSPC300 [5–7]. These proteins are encoded by

genes WASF(1,2,3), ABI (1/2/3), CYFIP(1,2),

NCKAP1, and BRK1, respectively [7]. The WAVE reg-

ulatory complex in response to RAC1 activation has

been proposed to act as a regulator of cell motility by

promoting ARP2/3-dependent actin polymerization at

the leading cell edge [8,9]. Importantly, increased levels

of ARP2/3 and WAVE2 are correlated with an

increased risk of invasive breast cancer [10].

The integrity and activity of the WAVE complex are

reliant on the presence of all complex members; the

loss of any single constituent can lead to altered cell

phenotypes [11]. Upstream pathway signaling partners

of WAVE complex such as RAC1 [6,12,13] and

NUDEL modify its activity [14]. Abelson interactor 1

(ABI1) is crucial for WAVE complex stability and reg-

ulation of specific actin-dependent processes such as

cell motility and adhesion, macropinocytosis, and

embryonic development [15–17]. Our previous studies

demonstrated that constitutive Abi1 loss results in

murine embryonic lethality [16]. ABI1 is an adaptor

protein that promotes phosphorylation of substrates,

such as WAVE2, by ABL kinase and has also been

shown to be important for capping of F-actin fila-

ments, thus highlighting its regulatory role in cellular

homeostasis and actin turnover [18]. WAVE1 and

WAVE2 have differential roles in actin polymerization

output resulting in distinct effect on actin meshwork at

the plasma membrane [19,20].

In cancers, WAVE complex’s molecular composition

is dynamic and can be represented by distinct molecu-

lar subcomplexes due to deregulation of component

levels [7,11,14]. Furthermore, several cell context-

dependent WAVE/ABI1 subcomplexes can form and

exhibit distinct functions activated and maintained

through different mechanisms [7,11,14,20]. For

instance, enhanced levels of WASF3 gene expression

could promote cancer cell invasiveness and are associ-

ated with the highly aggressive breast cancer subtypes

[21,22]. However, recent studies also demonstrate

potential tumor suppressor function of Wasf3 upon

overexpression in PyMT breast cancer cells [22] thus

indicating heterogeneity of WAVE3-based complex sig-

naling through differential effect on actin cytoskeleton

and cell proliferation [23,24].

WAVE complex dysregulation in cancer provides

input into cell cycle progression and warrants the

study of its role in breast cancer [25]. Although the

specific molecular mechanism has yet to be uncovered,

WAVE2 was linked to regulation of cell cycle progres-

sion through RAC1, Arp2/3, and ARPIN. Upregula-

tion of the Arp2/3 subunit, ARPC1B, is associated

with very poor metastasis-free survival of breast cancer

patients, but inhibition of ARP2/3 prevents cycle pro-

gression through RAC1 transformation [7,25].

Alterations in ABI1 expression have been associated

with tumor initiation and progression in human can-

cers, thus indicating that ABI1 protein levels must be

tightly regulated in cells. ABI1 dysregulation has been

implicated in several cancers, such as breast, brain,

colon, stomach, ovarian, and prostate cancers [26–29].
Notably, the role of ABI1 in cancer is not always the

same; in some cancers, such as PMF, glioblastoma,

and prostate cancer, ABI1 expression is downregulated

[26,27,30,31], whereas in breast cancer, ABI1 expres-

sion is enhanced [32], thus suggesting the tissue and

disease-involving pathway specificity of the role of

ABI1 in oncogenic transformation and indicating the

importance of mechanistic studies. The important role

of ABI1 in breast cancer has been established in clini-

cal samples. Previously, immunohistochemical studies

of over 900 human breast tumor samples showed that

ABI1 overexpression is positively correlated with poor

survival and a shorter relapse time in human breast

cancer patients [32]. Indeed, the analysis revealed that

invasive breast tumors have higher ABI1 protein

expression than poorly invasive tumor samples and

that increased ABI1 protein levels are significantly cor-

related with earlier recurrence and shortened survival.
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These findings have been supported by xenograft mod-

els of highly aggressive breast cancer cells (MDA-MB-

231) lacking ABI1, which were unable to grow into

large tumors in immunocompromised mice [33]. Taken

together, previous data suggest that ABI1 plays a driv-

ing role in the progression of metastatic breast cancers

32–34.
Several in vitro studies have shown the impact of

ABI1 in driving breast cancer cell motility, division,

and invasiveness; however, its exact role during in vivo

tumor initiation, progression, and metastasis remains

to be elucidated. Thus, we aimed to study the impact

of Abi1 loss on mammary tumor initiation and pro-

gression using the polyoma middle T (PyMT) breast

cancer mouse model. The PyMT antigen is a trans-

membrane scaffolding protein with key tyrosine resi-

dues that, upon phosphorylation, can activate

signaling pathways involved in cell proliferation and

survival (e.g., PI3K/AKT and MAPK), making it a

reliable model for aggressive breast tumor formation

[35]. The PyMT breast cancer model has been well

characterized and recapitulates human breast cancer

pathology, especially that of the triple-negative subtype

[36].

High levels of ABI1 have been associated with the

risks of metastasis of primary tumors and breast can-

cer mortality, as well as associated with the metastatic

phenotype of human breast cancer cell lines in vitro

[3,32,34,37,38]. The deficiency of ABI1 has been shown

to reduce cell migration and invasiveness of aggressive

breast cancer cells and is associated with activity in

pathways such as PI3 kinase/AKT and SRC [32,33].

Here, we define the ABI1-associated gene expression

signature, which predicts the disease metastasis-free

survival (DMFS) of patients with primary breast can-

cer. The signature includes a subset of WAVE complex

genes (ABI1, BRK1, WASF3, CYFIP1, CYFIP2), and

the direct interactors of WAVE complex (RAC1 and

NDEL1). ABI1 is an essential component of the signa-

ture. To model the role of Abi1 in breast cancer tumor

progression and metastasis, we conditionally depleted

Abi1 gene expression in the mammary epithelium of

PyMT breast cancer mice using the mammary-specific

Cre recombinase mouse. Our analysis shows that Abi1

knockout (KO) mice, both with homozygous and

heterozygous deletion had more diverse tumor growth

kinetics compared to the controls. In KO animals, a

significant proportion (between 54% and 64%) of the

primary tumors grew slower or not at all. However,

the number of identified metastatic foci in lung and

their size were significantly reduced in both homozy-

gous and heterozygous KO mice, with the more signifi-

cant metastasis suppression effect observed in the

former. These results indicate that Abi1 gene dosage in

primary tumors is critical for the progression of metas-

tasis in breast cancer. Western blotting analysis of pri-

mary tumors supports our previous findings that ABI2

protein expression is increased in animals with

homozygous deletion of Abi1. Collectively, both our

analyses utilizing both human breast cancer gene

expression data and genetically engineered Abi1 knock-

out breast cancer mouse models support the critical

role of ABI1 and ABI1-based gene prognostic signa-

ture as novel biomarkers of breast cancer metastases.

2. Methods

2.1. Reannotation and legacy comparison

microarray datasets

The updated and reannotated Rosetta microarray

dataset [39] and the Metadata dataset [40,41] were

used for the statistical testing and survival prediction

analyses. The Metadata dataset is comprised of Upp-

sala and Stockholm data cohorts, which totals 249

samples (Affymetrix U133A, U133B) [40,41]. Rosetta

expression microarray dataset of 295 primary breast

cancer samples has been downloaded [39] and repro-

cessed. Probe sequences (60 bp) obtained from the

Rosetta dataset were aligned using NCBI’s command

line blastn program with the following arguments: -

reward 2 -penalty −3 -word_size 11 -gapopen 5 -

gapextend 2. Coordinates with the most significant e-

value were used for each sequence. Ensembl

GRCh38.p13 was used to annotate each probe’s given

genome coordinates. RefSeq gene symbols were used

to annotate probes that were not annotated by

Ensembl and contained RefSeq IDs. A total of 32439

expression data points are present with 24479 unique

probes (GSE159956).

Our newly updated Rosetta probe set annotation

was compared to the original probe set annotation.

Our newly updated Rosetta probe set annotation was

compared to the original probe set annotation. A total

of 11847/24479 (48.4%) of our probe’s gene symbols

exactly matched the original gene symbol. A total of

804/24479 (3.2%) probes that have identical gene sym-

bols are on the opposite strand of the given gene. Of

the 12632/24479 (51.6%) unique probes that were not

an exact match, there were instances where the original

set either had a false negative, a false positive, or an

alternative gene symbol was used (Fig. S1). For an

example of a false negative, see probe ‘Con-

tig44690_RC’. In the original probe set annotation,

there is no gene symbol for this probe. However, we
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found that the gene symbol for this probe was PTEN,

which was confirmed with the UCSC genome browser.

A total of 7375/24479 (30.1%) probes matched this

characteristic. For an example of a false positive, see

probe ‘Contig52193_RC’. In the original probe set

annotation, there is a gene symbol present for this

probe. However, we found that the location of the probe

is neighboring the gene body rather than overlapping

the gene body. A total of 92/24479 (0.003%) probes

matched this characteristic. The remaining percentage

of probes that do not exactly match are either instances

where the official gene symbol has been updated or

instances where a single probe maps to a locus contain-

ing multiple genes. For an example of an updated gene

symbol, see probe ‘NM_017546’. The original states this

probe maps to gene C40; however, our method maps

this probe to CNOT11. Using GeneCards, we found

that CNOT11 and C40 are the same genes. For an

example of a probe that maps to multiple genes, see

probe ‘NM_006340’. This probe maps to both BAIAP2

and AATK. The original probe annotation only links

this probe to BAIAP2. Overall, we improved upon the

original probe set annotation by providing gene symbols

for a significant portion of false negatives (Fig. S1).

Additionally, we show increased consistency of ABI1

expression values between groups following KS-

weighted means batch effect correction (Fig. S2).

2.2. Characterization of ABI1 expression, copy

number alterations, and associations with breast

cancer clinical data

To analyze ABI1 expression, copy number alterations

and associations of these characteristics with breast

cancer clinical data, we used The Molecular Taxon-

omy of Breast Cancer International Consortium

(METABRIC) ([42] observed in cBioPortal for Cancer

Genomics. https://www.cbioportal.org/study/summary?

id=brca_metabric). ABI1 profiles from 1904 breast

cancer patients including microarray expression, copy

number variation, and clinical and cancer samples

were downloaded and analyzed.

2.3. Survival prediction analysis and multigene

prognostic signature identification

We used our data-driven grouping (DDg) methods

(one-dimensional (univariate), 1D-DDg, two-

dimensional (bivariate) 2D-DDg), and statistically

weighted voting grouping (SVWg) algorithms for

patient’s risk stratification onto two and three survival

groups representing Kaplan–Meier survival functions

(K-M functions) [37,43–45]. These are well-established

statistically based computational methods to identify

optimized cutoff values of high-dimensional variable

domains that transform large-scale variables to low-

dimensional (discrete) scale-independent statistically

weighted variables allowing for the selection of the

most informative, robust, and reproducible categorical

variables with the ability to stratify patient survival

risk. In this study, we used an advanced version of the

previously published software and algorithm [37,43].

The following is a general description of how patient

stratification in the risk groups can be utilized as a

measure of survival prediction and as a method of

selecting survival predictors (genes) for multivariate

prognostic model.

2.3.1. 1D-Data Driven grouping (1D-DDg)

Assume a gene expression data set with i = 1, 2, . . ., N

genes whose intensities are measured for k = 1, 2, . . .,

K patients. The log-transformed intensities of gene i

and patient k are denoted as yi,k. Associated with each

patient are a clinical outcome continuous data (e.g.,

survival time) and a nominal (yes/no) clinical event

(e.g., tumor recurrence). Assuming that K clinical out-

comes are negatively correlated with the vector of

expression signal intensity yi of gene i, patient k can

be assigned to the high-risk or the low-risk group

according to

xik ¼
1 high riskð Þ, if yi;k > ci,

2 low riskð Þ, if yi;k < ci,

(
(1)

where ci denotes the predefined cutoff of the ith gene’s

intensity level. The clinical outcomes or events are sub-

sequently fitted to the patients’ groups by the Cox pro-

portional hazard regression model [46]:

loghik tkjxik, βi
� � ¼ αi tkð Þ þ βi � xik, (2)

where hik is the hazard function and αi tkð Þ ¼ loghi0 tkð Þ
represents the unspecified log-baseline hazard function;

β is the 1 × N regression parameters vector; and tk is

the patients’ survival time. To assess the ability of each

gene to discriminate the patients into two distinct

genetic classes [defined by Eqn (1)], the Wald statistic

(W) [46] of the βi coefficient of the model Eqn (2) is

estimated by using the univariate Cox partial likeli-

hood function [47], estimated for each gene i as

L βið Þ ¼
YK
k¼1

exp βTi xik
� �

∑ j∈R tkð Þexp βTi xij
� �

8<
:

9=
;

ek

, (3)
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where R (tk) = {j : tj ≥ tk} is the risk set at the time tk
and ek is the clinical event at the time tk. The actual

fitting of the model Eqns (2,3) is conducted by the sur-

vival package in R (https://cran.r-project.org/web/

packages/survival/index.html). The genes with the larg-

est βi Wald statistics are assumed to have better group

discrimination ability and thus called survival signifi-

cant genes. These genes are selected for further confir-

matory analysis or inclusion in a prospective gene

signature set. Note that log-rank statistics were also

included in our algorithm and shown similar or in

some cases slightly better P-value.

Note, how the stratification of patients in Eqn (1)

depends on predefined cut-off values (ci). In most real-

world scenarios, such values are not known in

advance. Our 1D-DDg method builds on the described

workflow, by identifying the ideal cutoff without need-

ing any prior information. First, for each gene i, we

compute the tenth quantile (qi10) and the 90th quantile

(qi90) of the distribution of K* signal intensity values.

For every value, the algorithm performs the splitting

of patients (1), fits the clinical event to the patient

groups Eqn (2), and finally calculates the Wald statis-

tic of βi Eqn (3). In other words, within (qi10, q
i
90), we

search for the value* which corresponds to the mini-

mum βzi P-value (here z = 1, ..., Q) and that most suc-

cessfully discriminates the two unknown risk groups.

We note that at the time of patient stratification we

cannot tell which group is associated with higher or

lower risk. The 1D-DDg method predicts risk by ana-

lyzing the survival times of the groups. The group with

lower mean survival times will be classified as ‘higher

risk’, while the group with higher mean survival will

be labeled as ‘lower risk’. According to this classifica-

tion, two possible relationships exist between patient

risk (lower risk, higher risk) and the expression pattern

of a given gene (higher expressed, lower expressed). In

the case of a parallel pattern, ‘higher risk – higher

expression’ or ‘low risk – low expression’, the relatively

higher prognostic gene expression level is associated

with the poorer prognosis (a gene exhibits pro-

oncogenic behavior). In the case of antiparallel pattern

‘higher risk – low expression’ or ‘low risk – high

expression’, the relatively higher prognostic gene

expression level is associated with better prognosis (a

gene exhibits tumor suppressor-like behavior).

In our current work, the Rosetta and MetaData

cohort datasets were used that contain both expression

microarray data and the corresponding clinical informa-

tion. Our survival prediction analysis was focused on

the identification of the shortlist of survival significant

genes of the WAVE complex, RAC1 and NDEL1, all of

which encode proteins constituting or interacting with

the WAVE complex. Input list of the genes includes

genes WASF(1,2,3), ABI (1/2/3), CYFIP(1,2),

NCKAP1, BRK1, RAC1, and NDEL1, represented by

the probe and probe sets localized in the 3’UTR of the

selected genes on both microarray platforms.

The mRNA expression profiles of the selected genes

are considered as putative predictors of the disease

outcome. The 1D-DDg analyzed the survival predic-

tion property of the Rosetta and Metadata expression

microarray signals corresponding to WAVE complex

members and also RAC1 and NDEL1 as independent

variables. An expression signal, called prognostic vari-

able, is selected for further analysis if in both cohorts

the DDg cutoff value(s) provide discrimination of the

patients onto survival risk groups at P ≤ 0.05. To keep

a reasonable compromise between sample size, the

imbalance of distinct risk groups in a patient cohort,

reproducibility across the different cohort and prog-

nostic significance of the putative prognostic variables

selection step, we were also allowed to include in the

prognostic variables set up to two variables, if for a

given variable in one dataset (e.g., DFS, Metadata)

P ≤ 0.15. Thus, the output of 1D-DDg analysis for

Metadata or Rosetta cohorts includes the same list of

reproducible prognostic variables (gene IDs) defined

by the same gene lists, a similar survival prediction

pattern of the identical variable (gene ID), cohort-

specific gene expression cutoff values dichotomizing

the patients on to relatively low-risk (code 1) and

high-risk (code 2) groups [37,43–45].
Next, using the results of 1D-DDg, our two-

dimensional grouping (2D-DDg) method, and statisti-

cally weighted voting grouping (SWVg) we constructed

the robust and synergistic multigene prognostic signa-

ture. The ability of individual prognostic variables

(voting weight) to stratify patients in risk groups is

represented by the P-values associated with log-rank

statistics.

2.3.2. Statistically Weighted Voting grouping (SWVg)

SWVg is an automatic method of prognostic feature

selection and disease risk prediction that allows the

construction of an optimized, multivariable, prognostic

classifier [37]. The input data were provided by the

1D-DDg method. The ability of individual prognostic

variables to stratify patients is represented by the P-

values associated with the Wald statistic (calculated in

the 1D-DDg). These P-values are used to calculate the

relative weight of individual variables in the multivari-

able classifier. This information is used to construct a

decision rule and to assign a patient to one of the risk

subgroups.
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In practice, the list of genes is ordered in ascending

order according to the P-values generated from 1-

DDg. The weight wj is calculated by the formula

wj ¼
�log Pj

� �
∑N

m¼1 �log Pmð Þð Þ , (4)

where Pj is the P-value of gene j in the 1D-DDg proce-

dure. Then, the new numeric grouping value for sam-

ple i could be calculated by the formula

GN
i ¼ ∑N

j¼1wjGij, (5)

where N is the number of genes and Gij is the group

allocation for sample i assigned by gene j in the 1D-

DDg. In the case that samples are divided into two

groups, patient i could be separated into two groups

(2 = ‘high-risk’, 1 = ‘low-risk’) at a predefined cutoff

value (Gc) of G
N
i with the following:

yNi ¼ 1 high� riskð Þ, if GN
i >GC

0 lowriskð Þ, if GN
i ≤ GC

(
(6)

A Cox proportional hazard regression model is esti-

mated by using a univariate Cox partial likelihood

function with the method described in the 1D-DDg

procedure. Wald statistic of β̂
j
is estimated and serves

as an indicator to evaluate the ability of group dis-

crimination for gene j at cutoff Gc. The searching

space of Gc is from 0.2 to 0.8, with an increment of

0.01 for each step. The Gc that provides the minimum

log-rank P-values in the searching space is the opti-

mized Gc. The above-described procedure is repeated

for different N, which varies from 3 to the number of

genes assigned. The number (Nopt) and combination of

genes are optimized for minimum log-rank P-values.

A similar procedure is applied when the samples are

divided into three groups. Two cutoff values (Gc1, Gc2,

Gc1 < Gc2) of F
N
i selected and then used to calculate the

grouping variable according to the following formula**:

yNi ¼
1 low riskð Þ if GN

i >GC2

2 intermediate riskð Þ if GC1 <GN
i ≤ GC2

3 high riskð Þ if GN
i ≤ GC1

8><
>:

(7)

A Cox proportional hazard regression model and log-

rank statistic estimates are computed. Gc1 in Eqn (7) is

searched in the range of 0.2 and 0.44, with an increment

of 0.01 for each step, while Gc2 is searched in the range

0.56 and 0.8, with an increment of 0.01 for each step.Gc1,

Gc2 are optimized for the minimum value of summation

of pair-wise log-rank P-values of three survival curves.

The most significant and robust cut-off value does

not always result in balanced groups (i.e., one group

may only contain a few patients). In our work, we aim

to define risk groups that the smallest group contains

at least 10% of the total patients. In cases where ‘the

best’ cut-off value resulted in unbalanced groups, and

other values could stratify patients with statistically

significant Wald statistics, we opted to use these

alternatives.

Note that before the execution of Eqn (7), we recode

the group values of the high-risk group from 2 to 0. Using

the modified values to calculate GN
i in Eqn (5) will result

in GN
i closer to 0 for patients with higher risk. Conversely,

patients with lower risk will have GN
i closer to 1. As a

result, patients for whom GN
i >GC2 is true will constitute

the lower risk group. Patients with GN
i that is below Gc1

will be in the high-risk group. Patients whose GN
i falls

between Gc1 and Gc2 are classified as moderate risk.

To construct the multivariate prognostic signature, the

SVWg starts with paired gene expression data using the

two-dimensional grouping (2D-DDg) method [37,44,45].

For the given two variables domain and the 1D-DDg

determined cutoff values of these variables, the 2D-DDg

identifies two mutually excluded subdomains in the 2D

domain that maximize discrimination of all subjects (pa-

tients) onto low- and high-risk groups. The possible dis-

tinct subdomain combinations in the 2D domain are

called ‘designs/models’ of the patient’s grouping.

SWVg adds the next prognostic variable that

increases differentiation between risks of the groups and

allows a selection of a synergistic multivariable signa-

ture based on the summation of the statistically weight-

ing variables in a stepwise multivariable fashion. Less

stringent statistical criteria (weights) are used by SWVg

when the next most significant prognostic variable is

added to the survival prediction model. The sample size

and data quality constraints are included in the algo-

rithm allowing the SWVg to minimize the number of

prognostic variables (predictors) and reduce the signa-

ture identification overfitting risk keeping high confi-

dence and reproducible prognostic multivariate model.

The multivariate method starts with the most signifi-

cant prognostic variable (1-st rank predictor) paired

with the next most significant predictor. These features

in combination provide a synergistic effect, robust

prognostic signature, and provide consistency between

the signatures derived in the cohorts.

2.3.3. Optimization of the 2D-DDg method for

correlated covariates (gene expression value pairs)

In many datasets, the gene pairs (A and B) expressions

may be correlated positively or negatively due to some
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context regulatory mechanisms (interaction due to

common medical condition(s) and similar treatment).

The paired correlation analysis could be used to

improve the significance and robustness of patient’s

risk group stratification. In this section, we describe an

extension of our 2D-DDg method.

Let N denote the number of nonduplicated samples

of the population (patient cohort). Let {X, Y} denote

the N random variable (r.v.) pairs (e.g., gene expres-

sion levels in the N samples that associated with N

patient survival data (event and time after disease

diagnostics or last follow up)), where the expression

levels X and Y of the genes A and B, respectively. If

the correlation measure between r.v. X and Y signifi-

cant, the DDg defined risk group separation cutoff

value (gene expression value determined a patient to

the given risk groups) of bivariate r.v., could be opti-

mized due to the variable’s dependence. In such cases,

we can define the ‘interaction effect’ (synergy) between

A and B data into 2D-DDg prediction analysis as

follows.

The method calculates the Kendal tau (or Spear-

man) correlation coefficient between all possible paired

of r.v., specifies significantly correlated pairs, and then

parameterizes the linear regression model quantifying

the stochastic association between two r.v.

Y ¼ αþ βXþ ε, (8)

where x is the vector of gene A expression values,

x = {x1, x2, . . . xN}; y is the vector of gene B expres-

sion values, y = {y1, y2, . . . yN}; ε represents an addi-

tive error term that may stand un-modeled

determinants or random statistical noise: ε = {ε1, ε2,
. . . εN} N is the number of samples; α and β are

parameters of the linear regression model. α is a y-

intersect of the line and β is a slope of the line. We

estimate the parameters using the least squares

method. The estimated parameter values denote as α̂
and β̂.

Using parameterized Eqn (8) for the vector compo-

nent pair (X, Y� α̂) defined in the form

yi � α̂ð Þ ¼ β̂xi, i ¼ 1, 2, . . . , N, (9)

we calculated the shortest distance of a particular

point Q (x,y) from the regression line. To do this, we

use a rotation of orthogonal coordinate system for-

mula of point Q {x, y� α̂} as the following

xi ¼ xi cosγþ yi � α̂ð Þ sinγ, (10)

yi ¼ �xi sinγþ yi � α̂ð Þ cosγ, (11)

Where fxi, yig are the coordinates of point Q in the new

orthogonal coordinate system rotated on the angle γ.
Using trigonometric formula, β̂ = tanγ, and we obtain.

xi ¼ xi þ β̂ yi � α̂ð Þ� �
= 1þ β̂

2
� �1=2

, (12)

yi ¼ �β̂xi þ yi � α̂ð Þ� �
= 1þ β̂

2
� �1=2

, (13)

Equations (12,13) are used in our study for the cal-

culation of new coordinates of the objects and cor-

rected cutoff values C x∗, y∗f g defined by DDg for

prediction of the low- and high-risk groups in the

patient cohort.

We included and used our rotation of orthogonal

coordinate system approach in the 2D-DDg method to

improve the significance of the patient’s separation on

the relatively low- and high-risk groups. Our analysis

showed that in the high-correlated genes, this method

improves the statistical significance of results obtained

in DDg methods, but also could lead to more robust

grouping and reproducibility of the risk model across

distinct patient cohorts. For instance, in the case of

ABI1- BRIK1 pair of the Rosetta cohort, our standard

2D-DDg survival prediction analysis of DMFS pro-

vided near the borderline statistical significance of

patients grouping (P < 0.05). However, a strong posi-

tive correlation between expressions of these two genes

was found (P < 0.0001), suggesting common coregula-

tory mechanisms.

2.3.4. Prognostic models, correlations, and

reproducibility of the ABI1-based prognostic signature

genes

According to our selection criteria of prognostic vari-

ables (Methods), 1D-DDg selected 5 genes of WAVE

complex (ABI1, BRK1, CYFIP1, CYFIP2, and

WAVE3) and 2 genes (RAC1 and NDEL1) encoding

the proteins RAC1 and NADEL exhibit ‘interaction’

with WAVE complex components. Our 7 genes were

representative be unique probe sets on Affymetrix

U133 A&B and Rosetta microarray platforms (Table

S1). Figs. S3,S4 and Table S2 show that across differ-

ent microarray platforms DFS and DMFS survival

patterns ABI1, BRK1, CYFIP1, and RAC1 are com-

monly reproducible and classified as pro-oncogenic,

while CYFIP2, NDEL1, and WAVE3 are mostly clas-

sified as tumor suppressor-like genes. However,

because the system of interactive molecules is open,

stochastic, and nonlinear for some genes (e.g., WAV3),

the variations of these prognostic properties (as a
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component of the system) could be unstable and

expressed alternative functions.

Note that over data sets and event types (e.g., DFS,

DMFS), the prognostic pattern of expression changes

for some individual genes (e.g., WASF3) was in some

cases not the same (classified as proto-oncogene or

tumor suppressor like). However, the pro-oncogenic

pattern (upregulated expression–poor prognosis) of

ABI1, BRK1, and RAC1 or the ‘tumor suppressor’

pattern (upregulated expression–good prognosis) of

NDEL1 and CYFIP2 expression was highly repro-

ducible between our datasets.

In the context of co-expression, the METABRIC,

Rosetta, and Metadata data, ABI1 expression is posi-

tively correlated with the expression of BRC1, CYFP1,

and NDEL1. It is also not correlated with RAC1 expres-

sion and is negatively correlated with CYFP2 expression.

2.4. Mouse primary tumors RNA-seq

Gene expression profiles from primary breast tumors

of PyVT heterozygous and homozygous mice with and

with Abi1 disruption were detected with the Illumina

NextSeq platform (GSE162815). Two tumors from a

single mouse from each of the four groups were

sequenced. Two runs were performed on consecutive

days for increased depth. Illumina’s breast cancerl2-

fastq program was used for the conversion of base

calls to FASTQ files. This resulted in two read files

due to the paired-end sequencing protocol. STAR was

used to align sequences to the GRCm38/mm10 mouse

genome. STAR was also used for the quantification of

reads per gene. Raw counts between tumors and days

for each genotyped were summed for maximum depth.

Fold change was calculated between Abi1 wild-type

and Abi1 knockout mice for each genotype.

2.5. Animals

Transgenic PyMT mice (JAX no. 022974; C57BL6)

and mammary-specific Cre mice (JAX no. 003553,

Line D; mixed strain) were purchased from Jackson

Laboratory. Abi1-floxed mice were generated by the

Kotula Laboratory [16] (MGI : 4950557; Abi1tm1.1Lko,

C57BL6). Female PyMT mice with conditional Abi1

knockout were generated by crossing PyMT transgenic

males to homozygous Abi1 females to produce PyMT

transgenic males heterozygous for Abi1 floxed allele

(PyMT; Abi1 fl/wt). PyMT; Abi1(fl/wt) males were

backcrossed to homozygous Abi1 females to produce

PyMT; Abi1(fl/fl) males. In parallel, transgenic Cre

animals were crossed with homozygous Abi1 animals

to generate transgenic Cre animals heterozygous for

Abi1 [MMTV-Cre; Abi1(fl/wt)]. To generate experi-

mental animals, male PyMT; Abi1(fl/fl) were crossed

to female MMTV-Cre; Abi1(fl/wt). All breeders used

were at least 8 weeks of age. Genotyping was per-

formed using ear snips (Transnetyx, Cordova, TN). As

mammary glands were the tissue of interest, only

female experimental animals were analyzed. Female

animals were sacrificed at designated time points (5, 7,

and 12 weeks, for developmental studies, n = 5 ani-

mals per genotype; or seven weekly time points start-

ing with the tumor detection (at week 0, 1, 2, 3, 4, 5,

and 6, n ≥ 6 mice), when tumors reached 2.0 cm, or

when animals displayed signs of distress as per the

guidelines of the National Research Council Commit-

tee on Recognition and Alleviation of Distress in Lab-

oratory Animals. For primary and lung metastasis

tumor studies, animals (n ≥ 6 mice) were sacrificed age

between 17 and 26 weeks. All animals used in the

studies described herein were housed in ventilated

microisolator caging under HEPA-controlled environ-

mental conditions and maintained under the supervi-

sion of the SUNY UMU Institutional Animal Care

and Use Committee (IACUC no. 393).

2.6. Tumor palpation and measurements

Starting at weaning age, all female PyMT animals

were palpated and measured for tumors biweekly.

Tumor measurements and volume calculations were

performed as previously described [48]. Total tumor

burden over time was calculated for each animal

(n = 6/genotype) and was plotted against the time

since primary breast tumor was detected by palpation.

2.7. Mathematical Models and Estimated

parameters in analyses of primary tumor kinetics

and pulmonary metastatic node’s size frequency

distribution

We estimated parameters of the tumor volume kinetics

using the exponential function

f t;a, bð Þ ¼ a� bð Þ ∗ exp axð Þ,
where t is time, parameter a is the rate of cell volume

growth, and (a − b) is the initial tumor volume.

SIGMAPLOT-13 software was used to perform nonlinear

regression analysis and the results visualization.

2.8. Proliferative activity and histological

parameters of the mouse primary tumors

Mouse mammary parenchyma less than (<20 weeks)

or greater than 20 weeks (>20 weeks) of age were
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examined by a blinded pathologist. Histologic sections

of healthy control, homozygous control, heterozygous

control, homozygous Abi1(KO, −/−), and heterozy-

gous Abi1(KO, −/+) breast parenchyma were com-

pared. The murine grades were determined according

to published histologic criteria [35]. The Ki-67 index is

expressed as percent positivity from 500 nuclei counted

in areas of highest positivity. The comparative analysis

was performed for each group of mice vs normal and

corresponding negative contours (breast parenchyma)

of heterozygous Abi1 (KO, −/+) and homozygous

Abi1 (KO, −/−) samples. Unpaired nonparametric

Mann–Whitney U-test was performed at P < 0.05.

2.9. Lung metastasis quantification

To quantify the metastatic area throughout the lung tis-

sue, three 5μm sections from formalin-fixed paraffin-

embedded mouse lungs (sectioned every 50 μm) were col-

lected from each group (n ≥ 6 animals per genotype),

stained with hematoxylin and eosin and imaged using an

Omnyx digital pathology scanner (GE Healthcare, Bos-

ton, MA, USA) [49]. Images were quantified for the total

number of metastatic foci using IMAGEJ software (NIH)

and subjected to statistical analyses.

2.10. Western blot analyses

Western blots were performed as previously described

[16]. Blots were probed with the following primary anti-

bodies: ABI1 (Rockland, Pottstown, PA, USA; 1 : 1000),

ABI2 (P-20, Santa Cruz Biotechnology, Dallas, TX,

USA; 1 : 500), ABI3 (GeneTex, Irvine CA, USA;

1 : 1000), WAVE1 (K91/36, MilliporeSigma, Burlington,

MA, USA; 1 : 1000), WAVE2 (H-110, Santa Cruz

Biotechnology, Dallas, TX, USA; 1 : 1000), WAVE3

(W4642, Sigma-Aldrich, St. Louis, MO, USA; 1 : 1000),

or β-actin (AC-15, Sigma-Aldrich; 1 : 10 000). Blots were

incubated with SuperSignal West Pico or Femto ECL

reagents (Thermo Fisher, Waltham, MA, USA) and

imaged using a PxiTouch imaging system (SynGene, Ben-

galuru, Karnataka, India).

2.11. Immunohistochemistry, histology, and

whole mount analysis

Immunohistochemical staining was performed with anti-

gen retrieval following standard protocols. Tissue sec-

tions of normal mammary tissue were stained with anti-

CK8 (TROMA-I, DSHB, Iowa, 1.1000) and anti-CK14

(PRB-155P, Covance, 1.250). Tumor sections (≥ 3 ani-

mals/genotype) were stained with the following antibod-

ies : ABI2 (P-20, Santa Cruz Biotechnology, 1.250),

WAVE1 (K91/36, Millipore, 1.250), WAVE2 (H-110,

Santa Cruz Biotechnology, 1.250), and WAVE3 (Abreast

canceram ab110739, 1.100). Stained sections were

mounted on coverslips using Cytoseal XYL (Fisher) and

imaged using a Nikon Eclipse Ci-L upright microscope.

Formalin-fixed tumor specimens were stained with hema-

toxylin and eosin for histopathologic review. Grading of

murine tumors was performed according to Fluck and

Schaffhausen’s review of the model pathology [35].

Briefly, tumors were assigned a score of 0 (normal breast

parenchyma), 1 (mammary hyperplasia consisting of

dense lobules), 2 (mammary intraepithelial neoplasia; the

murine correlate of ductal carcinoma in situ), 3 (early

carcinoma characterized by early stromal invasion), or 4

(late carcinoma). The mitotic rate was determined by

counting the number of mitotic cells in 10 high-power

fields (hpf). The mitotic rate was calculated for the areas

of the tumor with the highest grade. Tumor sections were

also stained with Ki-67, with nuclei in cells in the highest

grade areas counted to determine expression, which was

reported as the percentage of positivity.

For whole mount staining, mammary glands were

processed as previously described [50]. Stained whole-

mounted tissues were imaged using a Nikon D610

camera, and images were subjected to morphometry

using ImageJ software (NIH). Terminal end buds, duc-

tal length, and ductal branching were quantified as

previously described [51,52].

2.12. Statistics

Each cellular or biochemical experiment had technical

(n ≥ 3) and biological (n ≥ 3) repeats. To determine

statistically significant differences involving more than

2 biological groups, we used 1-way and 2-way

ANOVA followed by t-test, nonparametric tests, gen-

eralized univariate and multivariate linear models, cor-

relations other analyses as stated elsewhere in the

manuscript using Statistica 13, StatSoft); P-value less

than 0.05 was considered significant. Categorical data

analyses were carried out using Sytel Studio-9 software

(Sytel Inc. Pume). Kinetic analysis and nonlinear mod-

els parameterization were done using SigmaPlot-13

(SYSTAT Software takes) software.

2.13. Ethics approval and consent to participate

All animal studies were performed according to guide-

lines approved by the Institutional Animal Care and

Use Committee of SUNY Upstate Medical University

(Protocol no. 393). Publicly available datasets were

used for all patient-associated bioinformatics analyses

in this manuscript.
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3. Results

3.1. Upregulation of ABI1 gene expression in

primary breast cancers correlates with

aggressive, basal-like phenotype and metastatic

predisposition

ABI1 is an essential part of the WAVE regulatory com-

plex, a major promoter of actin filament nucleation is

often exploited by invasive tumor cells [53]. To elucidate

the significance of the ABI1 in the pathobiology of

human breast cancer, we carried out a retrospective

analysis of METABRIC data of 1904 breast cancer

patients (Fig. 1). We found that expression of ABI1 in

primary tumors is strongly associated with copy number

alterations (CNA) (Fig. 1A), overexpression with histo-

logic grade 3 (Fig. 1B). There was a significant negative

correlation ABI1 mRNA as well as ABI1 CNA with ER

(+) status (Fig. 1C) and no correlation with the lymph

node (LN) status of the patients (Fig. S5).

Moreover, ABI1 overexpression is associated with

highly aggressive (grade 3) basal-like and claudin-low

breast cancer subtypes (Fig. 1D). Additionally, using

cBioPortal for Cancer Genomics tools (https://www.

cbioportal.org/), we observed that high-expressed and

gained and amplified CNA ABI1 are significantly

enriched in the high genome instability integrative

cluster 10 [42]. The cluster 10 molecular subtype is

enriched by basal-like cancer subtype tumors and clini-

cally defined as triple-negative, highly aggressive, drug

resistance, and high-risk metastasis tumor genes that

includes numerous signaling molecules, transcription

factors, mitotic, and other cell division genes associ-

ated in trans with this deletion event in the basal

cancers, including alterations in AURKB, BCL2,

BUB1, FOXM1, KIF2C, KIFC1, RAD51AP1, TTK,

and UBE2C. Notably, many of these molecules are

included genetic grade and poor survival outcome sig-

natures [40,42,54,55]. For instance, TTK (MPS1), a

dual-specificity kinase that assists AURKB in chromo-

some alignment during mitosis and promotes aneu-

ploidy in breast cancer [42].

Thus, ABI1 expression shows strong positive corre-

lates with histologic grading, negative correlation with

ER status, and represents correctly the known ranked-

order of breast cancer subtypes according to their

genetic grading classification (Fig. 1A–D;

[40,42,52,54,55]). These findings allow us to consider

ABI1 transcription level as a functional score of indi-

cating (a) this gene locus instability, (b) ER(-) status

of the primary tumor, (c) histologic grading system

estimator, and iv) a genetic variable that represents

correctly known ranked-order of breast cancer sub-

types that reflect genetic grading and drug sensitivity/

resistance of the tumor subtypes/groups.

Additionally, multivariate testing ABA1 expression

variation as a random function of CNA, ER status,

and tumor subtypes showed that CNA in basal-like

tumor subtype samples provides a major explanatory

contribution of ABI1 expression variation in our data

(P < 1.00E-6; two-way ANOVA, Statistica 13).

3.2. Survival prediction analysis identifies ABI1

as breast cancer metastasis prognostic marker

and an important component of the multigene

metastasis prognostic signature

We analyzed associations of survival data with

microarray gene expression profiles of well-established

Fig. 1. ABI1 expression alteration is associated with copy number alteration (CNA) and high-aggressive basal-like breast cancer. Box Plots:

(A) Putative ABI1 DNA copy number alteration (CNA) drives ABI1 transcription level in subpopulations of primary breast cancer patients [42].

The gene expression, CNA, tumor samples, and clinical datasets representing 1904 primary breast cancer samples were downloaded from

METABRIC dataset (https://www.cbioportal.org/). CNA categorization is the following: shallow deletion: 1 (n = 166), diploid: 2 (n = 1554),

gain: 3 (146), and amplification: 4 (n = 38). One-way ANOVA test (Statistica 13) showed significant differences in the ABI1 expression

between the groups and also in the entire cohort (P < 1.00E-9). Furthermore, the transcription level of ABI1 is highly significant and posi-

tively correlated with CNA ((r = 0.338; P < 1.00E-6; estimated by Spearman). (B) ABI1 transcription level positively correlated with histologic

grades (univariate and bivariate linear regression models testing shown significance at P < 1.00E-6), however (C) negatively correlated with

ER status. Bivariate linear regression models (Statistica 13) showed that both expression ABI1 expression level and CNA are significant

(r = −0.278; P < 1.0.00E-6 and r = −0.207, P < 1.00E-6 respectively); however, the ABI1 expression provides a major contribution in the

bivariate linear regression function). Correlate coefficients in (B) and (C) were calculated by Kendall. (D) ABI1 overexpression is associated

with basal-like and claudin-low breast cancer subtypes and aggressiveness of breast cancer scoring also by histologic grade. PAM50 (Basal-

like, HER2(+), luminal B, luminal A, normal-like), and claudin-low subtypes were ranked-order according to the trend of decreasing of ABI1

expression. One-way ANOVA test (Statistica 13) showed significant differences in the ABI1 expression between basal-like, claudin-low sub-

types and other subtypes (P < 1.00E-6). ABI1 expression in the HER2 subtype was significantly higher than in luminal B or luminal A tumor

subtypes (P < 1.00E-6) and higher but less significant than in the normal-like tumor subtype (P = 001). A negative trend in the ABI1 expres-

sion across rank-ordered tumor subtypes was mostly defined by relative overexpression of Basal-like and claudin-low tumor subtypes; it

was highly significant (one-way ANOVA; P < 1.00E-9; Statistica 13).
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publicly available breast cancer datasets 39–41. These
datasets were used to construct our Metadata and

Rosetta microarray datasets (Methods, Supplementary

Methods).

Firstly, we focused on the identification of the role

of ABI1 expression in breast cancer survival associated

with cancer progression/recurrence (defined DFS time)

and metastatic process (DMFS time). Table S1
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provides ABI1 annotation and unique probe sets on

Affymetrix U133 A&B and Rosetta microarray plat-

forms utilized in our analysis. For stratification of the

patients onto risk groups, we utilized 1D-DDg, which

approximates patient risks by analyzing the survival

time functions of two (or more) patient groups given

by the prognostic variable cutoff value(s) estimated

statistically in a given patient cohort (Methods, Sup-

plementary Methods). The examples of implementa-

tion of 1D-DDg results for Rosetta and Metadata

cohorts are presented in Figs. S3 and S4. Each figure

shows the gene panels of two K-M plots of disease-

free survival (DFS) (Fig. S3) and distant metastasis-

free survival (DMFS) (Fig. S4), respectively. The

groups of the patients assigned to relatively low-risk

(step function line indicated by black color) and high-

risk (step function line indicated by red color) K-M

survival functions are defined by the gene expression

cutoff value calculated by 1D-DDg. The group with

higher mean survival time is labeled as ‘low risk’, while

the group with lower mean survival time is labeled as

‘high risk’. According to this classification, two possi-

ble relationships exist for the patients with lower and

higher risks and the expression pattern of a given gene

(higher expressed, lower expressed). In the case of a

parallel pattern, ‘higher risk – the higher the expres-

sion’ or ‘low risk – the lower the expression’, the rela-

tively higher prognostic gene expression level is

associated with the poorer prognosis (a gene exhibits

pro-oncogenic behavior). In the case of antiparallel

pattern ‘higher risk – the lower the expression’ or

‘lower risk – the higher the expression’, the relatively

higher prognostic gene expression level is associated

with better prognosis (a gene exhibits tumor-

suppressive-like behavior).

Importantly, the prognostic association ‘higher risk

– the higher the expression’ of ABI1 was statistically

significant and reproducible over breast cancer cohorts

(Figs. S3–S4). These results consist of our 1D-DDg

analysis of the gene expression of the ABI1 gene and

ABI1 protein in breast cancer patients found in RNA-

seq and proteomics databases (Fig. S6).

We propose that the high-risk group of patients in

our cohorts is associated with a higher frequency of

metastatic events. Indeed, the metastasis event enrich-

ment analysis (Table S3) showed that in both cohorts,

the higher risk group was significantly enriched by

metastatic events vs. the lower risk group. The fold

change (FC) enrichment of metastatic event and P-

value was calculated using the exact test of two bino-

mial distributions that showed FC = 1.38, P = 0.05 in

Rosetta and FC = 1.96, P = 0.033 in Metadata data-

set, respectively.

Next, we used the results generated by the 1D-DDg

survival prediction method, which automatically selects

survival significant prognostic variables (survival sig-

nificant genes represented by microarray probes), as

the input data for the 2D-DDg [29,32] that identifies

the interaction effect between paired prognostic vari-

ables (gene pairs) [29,32]. Fig. S7 shows the result of

the implementation of 2D-DDg survival prediction to

Rosetta data (DFS and DMFS, respectively). These

results show that in most gene pairs ABI1 improves

the balance between risk groups and in some cases the

bivariate partition of the patients provides more confi-

dent risk group differentiation. Similar results were

observed for the Metadata data set (not shown).

Interestingly, in both our cohorts, ABI1 expression

is positively correlated with the expression of BRK1,

CYFP1, and NDEL1, but is not significantly correlated

with the expression of CYFP2, WASF3, and RAC1

(P < 0.05, Spearman). These findings in most cases

consist of the correlation analysis of ABI1 and other

gene expression from the METABRIC datasets (Table

S4). Note WAVE3, CYFIP1 prognostic models may

be more data variation- and noise-sensitive.

Finally, the SWVg algorithm was used to construct

a survival group prediction model based on the combi-

nations of 1DDg-defined gene expression level models.

Fig. 2A–D shows that in both Rosetta and Metadata

cohorts, the method revealed a high confidence stratifi-

cation of the patients onto three risk groups with high,

intermediate, and low metastasis-free survival time,

called the ABI1-based 7-gene prognostic signature.

Similar results were obtained for DFS time (results are

not shown). Overall, the genes of the ABI1-based 7-

gene prognostic signature provide robust functional

associations and high-confidence survival prediction

properties.

3.3. ABI1-based prognostic signature as a

predictive tool for a metastatic event of breast

cancers

Importantly, the ABI1-based prognostic signature

could serve as a predictive tool for a metastatic event

of breast cancer patients. Indeed, Table S5 shows that

in the case of DMFS the high- and intermediate-risk

groups are highly enriched for patients with metastatic

breast cancer events compared to the low-risk group

(62% and 44% vs. 15% for Metadata and 79% and

34% vs 15% for Rosetta cohorts). The median and

mean time values of metastatic events showed an

inverse order in these risk groups. These findings sug-

gest that our signature values defined in primary breast

cancer samples can be used for the quantitative
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prediction of distant metastasis events and the time

interval of metastatic event occurrence.

Using our ABI1-based prognostic signature genes

and specifying their expression cutoff values as done

before, we were able to further stratify patients with

metastatic events into relatively lower and higher OS

time risk groups (Fig. 2E-F). These results suggest that

the ABI1 and other genes of the prognostic signature

are involved in the progression toward metastatic dis-

ease and may be mechanistic regulators of a subset of

metastatic breast cancers.

To compare the prognostic significance, we used

Rosetta and Metadata cohort’s clinical and gene

expression data and compared the ABI1-based 7-gene

prognostic signature with commonly used clinical

markers: estrogen receptor (ESR) and lymph node

(LN) status (Fig. S5). While ESR status shows signifi-

cant differences in DMFS in the survival of the

Rosetta cohort (low vs. high expression) (Fig. S5A), it

was not a predictive factor in the Metadata cohort

(Fig. S5C). An opposite prognostic pattern was

observed for LN status: It is not significant in the

Rosetta cohort (Fig. S5B) but shows prognostic signifi-

cance in the Metadata cohort (Fig. S5D). Additionally,

univariate and multivariate analyses showed that LN

and ER status is insufficient for reliable prediction of

3 risk groups (not shown).

Overall, the ABI1-based prognostic signature pro-

vided robust, reproducible, and high confidence predic-

tion models of DFS, DMFS, and OS (Figs. 1,2,

Fig. 2. ABI1-based prognostic signature predicts disease-free and metastatic-free survival risks. The disease-free survival (DFS) and disease

metastasis-free survival (DMFS) of patients stratified based on the ABI1-associated signature derived by our survival prognostic analysis

method (see Methods for details) is shown using Kaplan–Meier survival curves for Rosetta (A, C) and MetaData cohorts (B, D). The Wald

statistic P-value and hazard ratio (HR) associated with the partitioning of the patients into distinct risk groups are also shown (see methods

for details). Our method computationally categorizes each covariate (expression level of a gene) as a binarizing risk factor and stratifies each

patient according to the multivariate expression pattern of the genes included in the signature (Table S1). In panels A, B, C, and D: black

color line = ‘low-risk’, red = ‘intermediate risk’, blue = ‘high-risk’ groups. Panels E and F represent the overall survival (OS) time functions

for the patients with metastasis detected after diagnostic and following surgical treatment. The black color line is associated with the group

of patients with relatively better disease outcomes, while the red color is associated with patients with poor disease outcomes. The tables

at the bottom of plots show the number of patients who survived in the predicted groups more than the given time point.
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Figs. S3-S4, Tables S2,S5) and demonstrates high per-

formance across different cohorts (Fig. 2; Table S2).

Reproducibility of risk stratification of the patients

with metastases in the Rosetta and Metadata datasets

based on OS time supports this statement. Further-

more, the Abi1-based signature predicts distant meta-

static events more accurately than commonly used

clinical factors (Table S6).

3.4. Loss of Abi1 does not grossly affect the

long-term development of normal mammary

glands

While implicated in breast tumor progression, the role

of ABI1 in normal mammary tissue remains unknown.

To ensure that phenotypes that may be observed in

our Abi1 knockout (KO) breast tumor model result

from the effects of ABI1 protein loss on tumor pro-

gression and not from an otherwise global effect on

breast tissue, we conditionally deleted Abi1 from mam-

mary epithelial cells of non-tumor-bearing animals. As

with most mammals, mouse mammary gland develop-

ment occurs postnatally [56]. Mice are born with rudi-

mentary mammary fat pads that develop into

functional mammary glands upon the onset of

puberty. Beginning at 5 weeks of age, the ductal tree

begins to penetrate the mammary fat pad and contin-

ues until sexual maturation. This dynamic tissue recon-

struction allows for examination of classical mammary

structures such as ductal branches and terminal end

buds (TEBs) (for an extensive review of mammary

gland development, refer to Inman et al. [56]). Expres-

sion of the mammary-specific CRE recombinase is

under the control of the murine mammary tumor virus

(MMTV) promoter and begins at ~ 21 days, allowing

us to observe phenotypic changes in normal mammary

gland tissue upon ABI1 loss [57].

To determine the effects of ABI1 loss on the devel-

opment and structural integrity of normal mammary

tissue, a whole mount analysis was performed on the

inguinal mammary gland (see Materials and Methods).

Gross examination revealed a modest impact of ABI1

loss on mammary gland development (Fig. 3A). We

examined changes in the total number of terminal end

buds (TEBs) as well as the number of ductal branches

and total ductal tree length. TEBs are highly prolifera-

tive, tear-shaped structures found at the distal end of

the ductal tree that penetrate the mammary fat pad to

facilitate ductal tree elongation and are involute upon

completion of ductal tree extension [56]. Morphometry

of mammary gland whole mounts showed a significant

increase in the number of TEBs upon homozygous

ablation of the Abi1 gene and a trend toward increased

branching, the latter of which did not reach signifi-

cance (Fig. 3B,C); however, this does not seem to

impact long-term gland development, as ductal tree

elongation remained unaffected (Fig. 3D). Heterozy-

gous Abi1 KO glands showed sustained TEB counts in

5- and 7-week-old whole mounts (Fig. 3B-D).

In addition to dynamic tissue reorganization, mam-

mary glands also have classically defined ductal struc-

tures. Murine mammary ducts are defined as lumens

lined by an inner layer of luminal epithelial cells and

an outer layer of myoepithelial cells [56]. Thus, analy-

sis of this cellular organization would indicate whether

there are organizational defects within the mammary

duct upon Abi1 deletion. Gross pathological examina-

tion of hematoxylin and eosin (H&E)-stained mam-

mary gland sections show the unaltered organization

of epithelial cells and connective tissue within ducts

(Fig. 3E). Immunohistochemical staining for cytoker-

atins 8 and 14, which mark myoepithelial and luminal

epithelial cells, respectively, shows similar staining pat-

terns in control and Abi1-null mice (Fig. 3F) [58].

Taken together, we show that ABI1 loss does not

affect the long-term mammary gland development of

healthy mice.

3.5. ABI1 protein level and gene dose regulate

tumor growth in PyMT animals

ABI1 overexpression has been implicated in promoting

an aggressive breast cancer phenotype; however, its

exact role in mammary tumor progression is still

unclear 32–34. First, we established that PyMT trans-

gene induces expression of Abi1 in primary tumors vs.

normal mammary gland epithelium of Abi1 floxed

mice (Fig. 3G); therefore, we concluded that PyMT

mouse recapitulates overexpression of ABI1 observed

in human tissue, and thus, it is an appropriate model

to examine the role of ABI1 in breast cancer tumor

progression. To determine efficiency of Abi1 gene loss

in our Abi1 KO PyMT animals, we performed deep

RNA-seq analysis of representative primary tumors of

each genotype (Table 1). We found that Abi1 gene

expression follows gene dosage effect as expected:

15.4-fold in homozygotes and 2-fold in heterozygotes

vs. their respective controls. Several members of the

WAVE complex were modestly downregulated or

retained their expression in Abi1 KO tumors vs. con-

trols, while Wave3 (Wasf3) was upregulated and

Cyfip2 was downregulated. An opposite effect on sev-

eral WAVE complex genes expression in the heterozy-

gous vs. homozygous animals was apparent (Table 1).

Interestingly, comparative analysis of the basal-like

vs. luminal breast cancer cell types markers in ABI1
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KO mice showed that the genes of basal-like cells

(Krt14, Vim) are responded to Abi1 depletion, however

luminal cell type genes markers (Krt8, Krt18, Sox9,

Estr1) do not (Table S7). The directionality of gene

expression of Krt14 and Vim in heterozygous and

homozygous mice was different.

We have shown that Abi1 KO mouse embryonic

fibroblasts reliably show downregulation of WAVE2

Fig. 3. Abi1 loss does not impact the long-term development of healthy mouse mammary glands. (A) Whole-mount analysis of the inguinal

mammary gland stained with Carmine Alum reveals no gross changes in gland anatomy at 5, 7, or 12 weeks of age after CRE-mediated

deletion of Abi1. Morphometry of whole mounts reveals a significant increase in the number of terminal end buds in homozygous ABI1 null

glands (B); however, this does not affect the elongation of the ductal tree (C) or the number of ductal branches (D). Scale bar, 5.0 mm. (E)

Histological staining of mammary gland sections reveals no changes in tissue organization after CRE-mediated loss of Abi1. Scale bar,

100 μm. (F) Immunostaining of mammary sections using markers for luminal epithelial cells (CK8) and myoepithelial cells (CK14) reveals

sustained organization of the ductal epithelium in both control and ABI1 null mammary glands. Scale bar, 50 μm. Error bars indicate SEM. (*

indicates P < 0.05, Student’s t-test; n = 5 animals/genotype). (G) WB analysis indicates enhanced expression of Abi1 in mammary

epithelium of Abi1(fl;fl) PyMT mice vs. Abi1 floxed mice Abi1 (fl;fl). Each lane represents one mammary gland (Abi1 fl;fl) or tumor [PyMT:

Abi1(fl/fl)], (n = 3 mice).
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[16]. Consistent with this finding, western blot analysis

of Abi1 KO breast tumors (tumor lysates from 3 mice/

genotype) showed an appreciable reduction in WAVE2

expression in the absence of ABI1, recapitulating pre-

viously observed WAVE complex dynamics and

dependence of complex stability on Abi1 gene status

(Fig. 4A) [16,17]. Interestingly, WAVE2 expression

remains relatively stable in heterozygous Abi1 KO

tumors, suggesting that a single copy of Abi1 is

enough to sustain WAVE complex stability to some

degree, noting that there is still a noticeable loss in

WAVE2 expression. Also, densitometric analysis of

our western blots revealed significant upregulation of

ABI2, another member of the ABI family, only in

homozygous Abi1 KO animals, in agreement with our

previous findings (Fig. 4B) [16].

Based on our western blot findings, we next exam-

ined whether altered WAVE complex expression in the

absence of ABI1 was recapitulated by immunohisto-

chemical staining of tumor tissue (Fig. 4D). Similar to

our western blot results, Abi1-null tissue shows

increased ABI2 expression in the cytosol, while

WAVE2 shows moderate downregulation overall.

WAVE1 is modestly expressed regardless of ABI1 sta-

tus; therefore, it may not play a role in breast tumori-

genesis in this model. Due to their ubiquitous

expression, ABI1-WAVE2 complexes are considered

canonical WAVE complexes that drive F-actin poly-

merization during cell processes [59]. As there is a con-

comitant loss of WAVE2 upon Abi1 KO but sustained

tumor growth in PyMT mammary tumors, it is possi-

ble that other factors contribute to ARP2/3-mediated

actin polymerization. Moreover, overall primary mam-

mary tumor histopathology was not affected upon

ABI1 loss (Fig. 4C; Table S8). While most of the pri-

mary tumors in either control or homozygous Abi1

knockout animals remain in grades 3 or 4, some

tumors in the heterozygous Abi1 knockout appear to

be in grade 2, further highlighting the impact of single

copy Abi1 deletion as opposed to homozygous deletion

and suggesting other mechanisms may be induced in

the complete genetic absence of Abi1.

3.6. ABI1 gene dose regulates primary PyMT

tumors growth kinetics

To determine the impact of Abi1 disruption on mam-

mary tumor initiation and progression, we used our

Abi1 KO mouse model to study the impact of Abi1

loss on tumor progression and characteristics in the

PyMT-driven breast cancer. The PyMT model initiates

spontaneous tumor formation with most mammary

glands developing tumor nodes. Interestingly, KO mice

Abi1 do not significantly impact primary tumor latency

(Fig. 5A). To determine the effects of Abi1 expression

on breast cancer progression, heterozygous and

homozygous KO mice were used to study the growth

kinetics (i.e., tumor volume changes over time) of spo-

radically occurring tumors. Tumor size was measured

biweekly, starting from first day of tumor palpation.

Table 1. Gene expression variability upon Abi1 depletion in primary PyMT breast cancer tumors defined by RNA-seq.

Mouse ID G144 G164 G184 G174
Fold change depletion

Genotype fl/wt fl/wt fl/fl fl/fl

Cre - + - + Heterozygous Homozygous Ratio

Treatment

Effecta

Gene expression (RNA-seq from

primary tumors)

Abi1 14389 7343 15682 1018 1.96 15.40 7.86 Yes

Abi2 8173 7189 8031 9719 1.14 0.83 0.73 No

Abi3 146 271 343 195 0.54 1.76 3.26 Yes

Nckap1 36435 34964 40591 38802 1.04 1.05 1.00 No

Wasf1 88 66 85 118 1.33 0.72 0.54 No

Wasf2 8563 10349 13894 11087 0.83 1.25 1.51 No

Wasf3 261 151 95 221 1.73 0.43 0.25 Yes

Brk1 10240 9103 11091 9920 1.12 1.12 0.99 No

Cyfip1 23448 22528 31708 23030 1.04 1.38 1.32 No

Cyfip2 521 1289 1633 580 0.40 2.82 6.97 Yes

Rac1 25732 22621 27209 24431 1.14 1.11 0.98 No

Ndel1 10923 10842 15082 13030 1.01 1.16 1.15 No

aTreatment effect is ‘positive’ (yes) if the fold change of gene expression for heterozygous and homozygous mice changed more than 1.5

times (bold text) in any direction and ‘negative’ (no) in other cases. RNA-seq. expression profiles of WAVE complex, and Rac1 and Ndel1

genes (involved in WAVE complex stability and functionality) show the differences between heterozygous vs. homozygous Abi1 KO PyMT

mammary tumors.
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We collected and analyzed datasets from Abi1

homozygous Cre(+) (n = 11), Abi1 heterozygous Cre

(+) (n = 11), Abi1 homozygous Cre(-) (n = 13), and

Abi1 heterozygous Cre(-) (n = 13) samples (Fig. 5B–
E). The tumor kinetics showed two growth patterns.

The analysis of tumor volume kinetic data in mice

identified two tumor growth patterns, which are grow-

ing with very low or fast rates across all four geno-

types (Fig. 5B–E; Tables S9). The fraction of tumors

exhibiting the slower growth varied between 54% and

64% across the four experimental groups. Other breast

tumor samples showed stable exponential growth with

either moderate or high growth rates (Fig. 5B–E;

Table S9). Using the one-way ANOVA test, we found

that in Abi1 heterozygous KO model samples the

tumor growth kinetics was strongly suppressed vs. con-

trol (Fig. 5D), while no significant effect was found in

Abi1 homozygous KO model tumor samples with

some positive trend in the opposite direction in faster-

growing tumors (Fig. 5E).

3.7. ABI1 promotes the number and size of lung

metastases in a gene dose-dependent manner

Most Abi1 KO PyMT mice demonstrated pulmonary

metastasis within 6 months of the primary tumor

Fig. 4. Abi1 KO severely impacts WAVE complex gene expression dynamics. (A) Western blot analysis of primary mammary tumors from

Abi1 KO PyMT mice shows significant depletion of ABI1 protein, but only in the homozygote Abi1 null is there significant upregulation of

ABI2 protein as indicated by densitometry (B). Each lane represents one mammary tumor isolated from one animal of that genotype. Error

bars indicate SEM. (P < 0.05, t-test; n = 3 animals/genotype). (C) Analysis of primary tumor histology reveals no significant changes in

tumor grade between controls and Abi1 knockouts, (P > 0.05, t-test; n ≥ 5 mice per genotype of age between 20 and 22 weeks were used

for analysis, Table S8). Error bars indicate SEM). (D) Immunostaining with antibodies against WAVE complex proteins supports our findings

that ABI2 is upregulated only in ABI1 null breast tumors. WAVE1 retained its low expression, while WAVE2 was concomitantly depleted

with ABI1, in agreement with WB data, above. 20× magnification; inset, 40× magnification, Scale bar, 50 μm.
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detection. We noted that mice with fast-growing

tumors showed a positive trend for association with

multiple metastatic events and large size metastatic

foci in both Cre(-) control groups (Fig. 6). To eluci-

date the role of Abi1 gene dosage effect in lung metas-

tasis, we first analyzed the tumor kinetic rates of the

primary tumor growth vs. the largest tumor metastatic

foci at 6 months within the same mice in Abi1 KO

homozygous and heterozygous tumor groups

(Fig. 6A–B). Fig. 5A–B shows a weak gene dose effect

in both homo- and heterozygous primary tumor kinet-

ics. To be more conclusive, we estimated parameters
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of the tumor volume kinetics using the exponential fit

function f (t; a, b) = (a − b) * exp(ax), where parame-

ter a is the rate of cell volume growth and (a − b) is

the initial tumor volume.

No statistical differences between exponent rates in

control and treatment were found (Materials and

Methods). However, a comparison of the number and

size of metastatic foci of Abi1 KO animals indicated a

strong gene dose effect (Fig. 6C–G). Fig. 6C–D shows

the frequency distribution of pulmonary metastatic

foci that exhibited the highest number of metastatic

foci and largest metastasis size in the Abi1 fl/fl and fl/

wt lung tissues. In each lung sample, the frequency dis-

tribution of the metastatic foci size shows the skewed

form with long tails. We found that for each case, the

frequency distribution of pulmonary metastatic foci

size is fitted well by a discrete analog of shifted log-

normal distribution function (for better visualization

the function approximated by continuous curves)

(Table S9A–B and Methods). Estimated parameters of

the distribution function we used to define significant

differences between the shapes of the distribution func-

tions shown in Fig. 6C–D (Table S9B). In particular,

parameter x0 estimates a mode of the frequency distri-

bution function which is most frequent size of micro-

metastasis foci. For Abi1 fl/fl Cre-, fl/fwt Cre-, fl/wt

Cre+ data are variated between 6.3–8.6 µm2, but for

fl/fl Cre+ focus size equals 1.3 µm2 (Table S9B). A

comparison of x0 and the parameter b (basal (smallest)

foci size at x = 0), Table S9B) of the best-fit distribu-

tion function draw in Fig. 6C,D suggests a significant

reduction of the multiple metastatic foci size and their

numbers in the treatment cases fl/wt Cre+ and fl/fl

Cre+. Additionally, statistical testing using the Wil-

coxon signed-rank method demonstrated significant

differences between the observed frequency distribu-

tions of treatment v.s. control datasets (P < 0.0001).

Comparison of the frequency distributions of the treat-

ment groups provided a significant difference (reduc-

tion of median value in fl/fl Cre+ vs median value in

fl/wt Cre+) (P < 0.0001). These results indicate a

strong Abi1 gene dose effect promoting lung metas-

tases in both homozygous and heterozygous PyMT

models but the effect in homozygous mice was stron-

ger. Similar results were observed for pulmonary

metastasis foci size bins (50 µm2) frequency distribu-

tion that includes all defined pulmonary metastatic foci

datasets (Fig. 6E-F). Representative lung tumor

images are shown in Fig. 6G.

4. Discussion

Here, for the first time, we demonstrate the metastasis

driver role of ABI1 in breast cancer tumor progression

using the PyMT mouse model and clinical data from

breast cancer patients. Our bioinformatics analyses

revealed the significant role of human ABI1 and a sub-

set of the WAVE complex genes in the context of

breast cancer progression and metastatic process.

In the Metadata and Rosetta cohorts, the high

expression of ABI1 demonstrated poor survival time

patterns as indicated by survival time and is signifi-

cantly associated with metastatic events. Moreover, in

the large METABRIC cohort the ABI1 expression is

positively correlated with DNA CNA, histologic grade

3, and basal-like phenotype, but negatively correlated

with ER status and does not correlate with LN status.

We identified the high confidence and reproducible

multigene survival prognosis signature comprised of

ABI1 and six other genes: BRK1, CYFIP1, CYFIP2,

and WASF3, which are the genes encoding WAVE

complex members; and RAC1 and NDEL1 genes,

which are upstream interactors and regulators of the

WAVE complex [5,14,60]. Both RAC1 and NUDEL

Fig. 5. Primary tumor growth kinetics analysis indicates Abi1 gene dose effect in heterozygous mice. (A) Primary tumor latency in PyMT

animals is not significantly affected upon Abi1 KO. The X-axis of a panel (a) represents latency time comparison of the tumors in four

treatment conditions defined on the upright corner of the panel (Abi1 fl/fl Cre-, n = 14 mice; Abi1 fl/fl Cre+, n = 20 mice, Abi1 fl/wt Cre-,

n = 16; Abi1 fl/wt Cre+, n = 16 mice). (B-E) Treatment effects of Abi1 disruption (fw Cre(+) vs fw Cre(-) and tumor kinetics of tumor size in

heterozygous or homozygous miceGraphical tools of Statistica-13 were used. Each plot on panels (B-E) shows tumor size at seven-time

points (w0, w1, w3, w3, w4, w5, and w6 (see Methods)) (for Abi1 fl/fl Cre+, or Cre-, n = 13 mice were used; for Abi1 fl/wt Cre+, or Cre-,
n = 11 mice were used). The line connects start (Cre(-)) with the endpoint (Cre(+)) tumor size datasets allowing the comparison of tumor

kinetic observations to be easily followed; mean values of tumor size are linked by direct lines at the same detection time point. Wilks

lambda statistics and Fisher test were used for estimation of treatment significance. Panels (B) and (C) represent a visualization of the

treatment effect (Cre(-) v.s. Cre(+)) of Abi1 on tumor size in observed time points. Vertical bars indicate 0.95 intervals, CI. An effective

decomposition method of Statistica-13 was used. The primary tumor size comparison in fastly growing mouse groups shows the

exponential growth kinetics. (Methods, Table S10). To compare gene dosage effects within heterozygote and homozygote groups, mean

values in 7 observed time points were compared (see Table S10 for details). Our results showed that in the cases of fast kinetics datasets,

differences between the paired sample mean values were not significant for homozygote (t-test, P > 0.15) but significant for heterozygote

state (t-test, P = 0.017). (See Methods and Table S10).
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participate in the EMT pathway and play key roles in

the metastatic migration of epithelial cells via the inter-

action with WAVE family proteins and the regulation

of cancer-determined pathways [5,12,61–63.
Collectively, our tumor progression and metastatic

prognostic signatures allow for the identification of

optimal gene expression cutoff values to stratify

patients on low-, moderate-, and high-risk subgroups

based on DFS and DMFS times. Our survival predic-

tion analyses establish the significance of ABI1 gene

expression as a pro-oncogenic factor of primary tumor

formation and metastasis in breast cancer patients.

These findings support the experimentally testable

working hypothesis that genetic mechanisms of ABI1

are key components in the metastatic breast cancer

process.

Univariate and multivariate analyses and compar-

isons between Kaplan–Meier survival curves generated

with our prognostic signature and those generated with

either estrogen receptor (ESR) or lymph node status

reveal that our signature outperforms these clinically

used variables and could lead to better personalized

and predictable treatment selection. This conclusion is

supported by our co-expression analysis between ABI1

and other members of the ABI1 survival (prediction)

signature and the observed significant positive correla-

tion between ABI1 expression, CNA, histologic grades,

and basal-like phenotype vs. ER(+) luminal cancer

phenotype—the clinical markers of aggressiveness,

metastasis, and drug resistance frequency.

The availability of a genetically engineered condi-

tional Abi1 KO mouse permitted us to investigate the

role of Abi1 downstream from the PyMT oncogene.

By comparing the effects of one- and two-allele inacti-

vation of the Abi1 gene, we were able to determine

that ABI1 expression levels play an important pro-

Fig. 6. Abi1 gene knockout reduces metastatic burden in heterozygous and homozygous mice. Representative tumor kinetics of primary

(panels a-b) vs metastatic tumors (panels c-d). Panel (A) Comparison of the primary tumor volume kinetics in Abi1 homozygous KO mouse

(fl/fl; Cre+) (G209, data: red triangle; best-fit function: red line) and the control Abi1 (fl/fl Cre-) mouse (G184, data: blue circle; best-fit

function: blue line). (B) Comparison of the primary tumor kinetics of Abi1 KO heterozygous (fl/wt Cre+) mouse (G251, data: pink triangle;

best-fit function: pink line) and the Abi1 control (fl/wt; Cre-) mouse (G202, data: green circle; best-fit function: green line). Kinetics of mean

values (A and B) were fitted by exponential curve f (t; a, b) = (a − b) * exp(at), where t is time, constant a is the rate of cell population

growth and constant (a − b) is the initial tumor population size. Each kinetic dataset includes seven time points (see also Table S10). The

estimated parameters in Abi1 fl/fl Cre (-) tumors: a = 0.77 +/− 0.159, t-test, P = 0.0047, b = 0.2 +/− 0.678, t-test, P > 0.1 and in Abi1 fl/fl

Cre (+) a = 0.60 +/− 0.153, t-test, P = 0.0039), b = 0.1 +/− 0.586, t-test, P > 0.1. Estimated parameters in Abi1 fl/wt Cre (-) tumors:

a = 0.79 +/− 0.091, t-test, P = 0.001), b =−1.00 +/− 0.964, t-test, P > 0.1, and in Abi1 fl/wt Cre (+) a = 0.589 +/− 0.110, t-test,

P = 0.0031, b =−0.30 +/− 0.66, t-test, P > 0.1. According to these results, differences between mean values of the tumor sizes in the

studied groups in time are not significant. While primary tumor volume kinetics was not significantly different in these mice vs. their

corresponding controls, (A, homozygous ABI1 KO vs. control) and (B, heterozygous KO vs. control), the difference in metastatic tumor

burden of the same mice within each mouse genotype was significant (C) and (D). Panels (C) and (D) show the frequency distributions of a

lung metastatic foci size in the heterozygous and homozygous mice, which primary tumors kinetics showed on panels (A) and (B),

respectively. Each Y-axis value shown in the histograms (C-D) represents a count of metastatic foci within a metastatic size normalized

interval (a bin). The bin was defined by rounding the metastatic size divided by 1000 to the nearest integer, and the number of metastatic

foci in each bin was counted. Based on our findings, the metastases size frequency distribution in the lung has skewed form with the long

right tail. To provide a visualization of such frequency distribution, we used log10 − log10 plot. We used the same color for dots of the

empirical distributions and the fitting function lines, as was indicated in the figures. Such empirical frequency distribution was modeled and

parameterized using the shifted log-normal distribution function:

f ðx ; y0, x0, a, bÞ ¼ y0 þ a ∗ expð�0:5 ∗ ðlnðx=x0Þ=bÞ2Þ,

where x is the node size and y0, x0, a, b unknown parameters. We estimated the parameters using the nonlinear curve fitting option of

SigmaPlot-13 software. Datasets and detailed results of the parameterization of this function are presented in Table S9. (E-F) show

histogram bar plots for the distribution of the average number of metastases foci size in the lungs of Abi1 KO mice in comparison to their

genetic controls. X-axis indicates binning for every 5000 μm2 metastasis colony area size, with bin 1 representing 0–5000 μm2 and bin 21

representing 100001 μm2 and larger; Y-axis: count of the samples within given binning interval (+/− SEM). The size stratification of

individual metastatic colonies shows that mice lacking ABI1 still have relatively small metastatic colonies but they grow slowly or/and stay

at dormant state and appear unable to establish macrometastases when compared to our controls (P < 0.001; Wilcoxon signed-rank test).

Lung metastasis quantification was performed following fixation, paraffin embedding and sectioning: three 5μm sections (sectioned every

50μm) were collected from each mouse (Abi1 fl/fl, Cre-, n = 7; Abi1 fl/fl, Cre+, n = 6; Abi1 fl/wt, Cre-, n = 6; Abi1 fl/wt, Cre+, n = 6;

animals per genotype, age 18–22 weeks), were stained with hematoxylin and eosin, and imaged using Omnyx digital pathology scanner (GE

Healthcare). Images were quantified using ImageJ software (NIH). Results of panels (E) and (F) support the results presented in (C) and (D).

(G) Histological staining of representative lung sections reveals severely diminished metastasis upon deletion of the Abi1 gene. Scale bar,

1 mm. Inset, 4× magnification.

2652 Molecular Oncology 16 (2022) 2632–2657 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

ABI1 signature predicts breast cancer metastasis A. Regua et al.



oncogenic role in breast cancer tumor progression and

metastatic disease. The two-allele inactivation of the

gene (in Abi1 homozygote KO mice) and one-allele

inactivation of Abi1 (in Abi1 heterozygote KO mice)

led to lower metastatic burden in the lungs.

Disruption of Abi1 in normal mammary epithelium

led to a significant increase in terminal end buds at

weeks 5 and 7 (Fig. 3B), but beyond that time point,

the development of mammary glands was not affected

(Fig. 3B–D). The increase in the TEB number, as well

as the trend toward increased branching in tissue with

Abi1-disruption, warrants further investigation to

determine whether ABI1 or other ABI proteins play a

role in normal murine mammary gland development.

To corroborate the findings of Abi1, the disruption of

Wasf3 gene also demonstrated no significant effect on

mammary gland development [22]. WASF3 is part of

ABI1 7-gene signature.

We observed that complete loss of ABI1 yields no

difference in primary mammary tumor growth kinetics

(Fig. 5C,E) and that lung metastasis is severely abro-

gated in both homozygous and heterozygous Abi1 KO

(Fig. 6C-F). Thus, our findings strongly suggest that

ABI1 is critical for pulmonary metastasis of aggressive

breast tumors due to its essential role in sustaining

WAVE complex dynamics. The WAVE complex is

assembled from intimate interactions of five obligatory

components: a WAVE, an ABI, a CYFIP, an NAP,

and BRK protein, which are altogether products of 11

genes [6,8,9]. The study by Kirschner’s group demon-

strated that the presence of all five WAVE complex

proteins is required to form the functional WAVE

complex in vitro [6]. Genetic inactivation of Abi1 led

to overall WAVE complex downregulation in MEF

cells, but deregulation of individual WAVE complex

proteins was also evident. These included the relative

upregulation of ABI2. Similarly, upregulation of ABI2

is observed in breast tissue lacking ABI1 (Fig. 4A,B).

Despite their homology and similarities in function,

upregulation of ABI2 cannot sustain pulmonary

metastases in homozygous Abi1 KO animals (Fig. 6C,

E,G), strongly indicating that ABI1 is critical for lung

metastases in this model.

The lack of local effect on primary tumor growth in

ABI1 homozygous mice is difficult to explain in the

context of the effect on lung metastases but raises the

possibility for potential tumor suppressor role for

ABI1 in breast epithelial cells in some genetic contexts

such as here downstream from the PyMT oncogene.

ABI1 acts as tumor suppressor in several other tissues

such as prostate [30].

Focus is a pathologic term describing cells that can

grow as a colony and be seen only microscopically. In

this study, we quantified differences in the number of

multiple metastatic foci and the sizes of the breast can-

cer metastases. We found essential differences for both

characteristics in the breast cancer metastases in the

ABI1 gene dosage-dependent manner. Our experimen-

tal model results demonstrate the important role of

ABI1 gene dosage and expression in the lung metasta-

sis process which may model metastatic potential of

CNA and gene expression of ABI1 in patient’s primary

breast tumors (Fig. 1A), consistent with histologic

high-aggressive breast cancers (Fig. 1B), and basal-like

subtype (Fig. 1D)—hallmarks of high aggressive inva-

sive breast cancer with polyclonal metastases potential.

Also, our experimental findings consist of high ABI1

protein expression in human invasive breast carcinoma

associated with high risks of tumor recurrence and

overall survival (Fig. 2, Figs. S1 and S3, [32]).

It was observed that protein interaction combina-

tions of WASF3 with some members of WAVE com-

plex and RAC1 are responsible for breast cancer

aggressiveness and metastasis [22]. In our study, we

found an association of WASF3 and some other

WAVE complex components (that are part of the

prognostic signature) with invasive breast cancer that

molecular pattern is associated with aggressive (basal-

like) breast cancer subtype. Interestingly, heterogeneity

and instability of Wave complexes without Abi1 pro-

tein could contribute to the heterogeneity in latency,

the size and number of lung metastatic lesions as

observed in Wasf3 KO mice [22].

Our data adhere to previously published findings

regarding the impact of ABI1 protein in driving

aggressive mammary oncogenesis in mouse xenograft

models of breast cancer [17,34]. ABI1 has been cited in

several cancer types, such as ovarian cancer [29,64],

hepatocellular carcinoma [65], and colorectal carci-

noma [66]. Notably, all studies to date examined the

role of ABI1 in breast cancer using cancer cell lines.

This is the first genetic study examining the role of

Abi1 in vivo using the mouse model of aggressive

breast cancer. The critical role of Abi1 in the lung

metastasis in the mouse not only provides preclinical

evidence for the role of Abi1 in metastatic progression

but also supports ABI1-based 7-gene prognostic signa-

ture as both a prognostic marker and a prospective

therapeutic target.

Univariate and multivariate analyses and compar-

ison of Kaplan–Meier survival curves generated with

our ABI1 gene expression signature to those generated

with either estrogen receptor (ESR) or lymph node sta-

tus reveal that our gene signature is indeed a more

robust prognostic predictor than other clinically used

variables and could lead to better treatment selection.
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5. Conclusion

Our findings indicate the significant predictive value of

the ABI1-based 7-gene prognostic signature derived

from primary tumors in the metastatic risk of breast

cancer patients. Moreover, targeting ABI1 may provide

a beneficial therapeutic effect in preventing metastases.
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