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AIMS
The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to
develop a clinical tool for selecting the best starting dose for each patient.

METHODS
Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic
analysis was conducted using nonlinear mixed-effects modelling. Demographic, clinical and genetic parameters were evaluated
as covariates.

RESULTS
A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described
using a two-compartment model. The mean absorption rate was 3.6 h�1, clearance was 23.0 l h–1 (39% interindividual variability,
IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion
variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin
and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 ex-
pressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance
(80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to
individualize the tacrolimus starting dose:
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Dose mgð Þ ¼ 222 ng h ml–1� 22:5 l h–1

� 1:0; if CYP3A5�3=�3ð Þ or 1:62; if CYP3A5�1=�3 or CYP3A5�1=�1ð Þ½ �

� 1:0; if CYP3A4�1 or unknownð Þ or 0:814; if CYP3A4�22ð Þ½ �� Age
56

� ��0:50

� BSA
1:93

� �0:72

=1000

Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added
value of the starting dose model.

CONCLUSIONS
For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These
covariates explained 30% of the variability in CL/F. Themodel proved effective in calculating the optimal tacrolimus dose based on
these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Patients with low tacrolimus predose concentrations are at an increased risk for rejection while those with high predose
concentrations are at a higher risk of toxicity. Achieving the therapeutic range is important, but it can take up to two
weeks.

• In clinical practice only 37% of patients are directly within the target range at first steady state.
• Two externally validatedmodels to predict the starting dose of tacrolimus have been published. One of these was prospec-
tively tested and could not predict the tacrolimus exposure.

WHAT THIS STUDY ADDS
• In the first 3 months post-transplantation, age, albumin, body surface area, serum creatinine, CYP3A5 genotype, CYP3A4
genotype, haematocrit and lean bodyweight significantly influence the pharmacokinetics of tacrolimus in adult renal
transplant recipients.

• A separate model for the starting dose was developed:

Dose mgð Þ ¼ 222 ng h ml–1� 22:5 l h–1

� 1:0; if CYP3A5�3=�3ð Þ or 1:62; if CYP3A5�1=�3 or CYP3A5�1=�1ð Þ½ �

� 1:0; if CYP3A4�1 or unknownð Þ or 0:814; if CYP3A4�22ð Þ½ �� Age
56
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� �0:72

=1000

• The tacrolimus starting dose should be higher in CYP3A5 expressers, younger patients and those with a higher body
surface area (BSA). It should be lower in patients carrying the CYP3A4*22 allele.

• The starting dose model can be used to individualize the tacrolimus starting dose following kidney transplantation.

Introduction
Tacrolimus is the most used immunosuppressive drug to pre-
vent acute rejection following renal transplantation [1].
Short-term kidney allograft survival has greatly improved
with the use of immunosuppressive drug combination
therapy [2, 3]. However, prolonged use of immunosuppres-
sive drugs leads to substantial toxicity, including increased
rates of infections, hypertension, post-transplant diabetes
mellitus, neurotoxicity and nephrotoxicity [4–7]. These ad-
verse events augment the limited long-term renal allograft
survival and the high cardiovascular morbidity and mortality
of transplant recipients [8, 9]. Rejection rates and most of the
adverse events seem to be concentration related, with higher
tacrolimus concentrations being related to toxicity and lower
concentrations to an increased risk of acute rejection [10, 11].

The use of tacrolimus is hampered by its narrow therapeu-
tic index with large intra- and interpatient variability in its

pharmacokinetics that requires therapeutic drug monitoring
(TDM) to individualize the dose to prevent toxicity and rejec-
tion [11]. Multiple factors influence the clearance (CL) of ta-
crolimus, including cytochrome P450 (CYP) 3A genotype
[12, 13], haematocrit [14], age [10, 15], bodyweight, ethnicity
[16, 17] and drug–drug interactions [18]. In routine clinical
practice, the tacrolimus starting dose is based solely on
bodyweight, even though the available evidence is scarce
[19]. Pharmacokinetic models have conflicting results
demonstrating that bodyweight does [20–24] or does not
[10, 25–27] have a statistically significant influence on the
clearance of tacrolimus. Subsequent doses are adjusted bymeans
of TDM,which limits the time a patient is exposed to concentra-
tions outside the target range, although itmay take up to 14days
to reach the target exposure [24]. Therefore, patients are at an in-
creased risk of sub- or supratherapeutic tacrolimus exposure dur-
ing these first weeks after transplantation, and may have an
increased risk of developing adverse events [28].
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A population pharmacokinetic model with clinically rel-
evant covariates may help predict an individual’s tacrolimus
pharmacokinetics and can be applied prior to the start of
therapy to reach target exposure as soon as possible [29].
To date, several models to predict the tacrolimus starting
dose have been developed for adult [10, 12, 14, 20–23, 26,
27, 30] and paediatric renal transplant recipients [31]. Of
these adult models, only two were successfully externally
validated in an independent dataset [10, 12]. One of these
models was subsequently prospectively tested by another re-
search group in a completely new population. Unfortu-
nately, this model was unable to successfully predict
tacrolimus exposure [32]. The other externally validated
model had several shortcomings, including flip-flop kinet-
ics, where the absorption constant is much slower than
the elimination constant. Besides this, the external valida-
tion cohort had its limitations as only patients 1 month
post-transplant were included and only five were
CYP3A4*22 carriers [12]. The algorithm by Chen et al. was
not externally validated but was prospectively tested in a
randomized clinical trial in Chinese patients [22]. Unfortu-
nately, an algorithm designed for Asian patients cannot be
extrapolated to Caucasian transplant populations.

The aim of the current study was to describe the popu-
lation pharmacokinetics of twice-daily, immediate-release
tacrolimus in the first 3 months following renal transplan-
tation, and to develop a dosing algorithm for the starting
dose. In contrast to previous studies, many covariates were
tested (including CYP3A genotype, haematocrit and age), a
rich database was used [for 100 patients a full area under
the concentration vs. time curve (AUC) was available],
and the model was extensively validated, both internally
and externally. A separate starting dose model was
developed.

Methods

Study design
The model building cohort consisted of a total of 337 pa-
tients. Of these patients, 237 were transplanted in the Eras-
mus MC and participated in a randomized–controlled
clinical trial (RCT; Rotterdam cohort) [33]. For these patients,
additional pharmacokinetic data were retrospectively re-
trieved from the medical records. The Ethics Review Board
of the Erasmus MC provided a waiver for the Medical Re-
search Involving Human Subjects Act, for this study (Medical
Ethical Review Board number 2017–1029).

The remaining 100 patients were transplanted in the Lei-
den University Medical Center (LUMC, Leiden cohort) [34].
The inclusion criteria and patient demographics of these
two cohorts have been described previously [33, 34]. All clin-
ical data were collected from 24 h before transplantation un-
til 3 months post-transplantation.

External validation of the pharmacokinetic model was
performed on an independent dataset consisting of 304 adult
renal transplant recipients (validation cohort). This cohort
has been described previously [12]. These patients were not
included in the initial model building cohort.

Immunosuppression
All patients were treated with oral twice-daily tacrolimus
(Prograft, Astellas Pharma, Leiden, The Netherlands) in com-
bination with mycophenolic acid. Tacrolimus doses were tai-
lored using TDM. The tacrolimus predose concentration (C0)
was measured for the first time on day 3 following transplan-
tation in the Rotterdam cohort [33]. In the Leiden cohort,
blood samples were drawn before tacrolimus ingestion, and
1, 2, 3, 4, 5 and 6 h postingestion. This is routine clinical care
in Leiden. In the Leiden cohort, tacrolimus concentrations
for the pharmacokinetic curve were obtained at steady state,
with a median of 2 weeks after transplantation. The valida-
tion cohort consisted of 304 patients, of whom seven partici-
pated in the Symphony-Elite study. In this study, blood
samples were drawn before tacrolimus ingestion, and 0.3,
0.7, 1.3, 2, 3, 4, 6, 8, 10 and 12 h postingestion [35]. For the
remaining 297 patients, only C0 was available [12].

In the Rotterdam cohort, the target tacrolimus C0 range
was 10.0–15.0 ngml–1 in week 1–2, 8.0–12.0 ngml–1 in weeks
3–4, and 5.0–10.0 ng ml–1 after week 4 post transplantation.
In the Leiden cohort, the target AUC was 210 ng h ml–1 with
a corresponding C0 range of 10.0–15.0 ng ml–1 the first 6
weeks following transplantation. After week 6 post transplan-
tation, the target AUC was 125 ng h ml–1 with a correspond-
ing C0 range of 4.0–9.0 ng ml–1.

Laboratory analysis
Genotyping for CYP3A5*3 and CYP3A4*22 was performed as
described previously [33, 34]. Deviations from
Hardy–Weinberg equilibrium were tested using the χ2

goodness-of-fit (GOF) test. Tacrolimus concentrations in the
Rotterdam cohort were analysed in whole-blood samples
using two different immunoassays: the antibody-conjugated
magnetic immunoassay (ACMIA) and the enzyme multiplied
technique (EMIT), as described previously [33]. The lower
limits of quantification were 1.5 ng ml–1 (ACMIA) and
2.0 ng ml–1 (EMIT). The upper limit of quantification was
30.0 ngml–1. Tacrolimus concentrations in the Leiden cohort
were measured using a validated liquid chromatography–
tandem mass spectrometry (LC–MS/MS) method [34]. The
lower limit of quantification was 1.0 ng ml–1 and the upper
limit of quantification 50.0 ng ml–1. In the validation cohort,
samples were measured using a validated LC–MS/MS [12].

Population pharmacokinetic modelling
Pharmacokinetic analysis was conducted by nonlinear
mixed-effects modelling using NONMEM version 7.2
(FOCE+I, ICON Development Solutions, Ellicott City, MD,
USA) and PsN version 4.6.0. Pirana software was used as
an interface between NONMEM, R (version 3.2.2) and
Xpose (version 4).

Base model development. One- and two-compartment
models were considered based on visual inspection of the
data and a review of the literature. Typical values for lag-
time (tlag), absorption rate constant (ka), central volume of
distribution (V1), peripheral volume of distribution (V2), CL
and intercompartmental clearance (Q) were estimated. As
bioavailability (F) could not be estimated, F was fixed to 1
and certain values were estimated as ratios: CL/F, Q/F, V1/F
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and V2/F. Interindividual variability (IIV) and interoccasion
variability (IOV) were modelled for each pharmacokinetic
parameter using an exponential model. An occasion was
defined as the measurement of a C0. Residual variability was
incorporated as an additive and proportional error for
immunoassay, and as a proportional error for LC–MS/MS.
For all model parameters for which IIV was estimated,
shrinkage was calculated. A shrinkage value below 25% was
considered acceptable [36]. Minimum objective function
values (OFVs, P < 0.01), parameter precision, error
estimates, shrinkage value and visual inspection of the GOF
plots were considered for model selection.

Covariate model development. Covariates were selected based
on their known or theoretical relationships with tacrolimus
pharmacokinetics and theoretical plausibility. The following
demographic, clinical and genetic characteristics were
evaluated as potential model covariates: weight, height,
time post-transplant, sex, age, ethnicity, haematocrit,
creatinine, estimated glomerular filtration rate (Cockcroft–
Gault and Modification of Diet in Renal Disease), aspartate
aminotransferase, albumin, C-reactive protein, total
protein, bilirubin, CYP3A4 genotype, CYP3A5 genotype,
combination of CYP3A4 and CYP3A5 (as described
previously [12]), ABCB1 (previously known as multidrug
resistance-1) genotype 3435C > T polymorphism, P-450
oxidoreductase*28 (POR) genotype, comedication known to
interact with tacrolimus (calcium channel blockers,
glucocorticoids), glucocorticoid dose, primary kidney
disease, number of previous kidney transplantations, renal
replacement therapy prior to transplantation (pre-emptive,
haemodialysis or peritoneal dialysis), delayed graft function,
human leucocyte antigen mismatches, panel reactive
antibodies, body mass index, lean body weight (LBW), ideal
bodyweight, fat mass and body surface area.

First, the relationship between IIV and covariates was in-
vestigated graphically. Covariates with a visually apparent re-
lationship and a clinically plausible relationship with the
pharmacokinetic parameter were univariately added to the
model. Covariates included in previously published popula-
tion pharmacokinetic models were also univariately added
to the model, regardless of the visually apparent relationship.
A univariate analysis was performed to determine which co-
variates improved the model (P < 0.05). The stepwise covari-
ate modelling with forward inclusion-backward elimination
method was used [37]. Covariates that significantly improved
the model (P < 0.05, i.e. decrease in OFV of 3.84) were added
to the full model. A backward elimination process with a
stricter statistical criterion was then performed (P < 0.01,
i.e. increase in OFV of 6.64). A shark plot was generated for
each covariate for case-deletion diagnostics.

Internal model evaluation. The model was validated using a
prediction corrected visual predictive check (VPC) by
simulating 500 datasets, and a normalized prediction
distribution errors (NPDE) analysis (1000 simulations). The
VPC was stratified for the covariates included in the final
model.

Simulations were performed with the final model with
different values of the covariate to evaluate the effect of sig-
nificant covariates. All simulated patients received

0.2 mg kg–1 divided into two equal doses. Concentration–
time profiles were simulated for 1000 patients for each in-
cluded covariate. All other parameters were fixed to the
median.

External model evaluation. An independent dataset
consisting of 340 adults treated with the same
immunosuppressive regimen was used for external
validation using a VPC. The VPC was prediction corrected
and stratified for the covariates included in the final model.

Statistical analyses other than those mentioned above,
were performed using SPSS version 23 (SPSS Inc., Chicago,
IL, USA). Data on patients’ baseline characteristics are pre-
sented as median value and range for continuous variables.

Starting dose model. The final model was used to develop a
model for the starting dose of tacrolimus after kidney
transplantation. Each significant covariate in the final
model was evaluated if it was clinically relevant, feasible to
use, and if it significantly influenced the starting dose of
tacrolimus. The starting dose model was then validated
using the techniques mentioned in sections Internal Model
Evaluation and External Model Evaluation.

Simulation trial. To demonstrate the added value of the
starting dose model, a clinical trial was simulated using the
patient characteristics of those included in the model
building cohort. Each patient was given the standard
bodyweight dose and a dose based on the starting dose
model calculated using equation (3). For each patient, the
C0 and AUC were simulated 1000 times at day 10 post
transplantation.

Results
A total of 337 patients were included in the model building
group. Patient characteristics are presented in Table 1. From
these patients, 4527 blood samples were collected and
analysed for tacrolimus concentrations (range 1.6–
96.0 ng ml–1). A quarter of the blood samples in the model
building groups was drawn the first week following trans-
plantation. In total, three samples (0.07%) in the Rotterdam
cohort were below the lower limit of quantification of the im-
munoassay and were discarded. A total of 40 samples (0.88%)
in the Rotterdam cohort were above the upper limit of quan-
tification. These samples were estimated by NONMEM and
after every critical model building step checked if the esti-
mate was plausible. The allele frequencies of the tested
single-nucleotide polymorphisms are depicted in Table 1.
There was no deviation from the Hardy–Weinberg
equilibrium.

Base model
The data were best described by a two-compartment model
with first order absorption. Including IIV on CL/F, V1/F, V2/
F and Q/F significantly improved the model fit. The OFV de-
creased further, and parameter precision, error estimates and
GOF plots improved after introduction of IOV on CL/F. Build-
ing the different analytical techniques for tacrolimus into the
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Table 1
Patient characteristics

Model building group 1
(n = 237)

Model building group 2
(n = 100)

Model validation group
(n = 304)

Recipient sex

Male 148 (62.4%) 56 (56.0%) 200 (65.8%)

Age of recipient (years) 58.5 (19.4–79.4) 54.0 (15.0–77.0) 52.0 (17.0–83.0)

Ethnicity

Caucasian 186 (78.4%) 78 (78.0%) 304 (100%)

Asian 23 (9.7%) 8 (8.0%) 0 (0%)

African descent 23 (9.7%) 1 (1.0%) 0 (0%)

Other 5 (2.1%) 13 (13.0%) 0 (0%)

Bodyweight (kg)* 79.4 (37.6–132.0) 74.0 (40.0–114.0) 68.0 (40.0–106.0)

Height (cm)* 183 (145–203) 172 (141–195) 166 (145–190)

Body mass index (kg m–2) 25.8 (17.2–42.2) 24.8 (15.6–38.2) 24.7 (16.3–44.1)

Body surface area (m2) 2.03 (1.24–2.66) 1.90 (1.33–2.48) 1.78 (1.18–2.36)

Ideal bodyweight (kg) 68.3 (46.8–89.8) 65.3 (41.7–83.9) 60.9 (45.7–80.2)

Lean bodyweight (kg) 64.0 (33.1–85.3) 55.9 (33.6–81.7) 51.4 (34.9–76.3)

Fat mass (kg) 21.7 (12.0–44.0) 26.0 (14.1–49.5) 25.5 (11.3–50.2)

Laboratory measurements*

Haematocrit (l l–1) 0.34 (0.15–0.80) 0.34 (0.24–0.45) 0.33 (0.18–0.59)

Creatinine (μmol l–1) 137 (38–1885) 124 (62–920) 139 (47–1284)

ASAT (U l–1) 21 (<5–662) Unknown Unknown

Albumin (g l–1) 42 (12–57) Unknown Unknown

Bilirubin (μmol l–1) 6 (<2–305) Unknown Unknown

Total protein (g l–1) 64 (23–86) Unknown Unknown

CRP (mg l–1) 11 (<0.3–320) Unknown Unknown

Genotype

CYP3A4

*1 205 (86.5%) 91 (91.0%) 275 (90.5%)

*22 22 (9.3%) 9 (9.0%) 29 (9.5%)

Unknown 10 (4.2%) 0 (0%) 0 (0%)

CYP3A5

*1/*1 9 (3.8%) 4 (4.0%) 0 (0%)

*1/*3 56 (23.6%) 17 (17.0%) 49 (16.1%)

*3/*3 172 (72.6%) 76 (76.0%) 255 (83.9%)

*3/*6 0 (0%) 3 (3.0%) 0 (0%)

ABCB1 3435C > T

CC 55 (24.3%) Unknown Unknown

CT 111 (49.1%) Unknown Unknown

TT 60 (26.5%) Unknown Unknown

(continues)
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Table 1
(Continued)

Model building group 1
(n = 237)

Model building group 2
(n = 100)

Model validation group
(n = 304)

POR*28

CC 128 (56.4%) Unknown Unknown

CT 78 (34.4%) Unknown Unknown

TT 21 (9.3%) Unknown Unknown

Primary diagnosis

Diabetic nephropathy 48 (20.3%) 21 (21.0%) 16 (5%)

Polycystic kidney disease 39 (16.5%) 15 (15.0%) 36 (12%)

Glomerulonephritis 44 (18.6%) 15 (15.0%) 97 (32%)

Hypertensive nephropathy 42 (17.7%) 15 (15.0%) 16 (5%)

Reflux/chronic pyelonephritis 23 (9.7%) 3 (3.0%) 0 (0%)

Other 20 (8.4%) 26 (26.0%) 51 (17%)

Unknown 21 (8.9%) 5 (5.0%) 88 (29%)

Number of kidney transplantations

1 218 (92.0%) Unknown 243 (80%)

2 16 (6.8%) Unknown 49 (16%)

3 or more 3 (1.3%) Unknown 12 (4%)

RRT prior to transplantation

Haemodialysis 90 (38.0%) Unknown Unknown

Peritoneal dialysis 44 (18.6%) Unknown Unknown

Pre-emptive 102 (43.0%) Unknown Unknown

Delayed graft function

Yes 11 (4.6%) Unknown Unknown

No 224 (94.5%) Unknown Unknown

Unknown 2 (0.8%) Unknown Unknown

Co-medication

Calcium channel blockers Unknown Unknown

Amlodipine 25 (10.5%)

Nifedipine 44 (18.6%)

Barnidipine 2 (0.8%)

Time of tacrolimus concentration
measurement (days after transplantation)

23.7 (0.7–99.9) 7.2 (3–100) 30 (6–97.5)

Distribution of tacrolimus samples

Total samples 3661 866 1334

0–7 days post-transplantation 734 (20.0%) 359 (41.5%) 287 (21.5%)

8–14 days post-transplantation 642 (17.5%) 244 (28.2%) 60 (4.5%)

15–30 days post-transplantation 722 (19.7%) 113 (13.0%) 604 (45.3%)

31–100 days post-transplantation 1563 (42.7%) 150 (17.3%) 383 (28.7%)

Model building group 1 consists of patients transplanted in the Erasmus MC (Rotterdam cohort). Model building group 2 consists of patients
transplanted in the LUMC (Leiden cohort)
ASAT, aspartate aminotransferase; CRP, C-reactive protein; CYP, cytochrome P450; POR*28, P-450 oxidoreductase*28; RRT, renal replacement
therapy
*Presented as median and range over a 3-month period for continuous variables
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residual error model improved the base model. The residual
error was described with a combined additive and propor-
tional error model for the immunoassaymeasured concentra-
tions, and with a separate proportional error model for the
LC–MS/MS measured concentrations. Parameter estimates
of the base model, final model and simulation model are pre-
sented in Table 2.

Covariate analysis
The base two-compartment model with IOV on CL/F was
used as a reference for the covariate analysis. After graphical

analysis, the univariate analysis resulted in seven significant
covariates correlated with CL/F. The covariates were added
in the following order: haematocrit (dOFV 94.0), CYP3A5 ge-
notype (dOFV 74.0), albumin (dOFV 71.9), creatinine (dOFV
36.0), age (dOFV 32.7), CYP3A4 genotype (dOFV 8.2) and
body surface area (BSA; dOFV 19.2). Based on graphical anal-
ysis there was no difference in the effect on CL/F between
CYP3A5 expressers (CYP3A5*1/*1 and CYP3A5*1/*3). LBW
significantly influenced V1/F (dOFV 24.3). After forward
inclusion-backward elimination (stepwise covariate model-
lingmethod) [37], the covariates remained in the final model.

Table 2
Parameter estimates of the base model, final model and bootstrap analysis

Parameter
Base model (RSE %)
[shrinkage]

Final model (RSE %)
[shrinkage]

Starting dose model (RSE %)
[shrinkage]

tlag (h) 0.29 (17) 0.38 (49) 0.39 (12)

ka (l h–1) 3.26 (19) 3.58 (40) 3.70 (13)

CL/F (l h–1) 25.9 (3) 23.0 (3) 22.5 (3)

V1/F (l) 655 (7) 692 (8) 685 (5)

Q/F (l h–1) 10.5 (7) 11.6 (10) 10.6 (6)

V2/F (l) 6320 (14) 5340 (22) 6590 (14)

Covariate effect on CL

CYP3A5*1 - 1.63 (15) 1.62 (14)

CYP3A4*22 - 0.80 (32) 0.81 (36)

Haematocrit (l l–1) - �0.76 (11) -

Creatinine (μmol l–1) - �0.14 (26) -

Albumin (g l–1) - 0.43 (30) -

Age (years) - �0.43 (19) �0.50 (15)

BSA (m2) - 0.88 (24) 0.72 (29)

Covariate effect on V1

Lean bodyweight (kg) - 1.52 (20) -

IIV (%)

CL/F 46.3 (5) [10] 38.6 (6) [8] 39.4 (6) [10]

V1/F 50.2 (11) [19] 49.2 (7) [25] 54.0 (11) [19]

V2/F 52.3 (14) [38] 53.0 (16) [39] 53.7 (13) [40]

Q/F 79.6 (12) [29] 78.7 (11) [28] 79.6 (11) [29]

IOV (%)

CL/F 15.1 (9) 13.6 (10) 14.6 (9)

Residual variability

Proportional (%)

Immunoassay 16.6 (6) [26] 17.7 (7) [22] 16.9 (6) [25]

LC–MS/MS 24.7 (5) [12] 24.5 (5) [12] 24.4 (5) [12]

Additive Immunoassay (μg l–1) 1.02 (9) [26] 0.88 (13) [22] 1.02 (10) [25]

CL, clearance; CYP, cytochrome P450; F, bioavailability of oral tacrolimus; IIV, interindividual variability; IOV, interoccasion variability; Ka, absorption
rate constant; LC–MS/MS, liquid chromatography–tandem mass spectrometry; OFV, objective function value; Q, intercompartmental clearance of
tacrolimus; RSE, residual standard error; tlag, lag time; V1, central compartment for tacrolimus; V2, peripheral compartment for tacrolimus
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Equation (1) describes the final model for estimation of tacro-
limus CL/F (l h–1) in the first 3 months post-transplant:

CL�
F ¼ 23� 1:0; if CYP3A5�3=�3ð Þ or½

1:631; if CYP3A5�1=�3 or CYP3A5�1=�1ð Þ�
� 1:0; if CYP3A4�1 or unknownð Þ or½

0:8; if CYP3A4�22ð Þ�� Age
56

� ��0:43

� Albumin
42

� �0:43

� BSA
1:93

� �0:88

� Creatinine
135

� ��0:14

� Hematocrit
0:34

� ��0:76

(1)

The NONMEM control stream for the analysis has been in-
cluded in the Supporting Information Data S1.

Evaluation of the final model
All estimates were within the limits, given the criteria as
defined in the Methods section, with the exception of
shrinkage for V2 and Q. The population and individual pre-
dictions were evenly distributed around the line of unity.
The conditional weighted residuals were normally distrib-
uted. (Figure 1). The median and variability of the C0 fell
mostly within the corresponding simulations as shown in
the VPCs, with concentrations in simulations slightly

lower than the measured concentrations approximately
2.5–4 h after dose (Figure 2A). NPDE analysis showed ade-
quate predictive ability with distribution of the NPDEs
within an acceptable deviation from a normal distribution
(Supporting Information Data S2). Evaluation of the indi-
vidual’s influence on a change in OFV by shark plot
showed that 73% of patients had a decrease in OFV with
the final model compared with the base model. In the ex-
ternal validation, the median of the observed data was
close to the lower bound of the simulated data in the sec-
ond half of the curve. However, for an external validation
in clinical data, the median was acceptably described (Fig-
ure 2B). Unfortunately, we had no albumin levels at our
disposal in the external validation cohort and therefore
we fixed the albumin concentration to the population al-
bumin median in the external validation.

Simulations
The effects of the significant covariates on CL/F and are
shown in Figure 3. Based on the final model, CYP3A5 ex-
pressers had a 1.6 times higher CL/F. Patients carrying the
CYP3A4*22 allele had a 0.8 times lower CL/F. An increase in
age from 25 to 65 years resulted in a 34% lower CL/F, whereas
a decrease in BSA from 2.25 to 1.5 resulted in a 43% lower
CL/F. In total, these covariates explained 30% of the variabil-
ity in CL/F of tacrolimus.

Figure 1
Goodness-of-fit plots of the final model. (A) DV plotted against PRED. (B) DV plotted against IPRED. (C) The correlation of CWRES with the time
after the tacrolimus dose. (D) The correlation of CWRES with PRED. The line represents the line of identity. CWRES, conditional weighted residuals;
DV, observed concentrations; IPRED, individual predicted concentration; OBS, observed concentration; PRED, predicted concentration
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Starting dose model
The final model was used to develop a model for the starting
dose of tacrolimus after kidney transplantation. Time after
transplantation was not a significant covariate, therefore
the starting dose model was based on the same data as the fi-
nal model. As in clinical practice C0 is commonly used, and
CL is the main parameter that influences C0, only those co-
variates significantly influencing CL/F were included in the
starting dose model. The last measured albumin, serum creat-
inine and haematocrit before transplantation did not signifi-
cantly influence the CL/F, and because these parameters
change substantially after transplantation, they were also
not incorporated in the starting dose model. Equation (2) de-
scribes the estimation of tacrolimus CL/F (l h–1) right after
transplantation:

CL�
F ¼ 22:5� 1:0; if CYP3A5�3=�3ð Þ or½

1:62; if CYP3A5�1=�3 or CYP3A5�1=�1ð Þ�
� 1:0; if CYP3A4�1 or unknownð Þ or½

0:814; if CYP3A4�22ð Þ�� Age
56

� ��0:50

� BSA
1:93

� �0:72

(2)

The median and variability of the C0 fell mostly within the
corresponding simulations as shown in the VPCs, demon-
strating the good predictive performance in the internal vali-
dation (Figure 4A). In the external validation, both the
median and variability were adequately described (Figure 4B).

The required dose can be calculated using the equation:
Dose = CL/F * AUC. In our study, a tacrolimus C0 of
10 ng ml–1 corresponded with an AUC0-12h of 222 ng h ml–1,
12.5 ng ml–1 with 277 ng h ml–1, and 15 ng ml–1 with
332 ng h ml–1. This leads to equation (3) for a target C0 of
10 ng ml–1 based on a twice daily dose:

Dose mgð Þ ¼ 222 ng h ml–1� 22:5 l h–1� 1:0; if CYP3A5�3=�3ð Þ½

or 1:62; if CYP3A5�1=�3 or CYP3A5�1=�1ð Þ�

� 1:0; if CYP3A4�1 or unknownð Þ or½

0:814; if CYP3A4�22ð Þ�� Age
56

� ��0:50

� BSA
1:93

� �0:72

=1000 (3)

The NONMEM control stream for the analysis is shown in the
Supporting Information Data S1.

Simulation trial
The results are shown in Figure 5. In the standard
bodyweight-based group, 26.1% were on target (10–
15 ng ml–1) [41] vs. 33.0% in the model-based group. In the
bodyweight-based group, 44.5% were above target compared
with 36.8% in the model-based group. The median tacroli-
mus C0 in the bodyweight-based dose group was
13.9 ng ml–1, and in the model-based dose group
12.9 ng ml–1. There were fewer extreme concentrations in
the model-based dose group, with 5.2% markedly subthera-
peutic (<5 ng ml–1) compared to 7.2% in the bodyweight-
based group. In the model-based dose group, 15.6% were
markedly supratherapeutic (>20 ng ml–1) compared to
24.6% in the bodyweight-based group.

Discussion
This study demonstrates that multiple clinical (albumin,
creatinine, haematocrit), demographic (age, BSA, LBW),
and genetic (CYP3A4 and CYP3A5 genotype) factors signifi-
cantly influence the pharmacokinetics of tacrolimus in the
first 3 months following renal transplantation. Together,
these covariates explained 30% of the total variability in ta-
crolimus CL/F. A model for the starting dose was developed
incorporating CYP3A5 genotype, CYP3A4 genotype, age and
BSA. A simulation showed that more patients were on target

Figure 2
Prediction-corrected visual predictive check (VPC) showing how well
the average trend of the observations (red line) and howwell the var-
iability of the observed data (blue lines) fall within the model simu-
lated (n = 500) average trend (red shaded area) and the model
simulated variability (blue shaded areas) represented as 95% confi-
dence interval. The average and the variability of the observed data
both fall within the corresponding simulations. (A) Prediction-
corrected VPC of the final model (internal dataset). (B) Prediction-
corrected VPC of the final model (external dataset)
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when the starting dose proposed by the model was used
compared with the standard bodyweight-based dose group
(33.0% vs. 26.1%).

In this study, CYP3A5 expressers required a 1.6-fold
higher tacrolimus dose than CYP3A5 nonexpressers. This is
in line with previous research [42–46]. Patients carrying the
CYP3A4*22 allele required 20% less tacrolimus than the

CYP3A4*1 carriers independent of CYP3A5 genotype status,
confirming findings from previous research [7, 12, 47–49].
Given the wide availability of TDM, genotyping patients for
CYP3A is most useful prior to initiation of tacrolimus therapy.
Two RCTs demonstrated that optimization of the initial ta-
crolimus dose using CYP3A5 genetic testing does not im-
prove clinical outcomes when TDM is performed [24, 33].

Figure 3
Simulated plasma profiles of tacrolimus at first steady state after transplantation. (A) Simulated plasma profiles of tacrolimus for CYP3A5
nonexpressers (CYP3A5*3/*3) and CYP3A5 expressers (CYP3A5*1/*1 or CYP3A5*1/*3). (B) Simulated plasma profiles of tacrolimus for patients car-
rying the CYP3A4*1 allele and the CYP3A4*22 allele. (C) Simulated plasma profiles of tacrolimus for patients aged 25, 40, 65 and 80 years. (D)
Simulated plasma profiles of tacrolimus for patients with albumin levels of 30, 35, 40, 45 and 50 g l–1. (E) Simulated plasma profiles of tacrolimus
for patients with a BSA of 1.5, 1.75, 2 and 2.25 m2. (F) Simulated plasma profiles of tacrolimus for patients with creatinine concentrations of 50,
100, 200 and 500 μmol l–1. (G) Simulated plasma profiles of tacrolimus for patients with haematocrit levels of 0.25, 0.3, 0.35, 0.4 and 0.45 l l–1.
(H) Simulated plasma profiles of tacrolimus for patients with an LBW of 40, 50, 60, 70 and 80 kg. BSA, body surface area; CYP, cytochrome P450;
LBW, lean body weight
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However, this model is more sophisticated than basing the
dose solely on bodyweight and CYP3A5 genotype. For ex-
ample, it has been suggested that the CYP3A4*22 allele
should be included in the Clinical Pharmacogenetics Con-
sortium guidelines when considering a Caucasian popula-
tion [42, 50].

As approximately 70–80% of tacrolimus is distributed in
erythrocytes, low haematocrit will reduce the whole-blood
concentrations of tacrolimus [51]. We found in our study that
patients with a lower haematocrit had higher CL/F. This un-
derlines previous findings [12, 14, 23, 26, 27, 52, 53]. The un-
bound concentration of tacrolimus is pharmacologically
active. Haematocrit does not influence the unbound fraction.
However, low albumin concentrations will increase the un-
bound fraction [52]. In contrast to what we expected, patients
with hypoalbuminaemia had a lower tacrolimus CL/F. We did
not find a similar effect on V1, which one would expect if the
correlation were due to protein binding. A possible explana-
tion could be that the reduced CL/F is caused by an

underlying inflammatory response, as described previously
[54]. Hypoalbuminaemia can be an expression of inflamma-
tion, which can result in reduced CYP3A activity [55–57].

Figure 4
Prediction-corrected visual predictive check (VPC) of the starting
dose model. (A) Prediction-corrected VPC of the starting dose model
(internal dataset). (B) Prediction-corrected VPC of the starting dose
model (external dataset)

Figure 5
Boxplot with 10–90 percentile whiskers comparing simulations of
the standard bodyweight-based dose and a dose based on the
starting dose model. (A) Simulated predose concentrations. The me-
dian tacrolimus C0 in the bodyweight-based dose group was
13.9 ng ml–1, and in the model-based dose group 12.9 ng ml–1.
(B) Simulated AUCs. The median tacrolimus AUC in the
bodyweight-based dose group was 298.5 ng h ml–1, and in the
model-based dose group 277.9 ng hml–1. AUC, area under the curve
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Unfortunately, no C-reactive protein levels were available to
test this hypothesis. Patients with lower serum creatinine
concentrations had an increased CL/F. Tacrolimus undergoes
almost no renal elimination and therefore the explanation
for the observed association remains unclear. Some studies
have reported a significant correlation between serum creati-
nine and tacrolimus CL [58, 59], whereas others found no
such effect [39, 60, 61]. Research has shown that CYP3A5 ex-
presser genotype is associated with a greater extent of renal
tacrolimus metabolism and a lower apparent urinary tacroli-
mus CL compared with subjects having the CYP3A5*3/*3 ge-
notype. This is indicative of substantial intrarenal CYP3A5-
dependent tacrolimus metabolism. Patients with poor renal
function, and especially patients with delayed graft function,
may therefore have a lower tacrolimus CL [62]. It is unclear
whether this is caused by decreased intrinsic metabolic capac-
ity of the kidney or is an indirect effect of uraemic toxins on
hepatic metabolism [40].

Younger patients had an increased tacrolimus CL com-
pared with older patients. A few years ago, Jacobson et al. ex-
amined age-related changes in the metabolism of tacrolimus
and nicely demonstrated that older patients (>65 years) had
significantly higher weight-normalized tacrolimus C0 than
younger patients (<34 years) [38]. Other developed pharma-
cokinetic models have found a similar effect [10, 12, 63]. Re-
search has shown that basing the tacrolimus starting dose
solely on bodyweight, will result in overexposure in a consid-
erable proportion of patients [19]. BSA is a better indicator of
metabolic mass than bodyweight because it is less affected by
abnormal adipose mass. In both cohorts of the model build-
ing group this correlation between CL and BSA was seen. To
the best of our knowledge this is the first pharmacokinetic
model to incorporate BSA as a covariate.

In the prediction-corrected VPCs, the median and variabil-
ity of the observations fell for the biggest part within the corre-
sponding 95% prediction intervals of the simulations.
However, approximately 2.5–4 h postingestion the simulations
were slightly lower than the observations. This is explained by
the relatively small proportion of patients with an AUC at our
disposal (19%). Furthermore, the aim of this study was to de-
velop a pharmacokinetic model for the starting dose of tacroli-
mus. Therefore, we chose to not describe the absorption with
an over-parametrized transit compartment model.

The main strength of this study is the extensive validation
of both models. The models were validated both internally
and externally with clinical data using VPCs, and an NPDE
was performed. Another strength of the study is the large num-
ber of patients included, and the high proportion of patients
for whom an AUC was available. Furthermore, the Rotterdam
data were of high quality as they were collected in a large
RCT, rather than routinely collected clinical data. Another
strength is the usage of data collected in four different centres.
The final strength of the study is that a separate model was de-
veloped to predict the starting dose of tacrolimus.

Themain limitation of the current study is that in themodel
building cohort, three different analytical techniques were used
(ACMIA and EMIT in model building group 1, and LC–MS/MS
in model building group 2). However, to solve this issue, the re-
sidual error model was coded in such a way that it calculates
separate residuals errors for the two different bioanalytical
techniques. Furthermore, albumin concentrations were not

available in the external validation cohort and therefore we
could not validate themodel for this parameter. The final limita-
tion is the relatively large proportion of C0 (81%) in the model
building group. However, in clinical practice tacrolimus is usu-
ally dosed based on C0, rather than AUC. Furthermore, popula-
tion pharmacokinetics using nonlinear mixed effect modelling
is the optimal method to handle unevenly distributed data.

The next step is to prospectively test the starting dose
model in a pilot study. We have received approval from the
ERB and have started dosing patients based on the starting
dose algorithm presented in this manuscript [64]. If this is
successful, the final step to show the additional value of a
model based starting dose would be to prospectively test the
developed models in an RCT. The starting dose in the experi-
mental arm of such a trial should be adjusted using the
starting dosemodel, with subsequent dose adjustments based
on the final model which includes all significant covariates.

Conclusion
The population pharmacokinetics of tacrolimus during the
first 3 months following renal transplantation was ade-
quately described using the models presented in this article.
CYP3A5 expressers and CYP3A4*1 homozygotes had a higher
tacrolimus CL/F. Higher BSA, lower creatinine, younger age,
higher albumin and lower haematocrit also resulted in higher
tacrolimus CL/F. In total, these covariates explained 30% of
the variability in CL/F. By combining these clinical, demo-
graphic and genetic parameters, an individualized model
has been developed that accurately estimates the tacrolimus
CL and which can be used clinically to calculate the starting
dose and posterior dose adjustments. The tacrolimus starting
dose should be increased to 160% in individuals carrying the
CYP3A5*1 allele, whereas it should be reduced to 80% in pa-
tients carrying the CYP3A4*22 allele.
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