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Abstract: Flavonoids are an important class of secondary metabolites widely found in plants, con-
tributing to plant growth and development and having prominent applications in food and medicine.
The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids
are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises
a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies
have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In
this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble
an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone,
flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and
four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyani-
din). This review affords a comprehensive overview of the current knowledge regarding flavonoid
biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the
biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.

Keywords: flavonoids; biosynthesis; molecular structure; biosynthetic enzyme; gene regulation

1. Introduction

Flavonoids comprise a group of phenylpropanoids that, as water-soluble pigments,
are stored in the vacuoles of plant cells [1]. Except for stilbenes (a class of flavonoids),
which has a C6-C2-C6 structure (Figure 1), the basic structure of flavonoids consists of
a C6-C3-C6 carbon skeleton (Figure 1) comprising two 6-carbon benzene rings (rings
A and B) linked by a 3-carbon heterocyclic ring (ring C) [2]. Flavonoids can be classi-
fied into 12 subgroups—chalcones, stilbenes, aurones, flavanones, flavones, isoflavones,
phlobaphenes, dihydroflavonols, flavonols, leucoanthocyanidins, proanthocyanidins, and
anthocyanins (Figure 1) [3,4]—based on the degree of oxidation of the heterocyclic ring
and the number of hydroxyl or methyl groups on the benzene ring. At the same time,
various modifications (glycosylation, acylation, and others) and molecular polymerization
lead to the formation of a large number of flavonoid compounds [5,6]. To date, more than
9000 plant flavonoids have been isolated and identified [7].

Some flavonoids play an important role in plant development and defense. Flavonoids
constitute one of the main pigments in plants, such as anthocyanins (red, orange, blue, and
purple pigments); chalcones and aurones (yellow pigments); and flavonols and flavones
(white and pale-yellow pigments), which impart on plants a wide variety of colors [8].
Flavonoids, as phytoalexins or antioxidants, have reactive oxygen species (ROS) scavenging
ability [9] and protect plants against damage from biotic and abiotic stresses, including UV
irradiation, cold stress, pathogen infection, and insect feeding [10–12]. In plants, flavonoids
can also act as signaling molecules, attracting insects for pollination and participating
in auxin metabolism [13]. Plant flavonoids also have widespread use in daily life, such
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as for food and medicinal purposes. For instance, anthocyanins and proanthocyanidins
are important edible pigments and taste-regulating components in food and wine [4],
while plant flavonoids, administered as active ingredients, can help delay the aging of
the nervous system, immune organs, reproductive system, liver, and skin, and also con-
tribute to the prevention of osteoporosis, cardiovascular disease, Alzheimer’s disease, and
breast cancer [14–16].
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Flavonoids have long been a major focus of research into secondary metabolism.
On PubMed, performing a search using ‘flavonoid’ as a search term retrieves more than
10,000 articles in both 2019 and 2020. Recent decades have witnessed a considerable
renewed interest in flavonoid biosynthesis in plants. In this review, we present a systematic
summary of what is known of the flavonoid biosynthetic pathway in plants, presenting
a model of flavonoid biosynthesis that includes eight branches and four intermediate
metabolites (Figure 2), thereby providing a theoretical basis for the genetic improvement
of flavonoid metabolism as well as improving our understanding of their functions and
potential uses.
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Figure 2. The flavonoid biosynthetic pathway in plants contains eight branches (represented by the eight colored boxes)
and four important intermediate metabolites (gray boxes). The enzyme names and flavonoid compounds are abbreviated as
follows: PAL, phenylalanine ammonia lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; ACCase,
acetyl-CoA carboxylase; STS, stilbene synthase; CHS, chalcone synthase; CHR, chalcone reductase; CH2′GT, chalcone
2′-glucosyltransferase; CH4′GT, chalcone 4′-O-glucosyltransferase; AS, aureusidin synthase; CHI, chalcone isomerase;
FNS, flavone synthase; CLL-7, cinnamate–CoA ligase; F6H, flavonoid 6-hydroxylase; F8H, flavonoid 8-hydroxylase; IFS,
isoflavone synthase; HID, 2-hydroxyisoflavanone dehydratase; FNR, flavanone 4-reductase; F3H, flavanone 3-hydroxylase;
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F3′5′H, flavanone 3′,5′-hydroxylase; DHK, dihydrokaempferol; DHQ, dihydroquercetin; DHM, dihydromyricetin; FLS,
flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; UFGT, UDP-glucose flavonoid 3-O-
glucosyltransferase; OMT, O-methyl transferases; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase.

2. Flavonoid Biosynthesis in Plants
2.1. The General Phenylpropanoid Pathway

Flavonoids are generated from phenylalanine through the phenylpropanoid path-
way, while phenylalanine is synthesized via the shikimate pathway [17]. The first three
steps in the phenylpropanoid pathway are referred to as the general phenylpropanoid
pathway [1]. In this pathway, phenylalanine, an aromatic amino acid, is converted to
p-coumaroyl-CoA through the activity of phenylalanine ammonia lyase (PAL), cinnamic
acid 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL). PAL catalyzes the first
committed step in the general phenylpropanoid pathway, namely, the deamination of
phenylalanine to trans-cinnamic acid [18]. Additionally, PAL plays a key role in mediating
carbon flux from primary to secondary metabolism in plants [19]. PAL activity has been
linked to the concentrations of anthocyanins and other phenolic compounds in strawberry
fruit [20] while StlA, a Photorhabdus luminescens PAL-encoding gene, was shown to be
involved in the production of a stilbene antibiotic [18]. The second step in the general
phenylpropanoid pathway involves the activity of C4H, a cytochrome P450 monooxy-
genase in plants, which catalyzes the hydroxylation of trans-cinnamic acid to generate
p-coumaric acid. This is also the first oxidation reaction in the flavonoid synthesis path-
way [21]. In Populus trichocarpa and Arabidopsis thaliana, the expression level of C4H has
been associated with the content of lignin, an important phenylpropanoid metabolite [1].
In the third step of the general phenylpropanoid pathway, 4CL catalyzes the formation
of p-coumaroyl-CoA by the addition of a co-enzyme A (CoA) unit to p-coumaric acid.
In plants, the 4CL gene usually exists as a family the members of which mostly display
substrate specificity. Of the four 4CL genes in A. thaliana, At4CL1, At4CL2, and At4CL4 are
involved in lignin biosynthesis, while At4CL3 has a role in flavonoid metabolism [22]. In
plants, the activity of 4CL is positively correlated with the anthocyanin and flavonol content
in response to stress [23], while PAL, C4H, and 4CL are often coordinately expressed [24].
The general phenylpropanoid pathway is common to all the downstream metabolites, such
as flavonoids and lignin. In this review, we focus on the flavonoid biosynthetic pathway,
and present a model that includes eight branches—the biosynthesis of stilbenes, aurones,
flavones, isoflavones, flavonols, phlobaphenes, proanthocyanidins, and anthocyanins—and
four important intermediate metabolites, namely, chalcones, flavanones, dihydroflavonols,
and leucoanthocyanidins (Figure 2).

2.2. Chalcone: The First Key Intermediate Metabolite in Flavonoid Biosynthesis

The entry of p-coumaroyl-CoA into the flavonoid biosynthesis pathway represents
the start of the synthesis of specific flavonoids, which begins with chalcone formation [2].
One molecule of p-coumaroyl-CoA and three molecules of malonyl-COA, derived from
acetyl-CoA via the activity of acetyl-CoA carboxylase (ACCase), generate naringenin chal-
cone (4,2′,4′,6′-tetrahydroxychalcone [THC] [chalcone]) through the action of chalcone
synthase (CHS) [25]. CHS, a polyketide synthase, is the key and first rate-limiting enzyme
in the flavonoid biosynthetic pathway [26,27]. In tomato (Solanum lycopersicum), RNA
interference (RNAi)-mediated suppression of CHS leads to a reduction in total flavonoid
levels [28]. Chalcone reductase (CHR), an aldo-keto reductase superfamily member, acts on
an intermediate of the CHS reaction, catalyzing its C-6′ dehydroxylation, yielding isoliquir-
itigenin (4,2′,4′-trihydroxychalcone [deoxychalcone]) [29]. Overexpressing the CHR1 gene
from Lotus japonicus in petunia leads to the formation of isoliquiritigenin and a decrease
in anthocyanin content [30]. Because THC is readily converted to a colorless naringenin
under the action of chalcone isomerase (CHI) or through spontaneous isomerization, it is
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frequently converted to the more stable THC 2′-glucoside (isosalipurposide [ISP]) under the
action of chalcone 2′-glucosyltransferase (CH2′GT) in plant vacuoles [31,32]. Differences
in CH2′GT gene expression or enzymatic activity might account for the difference in ISP
content in the petals of different varieties of yellow carnation [33]. Chalcone is the first key
intermediate product in the flavonoid metabolic pathway, providing a basic skeleton for
downstream flavonoid synthesis. Chalcone (THC, isoliquiritigenin, and ISP, among others)
is also an important yellow pigment in plants [31].

2.3. Stilbene Biosynthesis: The First Branch of the Flavonoid Biosynthesis Pathway

Stilbene synthase (STS) also uses p-coumaroyl-CoA and malonyl-CoA as substrates
and catalyzes the formation of the stilbene backbone, such as resveratrol [34,35]. The
stilbene pathway is the first branch of the flavonoid biosynthesis pathway and exists
only in a few plants, such as grapevine, pine, sorghum, and peanut [36,37]. STS, a mem-
ber of the type III polyketide synthase family, is the first and key enzyme in stilbene
biosynthesis, and is closely related to, and evolved from, CHS [34]. However, STS gen-
erates a compound with a different C14 backbone (C6-C2-C6) along with the release of
4 carbon dioxide (CO2) molecules, while CHS catalyzes the formation of C15 skeletons
(C6-C3-C6), with only 3 molecules of CO2 being released [38]. In Vitis amurensis calli,
the overexpression of Picea jezoensis PjSTS1a, PjSTS2, and PjSTS3 greatly increases the
total stilbene content [39]. Most plant stilbenes are derivatives of the basic unit trans-
resveratrol (3,5,4′-trihydroxy-trans-stilbene) that has undergone various modifications,
such as isomerization, glycosylation, methylation, oligomerization, and prenylation [36].
Trans-resveratrol can be converted to polydatin, pterostilbene, and piceatannol by gly-
cosylation, methylation, and hydroxylation, respectively [35]. In peanuts, the major
prenylated stilbene compounds are trans-3′-(3-methyl-2-butenyl)-resveratrol and trans-
arachidin-1/2/3 [40]. Viniferin and cis-stilbene are derived from the oligomerization and
isomerization of trans-resveratrol, respectively [36,41].

2.4. Aurone Biosynthesis: The Bright Yellow Pigment Pathway

Aurones, important yellow pigments in plants, comprise a class of flavonoids derived
from chalcone [42]. Aurone pigments produce brighter yellow coloration than chalcones
and are responsible for the golden color in some popular ornamental plants [31]. Au-
rones are found in relatively few plant species, such as snapdragon, sunflowers, and
coreopsis [42,43]. THC is the direct substrate for aurone biosynthesis [44]. First, chalcone
4′-O-glucosyltransferase (CH4′GT) catalyzes the formation of THC 4′-O-glucoside from
THC in the plant cytoplasm. The former is then transferred to the vacuole and converted
to aureusidin 6-O-glucoside (aurone) by the action of aureusidin synthase (AS) [45,46].
AS can also catalyze the formation of aureusidin directly from THC; aureusidin and its
glycosides are the main pigments in the yellow petal of Antirrhinum majus and Dahlia
variabilis [47]. 2′,4′,6′,3,4-Pentahydroxychalcone (PHC, a type of chalcone) can also be con-
verted into aurones (bracteatin and bracteatin 6-O-glucoside) by CH4′GT and/or AS [31,47].
CH4′GT and CHI can both use chalcone as a substrate, and 4′-gulcosylation by CH4′GT
not only provides a direct precursor for aurone synthesis, but also inhibits the isomer-
ization activity of CHI by repressing key interactions between CHI and the 4′-hydroxy
group of chalcones [48]. AS, a homolog of plant polyphenol oxidase (PPO), catalyzes the
4-monohydroxylation or 3,4-dihydroxylation of ring B to produce aurone, followed by
oxidative cyclization by oxygenation [49]. Both in Ipomoea nil [50] and Torenia [45], the
co-overexpression of the AmCH4′GT and AmAS1 genes leads to the accumulation of aurone
6-O-glucoside. Furthermore, various classical substitution patterns, such as hydroxylation,
methoxylation, and glycosylation, lead to the formation of a series of aurone compounds,
with over 100 structures having been reported to date [48].
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2.5. Flavanones: The Central Branch Point in the Flavonoid Biosynthesis Pathway

CHI catalyzes the intramolecular cyclization of chalcones to form flavanones in the
cytoplasm, resulting in the formation of the heterocyclic ring C in the flavonoid path-
way [2,51]. In general, CHIs can be classified into two types in plants according to the
substrate utilized [52]. Type I CHIs, ubiquitous in vascular plants, are responsible for the
conversion of THC into naringenin [53]. Type II CHIs are found primarily in leguminous
plants and can utilize either THC or isoliquiritigenin to generate naringenin and liquiriti-
genin [1]. Apart from these two types, two other types of CHI exist (type III and type IV),
which retain the catalytic activity of the CHI fold but not chalcone cyclization activity [54].
In bacteria, some CHI-like enzymes catalyze a reversible reaction in the flavonoid pathway
that converts flavanones to chalcones [8]. CHI is the second key rate-limiting enzyme in
the flavonoid biosynthesis pathway [52]. The expression level of CHI was found to be
positively correlated with flavonoid content in A. thaliana [55]. In both Dracaena cambodiana
and tobacco, the overexpression of DcCHI1 or DcCHI4 leads to increased flavonoid accumu-
lation [53]. In transgenic tobacco plants, RNAi-mediated suppression of CHI enhances the
level of chalcone in pollen [56]. Furthermore, naringenin can be converted to eriodictyol
and pentahydroxyflavanone (two flavanones) under the action of flavanone 3′-hydroxylase
(F3′H) and flavanone 3′,5′-hydroxylase (F3′5′H) at position C-3 and/or C-5 of ring B [8].
Flavanones (naringenin, liquiritigenin, pentahydroxyflavanone, and eriodictyol) represent
the central branch point in the flavonoid biosynthesis pathway, acting as common sub-
strates for the flavone, isoflavone, and phlobaphene branches, as well as the downstream
flavonoid pathway [51,57].

2.6. Flavone Biosynthesis

Flavone biosynthesis is an important branch of the flavonoid pathway in all higher
plants. Flavones are produced from flavanones by flavone synthase (FNS); for instance,
naringenin, liquiritigenin, eriodictyol, and pentahydroxyflavanone can be converted to
apigenin, dihydroxyflavone, luteolin, and tricetin, respectively [58–60]. FNS catalyzes the
formation of a double bond between position C-2 and C-3 of ring C in flavanones and can be
divided into two classes—FNSI and FNSII [61]. FNSIs are soluble 2-oxoglutarate- and Fe2+-
dependent dioxygenases mainly found in members of the Apiaceae [62]. Meanwhile, FNSII
members belong to the NADPH- and oxygen-dependent cytochrome P450 membrane-
bound monooxygenases and are widely distributed in higher plants [63,64]. FNS is the
key enzyme in flavone formation. Morus notabilis FNSI can use both naringenin and
eriodictyol as substrates to generate the corresponding flavones [62]. In A. thaliana, the
overexpression of Pohlia nutans FNSI results in apigenin accumulation [65]. The expression
levels of FNSII were reported to be consistent with flavone accumulation patterns in the
flower buds of Lonicera japonica [61]. In Medicago truncatula, meanwhile, MtFNSII can act on
flavanones, generating intermediate 2-hydroxyflavanones (instead of flavones), which are
then further converted into flavones [66]. Flavanones can also be converted to C-glycosyl
flavones (Dong and Lin, 2020). Naringenin and eriodictyol are converted to apigenin
C-glycosides and luteolin C-glycosides under the action of flavanone-2-hydroxylase (F2H),
C-glycosyltransferase (CGT), and dehydratase [67].

Scutellaria baicalensis is a traditional medicinal plant in China and is rich in flavones such
as wogonin and baicalein [17]. There are two flavone synthetic pathways in S. baicalensis,
namely, the general flavone pathway, which is active in aerial parts; and a root-specific
flavone pathway [68]), which evolved from the former [69]. In this pathway, cinnamic
acid is first directly converted to cinnamoyl-CoA by cinnamate-CoA ligase (SbCLL-7)
independently of C4H and 4CL enzyme activity [70]. Subsequently, cinnamoyl-CoA
is continuously acted on by CHS, CHI, and FNSII to produce chrysin, a root-specific
flavone [69]. Chrysin can further be converted to baicalein and norwogonin (two root-
specific flavones) under the catalysis of respectively flavonoid 6-hydroxylase (F6H) and
flavonoid 8-hydroxylase (F8H), two CYP450 enzymes [71]. Norwogonin can also be
converted to other root-specific flavones—wogonin, isowogonin, and moslosooflavone—
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under the activity of O-methyl transferases (OMTs) [72]. Additionally, F6H can generate
scutellarein from apigenin [70]. The above flavones can be further modified to generate
additional flavone derivatives.

2.7. Isoflavone Biosynthesis

The isoflavone biosynthesis pathway is mainly distributed in leguminous plants [73].
Isoflavone synthase (IFS) leads flavanone to the isoflavone pathway [74] and appears
to be able to use both naringenin and liquiritigenin as substrates to generate 2-hydroxy-
2,3-dihydrogenistein and 2,7,4′-trihydroxyisoflavanone, respectively [75,76]. These are
further converted to isoflavone genistein and daidzein under the action of hydroxy-
isoflavanone dehydratase (HID) [77]. Liquiritigenin can also be first converted to 6,7,4′-
trihydroxyflavanone by F6H, and then to glycitein (an isoflavone) through the catalytic
activities of IFS, HID, and isoflavanone O-methyl transferase (IOMT) [78]. IFS and HID
catalyze two reactions to produce isoflavone, that is, the formation of a double bond be-
tween positions C-2 and C-3 of ring C and a shift of ring B from position C-2 to C-3 of
ring C [79,80]. IFS, a cytochrome P450 hydroxylase, is the first and key enzyme in the
isoflavone biosynthesis pathway [81]. The overexpression of Glycine max IFS in Allium cepa
led to the accumulation of the isoflavone genistein in in vitro tissues [82]. Knocking out
the expression of the IFS1 gene using CRISPR/Cas9 led to a significant reduction in the
levels of isoflavones such as genistein [58]. Various modifications further generate specific
isoflavones. Daidzein is converted to puerarin or formononetin by a specific glycosyltrans-
ferase (GT) or IOMT [79,83]. Malonyltransferase (MT) can act on isoflavones (genistein,
daidzein, and glycitein) to generate the corresponding malonyl-isoflavones (malonylgenis-
tein, malonyldaidzein, and malonylglycitein) [80]. Moreover, the successive enzymatic
reactions catalyzed by IOMT, isoflavone reductase (IFR), isoflavone 2′-hydroxylase (I2′H)
or isoflavone 3′-hydroxylase (I3′H), vestitone reductase (VR), pterocarpan synthase (PTS),
and 7,2′-dihydroxy-4′-methoxyisoflavanol dehydratase (DMID) lead to the accumulation
of isoflavonoids such as maackiain and pterocarpan [1,84,85].

2.8. Phlobaphene Biosynthesis

Besides flavones and isoflavones, the biosynthesis of phlobaphenes also uses fla-
vanones as substrates [86]. Phlobaphenes are reddish insoluble pigments in plants [87]
and are predominantly found in seed pericarp, cob-glumes, tassel glumes, husk, and floral
structures of plants such as maize and sorghum [88–90]. Flavanone 4-reductase (FNR)
acts on flavanones (naringenin and eriodictyol) to form the corresponding flanvan-4-ols
(apiforol and luteoforol), which are the immediate precursors of pholbaphenes [91,92].
Apiforol and luteoforol are then further polymerized to generate phlobaphenes [57]. FNR
is a NADPH-dependent reductase and drives the substitution of an oxygen with a hydroxyl
group at position C-4 of ring C [89]. FNR is also a dihydroflavonol 4-reductase (DFR)-like
enzyme, and can convert dihydroflavonol to leucoanthocyanidin [93]. In maize, DFR and
FNR correspond to the same enzyme [91]. The inhibition of flavanone 3-hydroxylase (F3H)
activity promotes the conversion of flavanone to flavan-4-ol through the catalytic activity
of FNR in Sinningia cardinalis and Zea mays [94].

2.9. Dihydroflavonol: A Key Branch Point in the Flavonoid Biosynthesis Pathway

Dihydroflavonol (or flavanonol) is an important intermediate metabolite and a key
branch point in the flavonoid biosynthesis pathway. Dihydroflavonol is generated from fla-
vanone under the catalysis of F3H and is the common precursor for flavonol, anthocyanin,
and proanthocyanin [95,96]. F3H acts on naringenin, eriodictyol, and pentahydroxyfla-
vanone to form the corresponding dihydroflavonols, namely, dihydrokaempferol (DHK),
dihydroquercetin (DHQ), and dihydromyricetin (DHM) [97,98]. Moreover, DHK can be
converted to DHQ by F3′H and DHK, while DHQ can generate DHM under the action
of F3′5′H [51].
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F3H, a FeII/2-oxoglutarate-dependent dioxygenase, catalyzes the dydroxylation of
flavonones at position C-3 and is the key enzyme in dihydroflavonol synthesis [99]. Because
flavanones are also the substrates in the flavone, isoflavone, and phlobaphene biosynthetic
pathways, F3H competes with FNS, IFS, and FNR for these common substrates [98]. The
overexpression of F3H leads to the generation of DHK in tobacco and yeast [100]. In
Silybum marianum, F3H was shown to catalyze the synthesis of taxifolin (DHQ) from
eriodictyol [101], while the expression of AgF3H was significantly positively correlated
with DHM content in different tissues of Ampelopsis grossedentata [102].

F3′H and F3′5′H, both cytochrome P450 enzymes, catalyze the hydroxylation of
flavonoids at position C-3′ or C-3′ and C-5′ of ring B, respectively, so as to the forma-
tion of substrates of different pathways [8,103]. F3′H and F3′5′H generate flavanones
with differing degrees of hydroxylation, resulting in naringenin, eriodictyol, and pentahy-
droxyflavanone entering different flavone synthetic pathways [60]. F3′H catalyzes the
production of DHQ, which is the synthetic precursor of cyanidin in the anthocyanidin
pathway and quercetin in the flavonol pathway [104]. DHM, synthesized by F3′5′H, is the
direct precursor of delphinidin in the anthocyanidin pathway and myricetin in the flavonol
pathway, while DHK can be converted to pelargonidin (an anthocyanidin) and kaempferol
(a flavonol) [3,98]. Thus, F3′H and F3′5′H are the determinants of flavonoid composition
in many plants and the key enzymes in flavonoid biosynthesis. The ectopic expression
of apple F3′H genes increases the levels of quercetin and cyanidin in Arabidopsis and
tobacco [105]. Meanwhile, delphinidin levels are decreased while those of cyanidin are
increased in a natural Glycine soja f3′5′h mutant [106].

2.10. Flavonol Biosynthesis

Flavonols are flavonoid metabolites that are hydroxylated at position C-3 of ring C [51].
Their C-3 position is highly prone to glycosidation; accordingly, they often exist in plant
cells in glycosidated forms [98]. The dihydroflavonols DHK, DHQ, and DHM are respec-
tively converted to the flavonols kaempferol, quercetin, and myricetin by flavonol synthase
(FLS) [107]. F3′H can also catalyze the conversion of kaempferol to quercetin, while F3′5′H
activity generates myricetin from kaempferol or quercetin [108]. Kaempferol, quercetin,
and myricetin are further modified to various flavonol derivatives through the activities of
enzymes such as methyl transferases, GTs, and acyltransferase (AT), among others [60,109].
FLS, a FeII/2-oxoglutarate-dependent dioxygenase, is the key and rate-limiting enzyme in
the flavonol biosynthesis pathway [110] and catalyzes the desaturation of dihydroflavonol
to form a C-2 and C-3 double bond in ring C [111]. The ectopic expression of Camellia
sinensis FLSa/b/c in tobacco promoted the accumulation of kaempferol and a decrease in
anthocyanin content in flowers [112]. Meanwhile, the overexpression of FLS of Allium cepa
in tobacco enhanced quercetin signals in the roots [113].

2.11. Leucoanthocyanidin and Anthocyanin Biosynthesis

DFR, a NADPH-dependent reductase, is the key enzyme in flavonoid metabolism
in the anthocyanidin and proanthocyanidin pathway and catalyzes the formation of a
hydroxyl group at position C-4 of ring C [114–116]. DFR catalyzes the reduction of dihy-
droflavonols, DHK, DHQ, and DHM to produce their respective leucoanthocyanidins (also
known as flavan-3,4-ols or flavan-diols), leucopelargonidin, leucocyanidin, and leucodel-
phinidin [117]. Because DHK, DHQ, and DHM are very similar in structure, differing only
in the numbers of hydroxyl groups on the B ring (which is not the site of enzymatic action),
DFR can use all three as substrates in most plants [118]. In Vitis vinifera, DFR converts DHK
to leucopelargonidin [119]. The overexpression of Brassica oleracea DRF1 was shown to
promote anthocyanin accumulation, whereas the virus-induced silencing of the BoDRF1
gene elicited the opposite effect [120]. DFR and FLS compete for common dihydroflavonol
substrates and DFR and FLS inhibit each other’s transcription [121].

Leucoanthocyanidin is an important intermediate product in the flavonoid pathway
and the direct synthetic precursor of anthocyanidin and proanthocyanidin. The colorless
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leucopelargonidin, leucocyanidin, and leucodelphinidin are transformed into the corre-
sponding anthocyanidins (the colored pelargonidin, cyanidin, and delphinidin) under the
catalysis of anthocyanidin synthase (ANS), also known as leucoanthocyanidin dioxygenase
(LDOX) [122,123]. Like FLS, F3H, and FNSI, ANS/LDOX is also a FeII/2-oxoglutarate-
dependent dioxygenase, and catalyzes the dehydroxylation of C-4 and the formation of
a double bond in ring C [3,124]. ANS overexpression in strawberry enhanced the antho-
cyanin concentration [125]. In plants, unstable anthocyanidins are converted to stable
anthocyanins, namely, pelargonidin-3-glucoside, cyanidin-3-glucoside, and delphinidin-3-
glucoside, by UDP-glucose flavonoid 3-glucosyltransferase (UFGT) [126,127]. OMT can fur-
ther catalyze the conversion of cyanidin-3-glucoside to peonidin glycoside and delpinidin-
3-glucoside to petunidin glycoside or malvidin glycoside [118,128]. The pelargonidin,
cyanidin, peonidin, delphinidin, petunidin, and malvidin glycosides constitute six major
categories of anthocyanins and their further modifications (acylation, glycosylation, and
methylation) lead to the formation of various anthocyanins [5,118,127].

In addition to the above-mentioned anthocyanins, a rare type of anthocyanin, 3-
deoxyanthocyanidin, also exists in plants [129]. The biosynthesis of 3-deoxyanthocyanidins
is similar to that of the phlobaphenes, and they both use flavan-4-ols (luteoferol and
apiferol) as substrates [130]. Luteoforol and apiferol are respectively transformed into
3-deoxyanthocyanidins (luteolinidin and apigeninidin) by an unknown enzyme, likely
with anthocyanidin synthase-like activity [57,94]. Luteolinidin and apigeninidin are fur-
ther converted into 3-deoxyanthocyanidin glycosides (3-deoxyanthocyanins) by GT [131].
Unlike anthocyanidins, 3-deoxyanthocyanidins lack a hydroxyl group at position C-3 of
ring C, giving them greater stability under temperature fluctuations as well as greater
color stability [132,133]. In plants, 3-deoxyanthocyanidins mainly exist in the aglycone
form, and not as 3-deoxyanthocyanins, whereas the anthocyanidins primarily exist in
glycoside form (anthocyanins) [133]. 3-Deoxyanthocyanidins have been found in many
plants, including sorghum and maize [130,134]; however, their biosynthetic pathway needs
to be further analyzed.

2.12. Proanthocyanidin Biosynthesis

Proanthocyanidins, also known as condensed tannins, are an important type of
flavonoid synthesized from leucoanthocyanidins and anthocyanidins. Leucoanthocyani-
din reductase (LAR) converts leucoanthocyanidins, leucopelargonidin, leucocyanidin,
and leucodelphinidin to trans-flavan-3-ols, afzelechin, catechin, and gallocatechin, respec-
tively [135,136]. LAR, a NADPH-dependent reductase, drives the C-4 dehydroxylation of
the C ring [137]. Anthocyanidin reductase (ANR) can convert anthocyanidins, pelargoni-
din, cyanidin, and delphinidin, into the corresponding cis-flavan-3-ols, epiafzelechin,
epicatechin, and epigallocatechin [138]. ANR is also a NADPH-dependent reductase and
catalyzes the removal of a double bond at ring C [139]. Flavan-3-ols, trans-flavan-3-ols, and
cis-flavan-3-ols are the basic proanthocyanidin units. Proanthocyanidins are synthesized
via the polymerization (or condensation) of flavan-3-ols [140,141]. Colorless proantho-
cyanidins are transferred to plant vacuoles [142] and can be oxidized to generate colored
tannins (yellow to brown) by polyphenol oxidase (PPO) [135]. LAR and ANR are the key
and rate-limiting enzymes in proanthocyanidin biosynthesis. In Populus tomentosa, the
overexpression of LAR3 greatly increased the proanthocyanidin levels [143]. The ectopic
expression of OvBAN, an ANR gene from Onobrychis viviaefolia, in alfalfa (Medicago sativa)
promoted ANR enzyme activity and enhanced proanthocyanidin content [144]. Because
they use the same substrates, a competitive relationship exists between the proanthocyani-
din and anthocyanin biosynthesis pathways [145].

3. Transcriptional Regulation of Flavonoid Biosynthesis in Plants

Transcriptional control plays a central role in the modulation of flavonoid biosyn-
thesis (Figure 3). The MBW complex, composed of MYB, bHLH, and WD40, is the main
transcriptional regulator in flavonoid biosynthesis [146]. MYB transcription factors have a
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conserved MYB domain in the N-terminus that is required for DNA binding and interaction
with other proteins [147]. MYB proteins can be divided into four groups—1R-MYB/MYB-
related, R2R3-MYB, 3R-MYB, and 4R-MYB—according to the number and position of MYB
domain repeats [117]. Members of the R2R3-MYB group are mainly involved in regulating
flavonoid metabolism [148]. The overexpression of AN4 (a R2R3-MYB-encoding gene) can
enhance anthocyanin biosynthesis by promoting the expression of anthocyanin biosyn-
thesis genes, such as CHS, CHI, F3H, and DFR [149]. In Cucumis sativus, the R2R3-MYB
transcription factor CsMYB60 induced the expression of CsFLS and CsLAR by binding
to their promoters, thereby promoting flavonol and proanthocyanidin biosynthesis [150].
MYB transcription factors also act as repressors in the regulation of flavonoid biosynthesis.
For instance, in the apple (Malus domestica), MdMYB15L was reported to interact with
MdbHLH33 and inhibit the promotion of the MdbHLH33-MYB-WD40 (MBW) complex,
thereby also suppressing anthocyanin biosynthesis [151].
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bHLH transcription factors have been shown to participate in the regulation of
flavonoid biosynthesis. The transient expression of DhbHLH1 induces anthocyanin synthe-
sis in the white petals of Dendrobium hybrids [152]. In Dianthus caryophyllus, meanwhile,
the “red speckles and stripes on white petals” phenotype results from the local expression
of bHLH, which promotes the expression of DFR and that of downstream enzymes in the
anthocyanin biosynthetic pathway [153].

WD40, widely present in eukaryotic cells, contains multiple tandem repeats of a WD
motif and interacts with other proteins through its WD domain [1]. Generally, WD40 does
not directly bind to target gene promoters, forming instead a complex with MYB and bHLH
in the regulation of flavonoid biosynthesis. The WD40 protein TTG1 regulated anthocyanin
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metabolism through MYB/bHLH/TTG1 complex [154]. Moreover, in tomato, the WD40
protein SlAN11 was shown to induce anthocyanin and proanthocyanidin biosynthesis and
limit flavonol accumulation by repressing FLS expression [155].

Also in tomato, besides the MBW complex, the transcription factors NF-YA, NF-YB,
and NF-YC can reportedly form a NF-Y protein complex that binds to the promoter of the
CHS1 gene, thereby regulating flavonoid synthesis and affecting tomato peel color [25].
Additionally, the ethylene response factors Pp4ERF24 and Pp12ERF96, through interacting
with PpMYB114, potentiated the PpMYB114-mediated accumulation of anthocyanin in
pear [156]. In the tea plant, UV-B irradiation-mediated bZIP1 upregulation leads to the
promotion of flavonol biosynthesis by binding to the promoters of MYB12, FLS, and
UGT and activating their expression; under shading, meanwhile, PIF3 inhibited flavonol
accumulation by activating the expression of MYB7, which encodes a transcriptional
repressor [157]. In peach, NAC1 was shown to regulate anthocyanin pigmentation through
activating the transcription of MYB10.1, while NAC1 was repressed by SPL1 [158]. In
the pear, PyWRKY26 interacts with PybHLH3 and activates the expression of PyMYB114,
resulting in anthocyanin biosynthesis [159]. The BTB/TAZ protein MdBT2 represses
anthocyanin biosynthesis, and MdGRF11 interacts with, and negatively regulates, MdBT2,
leading to an increase in the expression of anthocyanin biosynthesis-related genes via the
enhancement of the abundance of MdMYB1 protein [160]. SlBBX20 can bind the SlDFR
promoter and directly activate its expression, which augments anthocyanin biosynthesis,
while SlCSN5, a subunit of the COP9 signalosome, induces the degradation of SlBBX20
by enhancing its ubiquitination [161]. MdARF19 modulates anthocyanin biosynthesis by
binding to the promoter of MdLOB52 and further activating its expression [162]. BES1,
a positive regulator in brassinosteroid signaling, inhibits the transcription of the MYB
proteins MYB11, MYB12, and MYB111, thereby decreasing flavonol biosynthesis [163]

4. Perspectives

Flavonoids are abundantly present in land plants where they have diverse functions; as
dietary components, they also exert a variety of beneficial effects in humans [2,16,164,165].
Elucidating the pathways involved in the biosynthesis of flavonoids will aid in better under-
standing their functions and potential uses. For example, the heterologous transformation
of F3′5′H from Campanula medium (Canterbury bells) and A3′5′GT (anthocyanin 3′,5′-O-
glucosyltransferase gene) from Clitoria ternatea (butterfly pea) driven by the native (Chrysan-
themum morifolium) F3H promoter induced the synthesis of delphinidin and generated
true blue Chrysanthemums [3,6,166]. Flavonoids have also been produced for food and
medicine in engineered bacteria. The functional expression of plant-derived F3H, FLS, and
OMT in Corynebacterium glutamicum yielded pterostilbene, kaempferol, and quercetin at
high concentrations and purity [167]. In Escherichia coli, cyanidin 3-O-glucoside was gener-
ated through the induction of ANS and 3GT using a bicistronic expression cassette [168].
These observations highlight the important application and economic value of deciphering
the pathways involved in flavonoid biosynthesis.

Over the past few decades, flavonoid biosynthesis has been among the most inten-
sively investigated secondary metabolic pathways in plant biology, and a considerable
number of studies have contributed to revealing the exquisite mechanisms underlying the
biosynthesis of flavonoids in plants [1,135]. However, several questions remain outstand-
ing. For example, no comprehensive model exists as yet regarding which enzymes catalyze
the formation of 3-deoxyanthocyanidin; additionally, the biosynthesis of phlobaphenes
needs to be further improved.

Plants are rich in diversity and often produce specific secondary metabolites. Recent
studies have identified a unique flavone synthesis pathway in the root of the medic-
inal plant S. baicalensis, which generated root-specific flavones such as baicalein and
norwogonin [68,70,71]. Accordingly, whether specific flavonoid biosynthesis pathways and
metabolites also exist in other plants warrants further investigation, so as to continuously
improve our knowledge of the flavonoid biosynthesis network.
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In addition, combined multi-omics (genomics, transcriptomics, proteomics, and
metabolomics) analysis provides a direction for the study of plant synthetic biology. In
rice, a flavonoid 7-O-glycosyltransferase (OsUGT706C2) gene with a role in modulating
flavonol (kaempferol) and flavone (luteolin and chrysoeriol) metabolism was identified by
metabolite-based genome-wide association analysis [169]. Proteomics and transcriptomics,
complemented with gas chromatography-mass spectrometry (GC-MS) analysis, aided in
elucidating the flavonoid metabolic pathway during seed ripening in Camellia oleifera [170].
The constantly evolving multi-omics technology combined with big data analysis will likely
lead to the identification of novel flavonoids and increased knowledge of the flavonoid
biosynthesis network.
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