

Article **TiO² Nanowires with Doped g-C3N⁴ Nanoparticles for Enhanced H² Production and Photodegradation of Pollutants**

Liushan Jiang ¹, Fanshan Zeng ¹, Rong Zhong ¹, Yu Xie ^{1,}[*](https://orcid.org/0000-0003-2524-4231)®, Jianli Wang ¹, Hao Ye ¹, Yun Ling ¹, Ruobin Guo ¹, **Jinsheng Zhao 2,* [,](https://orcid.org/0000-0002-1576-7971) Shiqian Li ³ and Yuying Hu 4,***

- ¹ College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; jiangliushan@126.com (L.J.); zengfanshan@126.com (F.Z.); zhongrong@126.com (R.Z.); wangjianli@126.com (J.W.); yehao@126.com (H.Y.); lingyun@126.com (Y.L.); guoruobin@126.com (R.G.)
- ² Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
- ³ School of Ocean Science and Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing 350300, China; lishiqian@126.com
- ⁴ School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
- ***** Correspondence: xieyu_121@163.com (Y.X.); j.s.zhao@163.com (J.Z.); hu_yuying@foxmail.com (Y.H.)

Abstract: With the rapid consumption of fossil fuels, along with the ever-increasing environmental pollution, it is becoming a top priority to explore efficient photocatalysts for the production of renewable hydrogen and degradation of pollutants. Here, we fabricated a composite of g -C₃N₄/TiO₂ via an in situ growth method under the conditions of high-temperature calcination. In this method, TiO² nanowires with a large specific surface area could provide enough space for loading more $g - C_3N_4$ nanoparticles to obtain C_3N_4/TiO_2 composites. Of note, the $g - C_3N_4/TiO_2$ composite could effectively photocatalyze both the degradation of several pollutants and production of hydrogen, both of which are essential for environmental governance. Combining multiple characterizations and experiments, we found that the heterojunction constructed by the TiO₂ and $g-C_3N_4$ could increase the photocatalytic ability of materials by prompting the separation of photogenerated carriers. Furthermore, the photocatalytic mechanism of the g -C₃N₄/TiO₂ composite was also clarified in detail.

Keywords: TiO² nanowire; g-C3N⁴ particles; g-C3N4/TiO² composite; photodegradation of pollutants

1. Introduction

The vigorous development of various industries drives rapid economic progress but causes excessive energy consumption and environmental pollution [\[1\]](#page-9-0). Such problems should not be underestimated; thus, finding efficient technology and sustainable energy has become the top priority. In recent years, hydrogen energy $(H₂)$ has been greatly popular with scientists because of its peculiarities of being renewable and clean. Considerable efforts have been devoted to the development of advanced technologies for harvesting hydrogen, and water splitting catalyzed by semiconductors is widely recognized as a promising approach to producing H_2 [\[2,](#page-9-1)[3\]](#page-9-2).

 $TiO₂$ is a robust photocatalyst for water splitting for generating hydrogen, photodegradation, dye-sensitized solar cell biosensors, and other fields due to its high photostability, outstanding chemical stability, nontoxicity, and high efficiency $[4,5]$ $[4,5]$. However, the applications of $TiO₂$ are still greatly limited by its intrinsic shortcomings. For example, the wide band gap (3.2 eV) and single crystalline phase can reduce the migration efficiency and lead to a high recombination rate for charges or limit the utilization of solar energy [\[6](#page-9-5)[–8\]](#page-9-6). Therefore, numerous scientists have devoted themselves to solving these difficulties from different perspectives, such as the auto-doping of $TiO₂$ [\[9\]](#page-9-7), noble metal deposition, hetero-

Citation: Jiang, L.; Zeng, F.; Zhong, R.; Xie, Y.; Wang, J.; Ye, H.; Ling, Y.; Guo, R.; Zhao, J.; Li, S.; et al. TiO² Nanowires with Doped g-C3N⁴ Nanoparticles for Enhanced H₂ Production and Photodegradation of Pollutants. *Nanomaterials* **2021**, *11*, 254. [https://doi.org/10.3390/](https://doi.org/10.3390/nano11010254) [nano11010254](https://doi.org/10.3390/nano11010254)

Received: 30 November 2020 Accepted: 18 January 2021 Published: 19 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/[/](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) 4.0/).

junction construction, and ion doping $[10-17]$ $[10-17]$. Among these methods, the construction of heterojunctions is believed to be one favorable way [\[18\]](#page-10-0).

Over the past decade, $g-C_3N_4$ has drawn worldwide attention due to its advantages of high stability, being green, being cheap, and being easy to synthesize, as well as unique electronic structure [\[19](#page-10-1)[,20\]](#page-10-2). Furthermore, the morphology of materials also impacts the performance. The surface area of nanowires is dozens of times bigger than that of particles and has a strong absorption capacity. Meanwhile, nanowires can be filled with other nanomaterials to generate nanocomposites for greatly enhancing photocatalytic ability [\[21\]](#page-10-3).

Herein, we propose a strategy of combining $TiO₂$ nanowires and $g-C₃N₄$ nanoparticles for generating a nanocomposite, aiming at improving photocatalytic performance. Considering that the synthetic process should be environmentally friendly and low cost as well as efficient, we used commercial P25 powder and sodium hydroxide (NaOH) as raw materials to prepare $TiO₂$ nanowires. Under the reaction conditions of high temperature, high pressure, and strong alkalinity, P25 reacted with NaOH to produce titanium, which convolved to form a tubular structure after the $Na⁺$ was exchanged in the washing process. Simultaneously, hydroxide was dissolved in the water, and oxide precipitated due to the different solubility. At last, $g-C_3N_4$ nanoparticles were loaded on the TiO₂ nanowires to construct a novel $g - C_3N_4/TiO_2$ heterojunction via an in situ growth method at a high calcination temperature. Furthermore, the photocatalytic ability of all the materials was examined by the photodegradation of pollutants and photocatalytic hydrogen production.

2. Experimental Section

2.1. Experimental Reagents

Titanium dioxide (TiO₂, P25, nanoscale) and sodium hydroxide (NaOH, AR) were both obtained from Xilong Chemical Co., Ltd. (Shantou, China). Melamine $(C_3N_3(NH_2)_3)$ was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Synthesis of TiO² Nanowires

The TiO₂ nanowires were prepared according to a previous report with some modifi-cations [\[22\]](#page-10-4). Firstly, P25 (0.5 g) was dispersed into a 75 mL NaOH solution (10 mg/L) using an ultrasonic instrument for 30 min, and then was stirred for another 30 min. After that, the well-mixed reactant was poured into a Teflon reactor (100 mL) and reacted at 130 $^{\circ}$ C for 24 h. After cooling down to room temperature, the precursor was obtained through centrifugation and washed until the pH was 9. Afterwards, the above product was washed and stirred in 100 mL of $HNO₃$ (0.1 mol/L) for 5 h. After pickling, the solution was purified with deionized water until the pH was 7 and centrifuged to obtain precipitates. The precipitate was dried in a vacuum at 60 °C for 24 h and then calcined at 600 °C for 3 h with a heating rate of 5° C/min to obtain TiO₂ nanowires.

2.3. The Preparation of g-C3N4/TiO² Samples

g-C₃N₄ was prepared by calcining the melamine at 500 °C. The as-prepared TiO₂ nanowire powder and 1 g of melamine were evenly ground, and then calcined at 540 ◦C for 4 h with a heating rate of 3 $\rm{°C/min}$. The different mass ratios of g-C₃N₄/TiO₂ composite (such as 20%, 30%, 40%, and 50%) were synthesized by changing the quality of $g - C_3N_4$ without the other conditions being changed.

2.4. Characterization

The phase and textual properties of the samples were tested by X-ray powder diffraction (XRD). The micromorphology and lattice structure were further analyzed with a scanning electron microscope (SEM) and transmission electron microscope (TEM). The chemical compositions and states were determined by X-ray photoelectron spectroscopy (XPS). Besides, the surface area and porosity were determined on a specific surface area tester. The UV-vis diffuse reflection spectra (UV-vis DRSs) of the samples were acquired with an ultraviolet and visible spectrophotometer with an integrating sphere; $BaSO₄$ was used as

the background material. The photocurrent tests were carried out with an electrochemical workstation (CHI 660D) with a standard three-electrode system.

2.5. The Photocatalytic Ability Tests

2.5.1. The Experiments for Photodegradation

The photodegradation tests of methyl orange and rose red were carried out under a 300 W xenon light with a light filter ($\lambda > 420$ nm). Firstly, 50 mg of as-prepared g-C₃N₄/TiO₂ complex was ultrasonically dispersed in a beaker containing the pollutant (50 mL, 10 ppm) and then magnetically stirred in the dark for 60 min to achieve the absorption–desorption equilibrium, labeled C_0 . Afterwards, the treated solution was irradiated under the xenon light for 120 min to perform the photodegrade reaction. Then, 3 mL of the pollutant suspension was extracted at the given interval times and then centrifuged and labeled C_t . At last, the change in the concentration of the contaminant was measured with an ultraviolet–visible spectrophotometer.

2.5.2. Photocatalytic H_2 Generation

The photocatalytic hydrogen evolution reaction was performed in a quartz glass at 279.15 K. Meanwhile, the quartz glass was connected with a closed circulation system, and a 300 W xenon light served as the light source. Typically, $g - C_3N_4/TiO_2$ complex (50 mg) was dispersed in the solution, which consisted of methyl alcohol (8 mL) and deionized water (72 mL); then, Ar was pumped into the system to remove the air. Afterwards, the above reactor was illuminated under a 300 W xenon light for 3 h. At intervals of 0.5 h, the generated hydrogen gas was quantified with a gas chromatograph (GC7900).

2.5.3. The Tests for Photocurrent

The photocurrent experiments for the $g-C_3N_4/TiO_2$ composite were monitored with an electrochemical station (CHI660C) with 0.5 mol/L NaSO₄ solutions as the electrolyte solution. For this, the Ag/AgCl electrode was used as the reference electrode, and the graphite electrode and prepared samples served as the auxiliary electrode and the working electrode, respectively. Typically, the working electrode could be fabricated by the following method: 2 mg samples were evenly dispersed in 1 mL of deionized water. Then, 100 µL of suspension liquid was coated uniformly on tin oxide conductive glass, dried at room temperature, and set aside.

3. Results and Discussion

3.1. Micromorphology and Lattice Structural Characteristics

The micromorphology of the samples was preliminarily studied through the SEM images (Figure [1\)](#page-2-0). Obviously, the shape of $TiO₂$ was wirelike with a smooth surface and uniform thickness (Figure [1a](#page-2-0),b). Meanwhile, it can be seen that the length of the $TiO₂$ nanowires was inhomogeneous. This was attributed to the fact that P25 reacted with NaOH, forming titanate, which was convolved to a linear structure after sodium ions were exchanged in the washing process. Besides, the reason for the different lengths may also have been the high-temperature calcination. As shown in Figure [1c](#page-2-0), we can clearly observe that the g- C_3N_4 particles stuck tightly on the TiO₂ nanowires. The longer TiO₂ nanowires were able to provide sufficient supporting space for the in situ growth of g -C₃N₄, which made it possible to load $g-C_3N_4$ on the TiO₂.

Figure 1. SEM images of TiO₂ (a,b) and $g-C_3N_4/TiO_2$ composite (c).

In addition, we used a transmission electron microscope (TEM) to further view the morphology, particle size, and lattice structure of the samples. Similarly, the morphology (Figure [2a](#page-3-0),b) of the TiO₂ and $g-C_3N_4$ was nanowires and particles, respectively. These was consistent with the SEM images. The lattice fringes at a distance of 0.352 nm (Figure [2c](#page-3-0),d) corresponded to the (101) plane of $TiO₂$ [\[22](#page-10-4)[–24\]](#page-10-5), while the lattice fringes at 0.326 nm (Figure [2d](#page-3-0)) could be assigned to the crystal plane of $g - C_3N_4$ [\[25](#page-10-6)[,26\]](#page-10-7). Therefore, it could be identified that the $g - C_3N_4/TiO_2$ was successfully synthesized. In addition, the crossed and overlapped lattice fringes of the partial $g-C_3N_4$ and TiO₂ reflected the idea that the coupling of $g - C_3N_4$ and TiO₂ was not simple surface contact but the presence of chemical bonding. During the reaction process, $Ti(OH)_4$ particles of the TiO_2 nanowires were in contact with the triazine structure in the melamine, and then, the precursor was polymerized with high-temperature calcination. Therefore, TiO₂ nanowires closely contacted g-C₃N₄ via chemical bonds, thereby generating a heterojunction.

Figure 2. TEM images of TiO₂ (**a**) and g-C₃N₄/TiO₂ (**b**); HRTEM images of TiO₂ (**c**) and g-C₃N₄/TiO₂ (**d**).

3.2. Crystal Phase and Textural Characteristics

The crystal form and crystallinity of the samples were analyzed by obtaining the X-ray diffraction (XRD) patterns. The XRD patterns of the materials displayed five strong diffrac-tion peaks located at 25.2°, 37.7°, 47.7°, 53.9°, and 54.5° (Figure [3\)](#page-3-1), which corresponded to the (101), (004), (200), (105), and (211) crystal planes of $TiO₂$ (ICPDS card No.21-1272), respectively [\[27\]](#page-10-8). This result indicates the as-prepared TiO₂ was anatase phase. For $g - C_3N_4$, the characteristic peaks at 13.1◦ and 27.4◦ were consistent with the standard card for g- C_3N_4 [\[28\]](#page-10-9). However, no distinct characteristic peak of C_3N_4 was observed on the XRD patterns of the composite, probably due to the low content of $g-C_3N_4$ [\[29\]](#page-10-10).

Figure 3. The XRD patterns of TiO₂, g -C₃N₄, and g -C₃N₄/TiO₂ samples with different mass ratios.

In general, the pore characters and specific surface areas of materials have great influences on the photocatalytic performance of the materials. The N_2 absorption–desorption isotherms and pore diameter distribution are shown in Figure [4.](#page-4-0) As shown in Figure [4a](#page-4-0),b, the lack of hysteresis loops and lack of obvious pore size distribution peaks in the $TiO₂$ curve indicate that there was no large pore structure or mesoporous structure [\[30\]](#page-10-11). With an increase in g-C₃N₄ loading content, we found that curves typical of 20% g-C₃N₄/TiO₂, 30% g-C₃N₄/TiO₂, 40% g-C₃N₄/TiO₂, and 50% g-C₃N₄/TiO₂ belonged to the type-IV absorption isotherm, with a H_3 hysteresis loop at higher pressures (0.8–1.0), which clarified the presence of mesoporous structure in the samples [\[31](#page-10-12)[,32\]](#page-10-13). The formation of the pore was on account of the accumulation of $g - C_3N_4$ nanoparticles on the surface of the TiO₂ nanowires, and the $g-C_3N_4$ changed the surface roughness of the nanowires' structure. As shown in Table [1,](#page-4-1) with the loading of $g-\text{C}_3N_4$ increasing from 20% to 50%, the specific surface areas of the samples firstly increased and then decreased, but the pore volume almost remained unchanged. This is because the excessive loading of g -C₃N₄ led to the aggregation of the $g-C_3N_4$ nanoparticles and thus reduced the specific surface area of the $TiO₂$ nanowires $[20]$.

Figure 4. The N² adsorption–desorption isothermal curve (**a**); pore diameter distribution curves (**b**).

Samples	Specific Surface Area (m^2/g)	Pore Volume $\text{cm}^3\text{/g}$)
TiO ₂	11.97	10.07
$20\% \text{ g-C}_3\text{N}_4/\text{TiO}_2$	66.18	10.53
$30\% \text{ g-C}_3\text{N}_4/\text{TiO}_2$	80.69	10.51
40% g-C ₃ N ₄ /TiO ₂	131.18	10.57
50% g-C ₃ N ₄ /TiO ₂	72.87	10.48

Table 1. The specific surface area of samples.

3.3. Chemical State and Band Gap Analysis

Typically, XPS spectra are a powerful method for investigating the electronic structures of different elements in nanocomposites. The characteristic peaks of Ti, O, and C were detected in the survey of the $g - C_3N_4/TiO_2$ composite (Figure [5a](#page-5-0)), which suggested the successful synthesis of the nanocomposite containing g -C₃N₄ and TiO₂. The XPS spectra of C 1s (Figure [5b](#page-5-0)) displayed three peaks located at 284.6, 286.27, and 288.74 eV, corresponding to C-C, C-OH, and C=O (and COO) bonding, respectively [\[20](#page-10-2)[,33\]](#page-10-14). In the case of O 1s (Figure [5c](#page-5-0)), the binding energies of 529.72, 530.72, and 532.05 eV were attributed to Ti-O, H-O, and C-O, respectively [\[34\]](#page-10-15). The XPS spectra of Ti 2p displayed two peaks for Ti^{4+} (Figure [5d](#page-5-0)), indicating that the Ti species were in the form of $TiO₂$ [\[27\]](#page-10-8). After peak splitting fitting, the broad N 1s peak was divided into three contributions (Figure [5e](#page-5-0)), namely, C=N-C (398.71 eV), N-C₃ (399.70 eV), and C-N-H (400.54 eV) [\[19\]](#page-10-1).

Figure 5. The high-resolution XPS spectra of the 40% g-C3N4/TiO² composite: survey (**a**), C 1s (**b**), O 1s (**c**), Ti 2p (**d**), and N 1s (**e**).

The optical performance of the photocatalysts is shown in Figure [6a](#page-6-0). Obviously, the absorption edge of the 40% g-C₃N₄/TiO₂ composite showed a red shift compared with pure $TiO₂$, which would be of benefit for enhancing the utilization of solar energy for improving the photocatalytic ability of materials. The band gap value (Figure [6b](#page-6-0)) of materials can be acquired by plotting $(\alpha h\nu)^{1/2}$ against hv and then extending the tangent line to intersect the coordinate axis [\[29\]](#page-10-10). The band gap value of 40% g-C₃N₄/TiO₂ was lower than that of TiO₂ and other materials (Figure S3 in Supporting information), which was of benefit for the photocatalytic reaction.

Figure 6. The UV-vis diffuse reflectance spectra (a) and band gaps (b) of T_0 and $g - C_3N_4/T_0$ composite.

3.4. Photocatalytic Ability Analysis

During the experimental process, rose red and methyl orange were regarded as the target pollutants for evaluating the photodegradation performance of materials under ultraviolet visible light. As shown in Figure [7a](#page-6-1), g -C₃N₄ is almost inactive for the photocatalytic degradation of methyl orange. Although the $TiO₂$ is active for the degradation of methyl orange, the performance is very poor, with a 70% removal efficiency within 120 min of irradiation time. Impressively, the optimal proportional complex (40% g-C₃N₄/TiO₂) can completely photodegrade the methyl orange in 60 min. Moreover, the efficiency of methyl orange removal by $40\% \text{ g-C}_3\text{N}_4/\text{TiO}_2$ in 20 min was as high as that by TiO₂ in 120 min. Thus, it can be deduced that the heterojunction in the composite has a positive effect on the photocatalytic performance. Furthermore, the loading content of $g - C_3N_4$ also played a key role in the photodegradation performance. Excessive $g-C_3N_4$ aggregation led to a decrease in the specific surface area and thus limited the reaction. Therefore, we could further deduce that the heterojunction in the complex could inhibit the recombination of carriers facilitating the photocatalytic ability of materials [\[32\]](#page-10-13).

Figure 7. The photodegradation curves for methyl orange (**a**) and the photodegradation curves for rose red (**b**) with g-C3N⁴ , TiO₂, and g-C₃N₄/TiO₂ composite; the methyl orange cycling photodegradation experiments with 40% g-C₃N₄/TiO₂ composite (**c**).

To further investigate the excellent photodegradation ability of 40% g-C₃N₄/TiO₂ complex, the photodegradation of rose red and methyl orange cycling experiments were also carried out. As shown in Figure [7b](#page-6-1), it is obvious that $40\% \text{ g-C}_3\text{N}_4/\text{TiO}_2$ also had a favorable ability to treat rose red. Furthermore, the efficiency of methyl orange degradation by 40% g-C₃N₄/TiO₂ was almost unchanged after five cycling experiments (Figure [7c](#page-6-1)), indicating that the 40% g-C₃N₄/TiO₂ possessed high stability and reusability. In a word, the above experiments demonstrate that the as-prepared 40% TiO₂/g-C₃N₄ composite has a bright future in applications for wastewater treatment.

The photodegradation principally made use of the photocatalytic oxidation performance of the photocatalysts, whereas the photocatalytic reduction could also play a part in plenty of fields. Therefore, the photocatalytic hydrogen generation experiments were conducted under ultraviolet–visible irradiation, and the hydrogen produced was quantified every 0.5 h. The H_2 production performance of pure g -C₃N₄ and TiO₂ was not satisfactory (Figure [8a](#page-7-0),b). After coupling $g - C_3N_4$ with TiO₂, the quantity and rate of hydrogen generation greatly increased, which can be explained as the presence of a heterojunction in the composite. It effectively prompted the separation of photogenerated carriers, thereby improving the performance of hydrogen evolution. However, when the content of $g-C_3N_4$ was 50%, the generation rate for H_2 became slow because the excessive loading could block the active sites on the $TiO₂$.

Figure 8. Photocatalytic hydrogen production ability (**a**) and hydrogen production rate tests (**b**) of g-C₃N₄, TiO₂, and $g - C_3N_4/TiO_2$ samples.

3.5. Photocurrent Analysis

Usually, the photocurrent response can reflect the transfer and separation of photogenerated charges under irradiation [\[35\]](#page-10-16). As depicted in Figure [9,](#page-7-1) the photocurrent signal of TiO² was the weakest, indicating that the recombination of photogenerated charges was serious. However, the photocurrent response increased after g -C₃N₄ was loaded on the surface of the $TiO₂$. The reason for this phenomenon was that the heterojunction prompted the separation of photogenerated electrons and holes, thereby providing more electrons that participated in hydrogen evolution [\[20\]](#page-10-2).

Figure 9. Photocurrent tests of TiO₂ and $g-C_3N_4/TiO_2$ samples with different mass ratios.

3.6. Mechanism of Photocatalysis

Figure [10](#page-8-0) shows the mechanism of the photodegradation process (a) and the hydrogen production (b). Under irradiation, $g-C_3N_4$ and TiO₂ were excited to produce a mass of electrons and holes. According to a previous report [\[36\]](#page-10-17), the conduction band value of $g-C_3N_4$ (−1.3 eV vs. NHE) is more negative than that of pure TiO₂ (−0.5 eV vs. NHE), while the valence band value of TiO₂ (2.7 eV vs. NHE) is more positive than that of $g - C_3N_4$ particles (1.4 eV vs. NHE). Therefore, the partial electrons on the conduction band of g-C₃N₄ transfer to the conduction band of TiO₂, enabling O₂ to change into \cdot O^{2−}. At the same time, the holes in the valence band of TiO₂ were transferred to $g-C_3N_4$. The OH[−] and water were oxidated to hydroxyl radicals. At last, the methyl orange and rose red reacted with these radicals to form $CO₂$ and $H₂O$. Thereby, the electrons and holes were effectively separated. However, the electrons played a major role in the process of hydrogen production. The potential of H_2 evolution (0 eV vs. NHE) was more positive than the conduction band value of TiO₂ (-0.5 eV vs. NHE); thus, H⁺ could capture the electrons and change into H_2 .

Figure 10. Photocatalytic degradation by (a) and hydrogen production (b) mechanism of g-C₃N₄/TiO₂ composite.

4. Conclusions

In this work, $TiO₂$ nanowires were firstly fabricated via the simple hydrothermal method, and then, $g-C_3N_4$ was prepared via thermal polymerization using melamine as the precursor. A novel $g - C_3N_4/TiO_2$ heterojunction composite was successfully prepared by adjusting the mass ratio of $TiO₂$ and melamine in the calcination process. After g- C_3N_4 was loaded on the surface of TiO₂, the absorption range for light, the photocurrent response, and the specific surface area increased significantly, which were benefited by the presence of the heterojunction. The heterojunction in the composite could greatly prompt the separation of the photogenerated electrons and holes, thus enhancing the photocatalytic ability of the g-C₃N₄/TiO₂. More importantly, the g-C₃N₄/TiO₂ composite has the ability to both photocatalyze the degradation of different pollutants and produce hydrogen, which means it has broad application prospects. Meanwhile, the as-prepared sample also kept favorable stability after the cycling experiments. Therefore, this study provides a friendly and effective method for treating complex environmental pollutants and energy consumption.

Supplementary Materials: The following are available online at [https://www.mdpi.com/2079-4](https://www.mdpi.com/2079-4991/11/1/254/s1) $991/11/1/254/s1$. Figure S1: The SEM image of TiO₂ nanowires, Figure S2: The EDX image of $g - C_3N_4/TiO_2$ composite. Figure S3: The UV-vis diffuse reflectance spectra (a) and band gaps (b) of 20% g-C3N $_4$ /TiO₂, 30%g-C3N $_4$ /TiO₂ and 50% g-C3N $_4$ /TiO₂ composite.

Author Contributions: Writing—original draft preparation, L.J. and F.Z.; the preparation of the catalysts, R.Z.; writing—review and editing, Y.X. and J.Z.; testing the photocatalytic performance of the catalysts, Y.L. and J.W.; validation, Y.H.; electrochemical measurements and analysis, R.G. and S.L.; formal analysis, Y.H.; Investigaion, H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China (No. 21667019, 22066017, and 22002057); the Key Project of the Natural Science Foundation of Jiangxi Province (No. 20171ACB20016); the Jiangxi Province Major Academic and Technical Leaders Cultivating Object Program (No. 20172BCB22014); the Science and Technology Department of Jiangxi Province (No. 20181BCB18003 and 20181ACG70025); the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CSA (No. PCOM201906); the Key Project of Science and Technology Research of the Jiangxi Provincial Department of Education (No. DA201602063 and GJJ191044); the Aviation Science Foundation of China (No. 2017ZF56020); the Fujian Key Laboratory of Measurement and Control System for Shore Environment (No. S1-KF1703); and the Doctor's Start-Up Fund of Nanchang Hangkong University (EA201902286).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Liu, Y.; Xie, Y.; Ling, Y.; Jiao, J.; Li, X.; Zhao, J. Facile construction of a molybdenum disulphide/zinc oxide nanosheet hybrid for an advanced photocatalyst. *J. Alloy. Compd.* **2019**, *778*, 761–767. [\[CrossRef\]](http://doi.org/10.1016/j.jallcom.2018.11.024)
- 2. Xu, D.; Hai, Y.; Zhang, X.; Zhang, S.; He, R. Bi₂O₃ cocatalyst improving photocatalytic hydrogen evolution performance of TiO₂. *Appl. Surf. Sci.* **2017**, *400*, 530–536. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2016.12.171)
- 3. Liu, Y.; Xu, C.; Xie, Y.; Yang, L.; Ling, Y.; Chen, L. Au–Cu nanoalloy/TiO $_2$ /MoS $_2$ ternary hybrid with enhanced photocatalytic hydrogen production. *J. Alloy. Compd.* **2020**, *820*, 153440. [\[CrossRef\]](http://doi.org/10.1016/j.jallcom.2019.153440)
- 4. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO₂ Photocatalysis: Mechanisms and Materials. *Chem. Rev.* **2014**, *114*, 9919–9986. [\[CrossRef\]](http://doi.org/10.1021/cr5001892) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/25234429)
- 5. Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. *Chem. Rev.* **2014**, *114*, 9346–9384. [\[CrossRef\]](http://doi.org/10.1021/cr400633s) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/24725155)
- 6. Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g -C₃N₄–TiO₂ photocatalysts for the decomposition of formaldehyde in air. *Phys. Chem. Chem. Phys.* **2013**, *15*, 16883–16890. [\[CrossRef\]](http://doi.org/10.1039/c3cp53131g) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/23999576)
- 7. Chen, L.; Shen, L.; Nie, P.; Zhang, X.; Li, H. Facile hydrothermal synthesis of single crystalline TiOF₂ nanocubes and their phase transitions to TiO² hollow nanocages as anode materials for lithium-ion battery. *Electrochim. Acta* **2012**, *62*, 408–415. [\[CrossRef\]](http://doi.org/10.1016/j.electacta.2011.12.058)
- 8. Wen, C.Z.; Hu, Q.H.; Guo, Y.N.; Gong, X.Q.; Qiao, S.Z.; Yang, H.G. From titanium oxydifluoride (TiOF₂) to titania (TiO₂): Phase transition and non-metal doping with enhanced photocatalytic hy-drogen (H²) evolution properties. *Chem. Commun.* **2011**, *47*, 6138–6140. [\[CrossRef\]](http://doi.org/10.1039/c1cc10851d)
- 9. Huang, Z.; Sun, Q.; Lv, K.; Zhang, Z.; Li, M.; Li, B. Effect of contact interface between TiO₂ and $g-C_3N_4$ on the photoreactivity of g-C3N4/TiO² photocatalyst: (001) vs. (101) facets of TiO² . *Appl. Catal. B Environ.* **2015**, *164*, 420–427. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2014.09.043)
- 10. Cao, S.-W.; Yuan, Y.-P.; Fang, J.; Shahjamali, M.M.; Boey, F.Y.C.; Barber, J.; Loo, S.J.C.; Xue, C. In-situ growth of CdS quantum dots on g-C3N⁴ nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. *Int. J. Hydrog. Energy* **2013**, *38*, 1258–1266. [\[CrossRef\]](http://doi.org/10.1016/j.ijhydene.2012.10.116)
- 11. Chang, F.; Zhang, J.; Xie, Y.; Chen, J.; Li, C.; Wang, J.; Luo, J.; Deng, B.; Hu, X. Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4–TiO² hybrids. *Appl. Surf. Sci.* **2014**, *311*, 574–581. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2014.05.111)
- 12. Jiang, F.; Yan, T.; Chen, H.; Sun, A.; Xu, C.; Wang, X. A g-C₃N₄-CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation. *Appl. Surf. Sci.* **2014**, *295*, 164–172. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2014.01.022)
- 13. Obregón, S.; Colón, G. Improved H₂ production of Pt-TiO₂/g-C₃N₄-MnOx composites by an efficient handling of photogenerated charge pairs. *Appl. Catal. B Environ.* **2014**, *144*, 775–782. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2013.07.034)
- 14. Wang, R.; Gu, L.; Zhou, J.; Liu, X.; Teng, F.; Li, C.; Shen, Y.; Yuan, Y. Quasi-polymeric metal–organic framework UiO-66/g-C3N⁴ heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. *Adv. Mater. Interfaces* **2015**, *2*, 1500037. [\[CrossRef\]](http://doi.org/10.1002/admi.201500037)
- 15. Wang, Y.; Shi, R.; Lin, J.; Zhu, Y. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N⁴ . *Energy Environ. Sci.* **2011**, *4*, 2922–2929. [\[CrossRef\]](http://doi.org/10.1039/c0ee00825g)
- 16. Yan, S.C.; Lv, S.B.; Li, Z.S.; Zou, Z.G. Organic–inorganic composite photocatalyst of g-C3N⁴ and TaON with improved visible light photocatalytic activities. *Dalton Trans.* **2010**, *39*, 1488–1491. [\[CrossRef\]](http://doi.org/10.1039/B914110C)
- 17. Yuan, Y.-P.; Yin, L.-S.; Cao, S.-W.; Xu, G.-S.; Li, C.-H.; Xue, C. Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization. *Appl. Catal. B Environ.* **2015**, *168*, 572–576. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2014.11.007)
- 18. Wang, X.-J.; Yang, W.-Y.; Li, F.-T.; Zhao, J.; Liu, R.-H.; Liu, S.-J.; Li, B. Construction of amorphous TiO₂/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. *J. Hazard. Mater.* **2015**, *292*, 126–136. [\[CrossRef\]](http://doi.org/10.1016/j.jhazmat.2015.03.030)
- 19. Hou, Y.; Yang, J.; Lei, C.; Yang, B.; Li, Z.; Xie, Y.; Zhang, X.; Lei, L.; Chen, J. Nitrogen vacancy structure driven photoeletrocatalytic degradation of 4-chlorophenol using porous graphitic carbon nitride nanosheets. *ACS Sustain. Chem. Eng.* **2018**, *6*, 6497–6506. [\[CrossRef\]](http://doi.org/10.1021/acssuschemeng.8b00279)
- 20. Zhou, Y.; Li, J.; Liu, C.; Huo, P.; Wang, H. Construction of 3D porous g-C₃N₄/AgBr/rGO composite for excellent visible light photocatalytic activity. *Appl. Surf. Sci.* **2018**, *458*, 586–596. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2018.07.121)
- 21. Truong, Q.D.; Le, T.S.; Hoa, T.H. Ultrathin TiO₂ rutile nanowires enable reversible Mg-ion intercalation. *Mater. Lett.* **2019**, 254, 357–360. [\[CrossRef\]](http://doi.org/10.1016/j.matlet.2019.07.109)
- 22. Yoshida, R.; Suzuki, Y.; Yoshikawa, S. Syntheses of TiO₂(B) nanowires and TiO₂ anatase nanowires by hydrothermal and post-heat treatments. *J. Solid State Chem.* **2005**, *178*, 2179–2185. [\[CrossRef\]](http://doi.org/10.1016/j.jssc.2005.04.025)
- 23. Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. *J. Am. Chem. Soc.* **2014**, *136*, 8839–8842. [\[CrossRef\]](http://doi.org/10.1021/ja5044787) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/24918628)
- 24. Cheng, H.; Selloni, A. Energetics and diffusion of intrinsic surface and subsurface defects on ana-tase TiO₂(101). *J. Chem. Phys.* **2009**, *131*, 054703. [\[CrossRef\]](http://doi.org/10.1063/1.3194301)
- 25. Tang, Y.; Zhang, Y.; Deng, J.; Wei, J.; Tam, H.L.; Chandran, B.K.; Dong, Z.; Chen, Z.; Chen, X. Nanotubes: Mechanical force-driven growth of elongated bending TiO₂-based nanotubular materials for ultrafast rechargeable lithium ion batteries. *Adv. Mater.* **2014**, *26*, 6111–6118. [\[CrossRef\]](http://doi.org/10.1002/adma.201402000)
- 26. Li, Q.; Yue, B.; Iwai, H.; Kako, T.; Ye, J. Carbon nitride polymers sensitized with N-doped tantalic acid for visible light-induced photocatalytic hydrogen evolution. *J. Phys. Chem. C* **2010**, *114*, 4100–4105. [\[CrossRef\]](http://doi.org/10.1021/jp911803z)
- 27. Sakata, Y.; Yoshimoto, K.; Kawaguchi, K.; Imamura, H.; Higashimoto, S. Preparation of a semi-conductive compound obtained by the pyrolysis of urea under N² and the photocatalytic property under visible light irradiation. *Catal. Today* **2011**, *161*, 41–45. [\[CrossRef\]](http://doi.org/10.1016/j.cattod.2010.09.029)
- 28. Li, Y.; Fu, Y.; Zhu, M. Green synthesis of 3D tripyramid TiO₂ architectures with assistance of aloe extracts for highly efficient photocatalytic degradation of antibiotic ciprofloxacin. *Appl. Catal. B Environ.* **2020**, *260*, 118149. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2019.118149)
- 29. Li, K.; Huang, Z.; Zhu, S.; Luo, S.; Yan, L.; Dai, Y.; Guo, Y.; Yang, Y. Removal of Cr(VI) from water by a biochar-coupled g-C3N⁴ nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. *Appl. Catal. B Environ.* **2019**, *243*, 386–396. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2018.10.052)
- 30. Yu, X.; Wu, P.; Qi, C.; Shi, J.; Feng, L.; Li, C.; Wang, L. Ternary-component reduced graphene ox-ide aerogel constructed by g-C3N4/BiOBr heterojunction and graphene oxide with enhanced photo-catalytic performance. *J. Alloy. Compd.* **2017**, *729*, 162–170. [\[CrossRef\]](http://doi.org/10.1016/j.jallcom.2017.09.175)
- 31. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure Appl. Chem.* **2015**, *87*, 1051–1069. [\[CrossRef\]](http://doi.org/10.1515/pac-2014-1117)
- 32. Sun, C.; Xu, Q.; Xie, Y.; Ling, Y.; Hou, Y. Designed synthesis of anatase–TiO² (B) biphase nanowire/ZnO nanoparticle heterojunction for enhanced photocatalysis. *J. Mater. Chem. A* **2018**, *6*, 8289–8298. [\[CrossRef\]](http://doi.org/10.1039/C7TA10274G)
- 33. Hu, D.; Xie, Y.; Liu, L.; Zhou, P.; Zhao, J.; Xu, J.; Ling, Y. Constructing TiO₂ nanoparticles patched nanorods heterostructure for efficient photodegradation of multiple organics and H² production. *Appl. Catal. B Environ.* **2016**, *188*, 207–216. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2016.01.069)
- 34. Zou, H.; Song, M.; Yi, F.; Bian, L.; Liu, P.; Zhang, S. Simulated-sunlight-activated photocatalysis of Methyl Orange using carbon and lanthanum co-doped Bi2O3–TiO² composite. *J. Alloy. Compd.* **2016**, *680*, 54–59. [\[CrossRef\]](http://doi.org/10.1016/j.jallcom.2016.04.094)
- 35. Shao, P.; Tian, J.; Zhao, Z.; Shi, W.; Gao, S.; Cui, F. Amorphous TiO₂ doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol. *Appl. Surf. Sci.* **2015**, *324*, 35–43. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2014.10.108)
- 36. Pang, Y.; Li, Y.; Xu, G.; Hu, Y.; Kou, Z.; Feng, Q.; Lv, J.; Zhang, Y.; Wang, J.; Wu, Y. Z-scheme carbon-bridged Bi₂O₃/TiO₂ nanotube arrays to boost photoelectrochemical detection performance. *Appl. Catal. B Environ.* **2019**, *248*, 255–263. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2019.01.077)