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Characterization and prediction of the “flowability” of powders
are of paramount importance in many industries. However, our
understanding of the flow of powders like cement or flour is
sparse compared to the flow of coarse, granular media like sand.
The main difficulty arises because of the presence of adhesive
forces between the grains, preventing smooth and continuous
flows. Several tests are used in industrial contexts to probe and
quantify the “flowability” of powders. However, they remain
empirical and would benefit from a detailed study of the physics
controlling flow dynamics. Here, we attempt to fill the gap by
performing intensive discrete numerical simulations of cohesive
grains flowing down an inclined plane. We show that, contrary
to what is commonly perceived, the cohesive nature of the flow
is not entirely controlled by the interparticle adhesion, but that
stiffness and inelasticity of the grains also play a significant role.
For the same adhesion, stiffer and less dissipative grains yield a
less cohesive flow. This observation is rationalized by introduc-
ing the concept of a dynamic, “effective” adhesive force, a single
parameter, which combines the effects of adhesion, elasticity, and
dissipation. Based on this concept, a rheological description of the
flow is proposed for the cohesive grains. Our results elucidate
the physics controlling the flow of cohesive granular materials,
which may help in designing new approaches to characterize the
“flowability” of powders.
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Many industrial (wet granulation, food processing, con-
struction, etc.) and geophysical (landslides, mudflow, etc.)

processes involve the flows of an assembly of cohesive grains.
The cohesion between the grains has different origins. Van der
Waals or electrostatic forces are responsible for cohesion in
fine grains (1, 2). Liquid capillary (3–5) or solid bridges (6)
between the grains give rise to cohesion in large grains. In all
cases, the cohesion introduces an additional complexity to gran-
ular materials—the flows of cohesive grains are intermittent and
less homogeneous (7, 8) in comparison with coarse, cohesion-
less grains, leading to frequent jamming of industrial units. It
is, therefore, necessary to a priori characterize and quantify the
capability of flow, so-called “flowability,” of a powder to yield
better handling. Different methods are used in industrial con-
texts for this purpose (1, 9–11). A first method measures the
tapped bulk density and the freely settled bulk density of a pow-
der to define the Hausner ratio (or Carr index), which is the ratio
of the two. A powder with high Hausner ratio is shown to have
poor “flowability.” A second one employs a series of measure-
ments, using the Hosokawa powder tester, comprising angle of
repose, aerated bulk density, tapped bulk density, etc., to define
a weighted “flowability” index, which ranges from 0 to 100. Very
cohesive powders yield “flowability” indices close to zero and
the free-flowing ones close to 100. Other methods estimate the
macroscopic cohesion from the yield loci of a powder using shear
testers (Jenike shear tester or ring shear tester) for various pre-
consolidation normal stresses, which are useful in understanding
the arch formation in silos. All these methods, carried out in the
quasistatic limit, are useful for comparing the macroscopic prop-
erties of different powders and for characterizing their plastic
behavior. However, they do not provide any information about
the flow dynamics. Understanding the concept of “flowability”
from a physical point of view is still a challenge.

The flow dynamics of rigid, cohesionless grains, interacting
solely by contact and friction, is less complex in comparison with
cohesive grains, as shown by numerous experimental and numer-
ical studies (12). Flow rules have been evidenced and constitutive
laws have been proposed for different flow regimes (13, 14).
In the dense flow regime, the rheology of the grains of diam-
eter d and density ρp , sheared at a shear rate γ̇ by imposing
a shear stress τ under a confining normal stress σzz , is well
described by a coefficient of friction µ(I ) and a volume frac-
tion φ(I ), which depend on a single dimensionless parameter,
the inertial number I = γ̇d/

√
σzz/ρp (15, 16). These constitutive

relations are found to be unaffected by the mechanical prop-
erties of the grains—for example, stiffness and inelasticity—as
long as the grains are sufficiently rigid and inelastic (14, 17–19).
This rough description of the rheology has proven to be useful
in describing flows in different configurations from inclines to
silos (20–23). This rheological framework has been extended to
the flows of cohesive grains (24–27) by using discrete numerical
simulations. Different force models with different levels of real-
ism have been used in the simulations to account for the cohesive
interactions between the grains (28, 29). In the simplest approach
used in rheological studies (24, 27), the adhesion is character-
ized by a minimum pull-off force Nc necessary to detach two
grains. The existence of this additional force scale implies that
a second dimensionless number, called cohesion number C =
Nc/(σzzd

2), exists besides the inertial number, which compares
the adhesive force between the grains with the confining normal
stress. The rheology is then described by a coefficient of friction
µ(I ,C ) and a volume fraction φ(I ,C ), which are functions of
I and C only (24–27, 30).
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In this article, we examine the flow dynamics of cohesive grains
down a rough inclined plane using intensive discrete numerical
simulations to gain physical insights about the “flowability” of
powders. The chosen configuration has inhomogeneous stress
distributions and, hence, turns out to be very rich to explore
the rheology of cohesive granular materials. We perform a
detailed parametric study of the flow to reveal that the flow
is significantly affected by the stiffness and the inelasticity of
the grains, unlike in the case of cohesionless granular media.
We introduce the concept of a dynamic “effective” adhesive
force to take into account the effect of the material proper-
ties, along with the interparticle adhesion, which is shown to
control entirely the flow dynamics. We then define an “effec-
tive” cohesion number based on this force, which replaces the
cohesion number defined above to form a pair of constitu-
tive relations. The rheology is shown to be well described in
this framework.

Results
Simulation of the Flow of Cohesive Grains Down a Rough Inclined
Plane. We investigate the flow of frictional, inelastic, cohesive
grains down a rough inclined plane (Fig. 1A) using three-
dimensional (3D) discrete element method simulations; an in-
house code is used, which is validated by comparing the mean
velocity and volume fraction profiles of (cohesionless) monodis-
perse spheres with those in the study of ref. 17. The grains
are spherical and have an average size d , with a polydisper-
sity of 20% and an average mass m . The rough base (shown
in red in Fig. 1A) comprises a packed bed of the same grains
of height 1.8d . The simulation box has length Lx =20d , width
Ly =20d , and height Lz =40d . Periodic boundary conditions
are applied in the x and y directions. The flow initiates from
the collapse of a cubic array of grains under gravity g over the
base inclined at a high angle θ=45◦ and is continued for a short
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C

Fig. 1. Simulation of flow of cohesive grains down a rough inclined plane.
(A) Snapshot of a simulation, showing the flow of particles (in brown) under
gravity g over a bumpy base (in red) inclined at an angle θ. (B) Depiction of
the visco-elastic, frictional, and adhesive interactions between the particles
using a spring-dashpot model with a frictional slider and an interparticle
adhesion Nc. (C) The nonviscous normal contact forces normalized by the
interparticle adhesion as a function of the normalized overlap δ/δeq: elastic
part Nel

ij (green), adhesive part Nad
ij (blue), and the sum of the two Ntot

ij =

Nel
ij +Nad

ij (red). See the main text for δeq.

duration. The flow then attains a steady state after the inclina-
tion is lowered and maintained at θ∈ (20◦, 34◦) (the range of
angle for a steady flow depends on the interparticle adhesion).
The flow is controlled by changing the inclination θ and four
parameters describing the particle properties: the friction coef-
ficient µp (kept constant at µp =0.5 in this study), the stiffness
kn , the quality factor Q (a measure of dissipation in an inter-
particle collision), and the adhesion Nc . These parameters are
defined below.

The interparticle contact forces were computed by using the
Hookean spring-dashpot model with a frictional slider (Fig. 1B)
and a Johnson–Kendall–Roberts (JKR)-like (31), yet nonhys-
teretic, adhesive force model (24). The normal contact force
(Nij ) between particles i and j comprises three forces: 1) elas-
tic force Nel

ij =−knδ, where kn is the normal stiffness and δ is
the normal overlap; 2) viscous force Nvis

ij =−γnmeff cn
ij, where

cn
ij is the normal relative velocity, meff =mimj/(mi +mj ) is the

effective mass, and γn is the normal damping coefficient; and 3)
adhesive force Nad

ij =
√
4knNcδ, which is assumed to be propor-

tional to the area of contact; Nc , the minimum pull-off force,
is given by the minimum in the plot of the total nonviscous
normal force as a function of the normal overlap (red curve)
in Fig. 1C. Note that the adhesive interaction model is short-
range, meaning that the force vanishes when two grains are
not in contact, unlike in wet capillary bridges. The tangential
contact force (Tij ) comprises only the elastic force Tel

ij =−kts ,
where kt (kt =2/7kn in this study) is the tangential stiffness,
and s is the relative tangential overlap from the beginning of a
contact. It is set as Tij =µp(Nel

ij +Nvis
ij ), where µp is the inter-

particle friction coefficient, to account for the Coulomb yield
criterion. Finally, the total contact force acting on particle i by
particle j is Fij = Nij nij + Tij tij , where nij and tij are nor-
mal and tangential unit vectors, respectively. The details of the
calculation of viscoelastic forces can be found elsewhere (17).
For checking the generality of the results, we also have imple-
mented two other models. One comprises the Hertzian spring-
dashpot model and a Derjaguin–Muller–Toporov (DMT)-like
adhesive force model (32) (SI Appendix, section SI 1), where
the (nonhysteretic) adhesive force is assumed to be indepen-
dent of the area of contact and is constant. The other one
comprises the Hookean spring-dashpot model and a DMT-
like, yet hysteretic (SI Appendix, section SI 2), force model,
where the grains experience a constant attractive force only
during the detachment of a contact, quite similar to a capil-
lary bridge model, but without introducing a finite distance for
the detachment.

Using the Hookean-JKR (first) model, the dynamics of two
identical (meff =m/2) contacting particles in the absence of any
external forces is given by the following equation of a nonlinear
damped oscillator:

m

2

d2δ

dt2
=−knδ−

m

2
γn

dδ

dt
+
√
4Ncknδ. [1]

In the static limit, the left-hand side and the second term on
the right-hand side in Eq. 1 are zero, and the balance between
the attractive adhesive force and the repulsive elastic force (Eq.
1) then yields an equilibrium overlap δeq =4Nc/kn . The qual-
ity factor of the oscillator is estimated after linearizing the
equation around δeq as Q =

√
kn/m/γn ; high Q indicates less

collisional dissipation. In the cohesionless case, Q is related to
the restitution coefficient e as Q =

√
(π2 +(ln e)2)/ (8(ln e)2)

(17).
All of the equations are made dimensionless by using d as the

length scale, (d/g)1/2 as the time scale, and mg as the force
scale, and the equations of motion are then solved for each par-
ticle by using these interparticle contact forces and gravity. All
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of the steady-state flow quantities reported below are computed
by using the coarse-graining procedure given in SI Appendix,
section SI 3.

Not Only the Interparticle Adhesion, but Also the Stiffness and
Inelasticity of the Grains Affect the Flow. Fig. 2A shows a typi-
cal velocity profile for the cohesive grains for an intermediate
value of adhesion Nc/(mg)= 100 at a given inclination angle
θ=29◦. Unlike the flow of dry, cohesionless grains down a
rough incline, where a Bagnold velocity profile corresponding to
shearing throughout the entire pile is noticed (17, 33), a plug
appears near the free surface for the cohesive case (25, 34),
where the shear rate (γ̇= dvx/dz ) is zero (Fig. 2C). The shear
rate then gradually increases toward the base (Fig. 2C). The
inertial number profile (I (z )) is similar to the shear rate pro-
file (Fig. 2C) and is not uniform over the depth of the pile,
unlike in the cohesionless case (17, 33). The volume fraction
profile (φ(z )) is also not uniform (Fig. 2B) (34) with a high-
density region in the plug, unlike in the cohesionless case (17,
33). The cohesive grains possess a finite yield stress, which is
reached at a finite depth in the flowing layer. This, therefore,
explains the plug formation near the free surface for the flow of
cohesive grains.

We now examine the effect of the interparticle adhesion Nc

on the velocity profile (Fig. 2D) at a given inclination angle
θ=29◦. When Nc goes to zero, one recovers the classical
Bagnold profile (shown by the fitted dashed line). The Bagnold
profile is also observed (fits are not shown for clarity) for
small, nonzero values of Nc considered, Nc/(mg)= 10, 25, and
50; however, the free-surface velocity decreases in comparison
with the cohesionless case with increasing Nc . When Nc/(mg)

becomes greater than 50, a plug appears near the free surface,
which grows in size with increasing Nc until the flow comes to
a halt for Nc/(mg)≥ 200. Such behavior of the velocity profile
with increasing Nc has already been reported in some studies
(25, 34). More surprising results appear while changing the stiff-
ness of the particles kn and the dissipation through the quality
factor Q , as shown in Fig. 2 E and F. The free-surface velocity
increases, and the thickness of the plug decreases with increas-
ing the stiffness, keeping other parameters fixed (Fig. 2E). The
plug completely disappears for a sufficiently high value of stiff-
ness. A similar observation is made while increasing the quality
factor, i.e., decreasing the dissipative nature of contact (Fig. 2F).
These observations clearly indicate that the bulk cohesion is
not solely controlled by the interparticle adhesion Nc but is
dependent on the material properties kn and Q . The sensitiv-
ity of the flow to the stiffness and dissipation in the cohesive
case contrasts with the flow in the cohesionless case (14, 17–19).
This observation has a crucial consequence—the characteriza-
tion of the degree of bulk cohesion based on the interparticle
adhesion using the granular Bond number (Bog =Nc/mg) (35,
36) or the cohesion number (24, 25, 28) may not be sufficient.
We next attempt to collate the effects of these three indepen-
dent parameters into a single parameter, the dynamic “effective”
adhesion N eff

c .

A Scaling for the Dynamic “Effective” Adhesive Force. We infer
from Fig. 2 D–F that decreasing the stiffness or decreasing the
quality factor are equivalent to increasing the adhesion. Hence,
we seek for an expression of the dynamic “effective” adhesive
force as

A B C

D E F

Fig. 2. (A–C) Steady flow profiles: mean velocity (vx(z)) (A), volume fraction (φ(z)) (B), and shear rate (γ̇(z) = dvx/dz(z)) and inertial number (I(z)) (C)
at θ= 29◦ for Nc/(mg) = 100, kn/(mg/d) = 2× 105, and Q = 8.70. The free surface velocity (vs/(gd)1/2) and the thickness of plug (hc/d) are denoted in
A. (D–F) Effects of different parameters: interparticle adhesion (Nc) keeping kn/(mg/d) = 2× 105 and Q = 8.70 fixed (D), particle stiffness (kn) keeping
Nc/(mg) = 200 and Q = 8.70 fixed (E), and quality factor (Q) keeping Nc/(mg) = 200 and kn/(mg/d) = 2× 106 fixed (F), on the velocity profile at θ= 29◦.
The dashed line in D shows a Bagnold fit.
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N eff
c =Nc

[(
Nc

knd

)a
1

Qb

]
, [2]

where a and b are unknown constants. The idea behind this
scaling is to check if the influence of adhesion, stiffness, and dis-
sipation can be embedded in a single parameter N eff

c , acting as
an “effective” adhesive force in dynamic conditions. We do the
following to test the idea. We systematically carry out simula-
tions by varying Nc , kn , and Q (at a fixed inclination θ=29◦)
and then extract the free-surface velocity v s and the thickness of
the plug hc from the steady velocity profile in each case. We then
plot v s and hc separately for all of the simulations as a function
of N eff

c computed from Eq. 2 and look for the best collapse of
the data in each case by trying out different combinations of a
and b. For each chosen combination of a and b, the two master
curves (v s(N eff

c ) and hc(N
eff
c )) resulting from the data collapses

are fitted by power laws (only the data corresponding to veloc-
ity profiles with a plug flow are considered), and the quality of
the collapses is determined by the determination coefficients R2

vs

and R2
hc

of the fits. The final values of the constants a =1/2 and
b=1/4 are chosen such that they lead to the highest R2

vs +R2
hc

(SI Appendix, Fig. S3). Finally, two well-defined master curves,
v s(N eff

c ) and hc(N
eff
c ), emerge (Fig. 3), which implies that the

flow is indeed controlled by an “effective” adhesive force, which
comprises three independent parameters: interparticle adhesion,
stiffness, and dissipation. We have checked that two different sets

A

B

Fig. 3. The flow is controlled by the dynamic “effective” adhesive force.
Variation of the free surface velocity (vs/(gd)1/2) (A) and the thickness of
the plug (hc/d) (B) with the dynamic “effective” adhesive force Neff

c at θ=
29◦ for different Nc (different symbols; see Fig. 2 for the key), different kn

(different colors), and different Q (different symbol pattern). The dashed
line indicates the transition from a plug-less to a plug-full velocity profile.

of parameters, corresponding to the same value of N eff
c , not only

give the same free-surface velocity and plug thickness, but also
yield identical velocity, density, and r.m.s. velocity profiles (SI
Appendix, Fig. S4). We notice two distinct regions in the figure,
separated by a vertical dashed line at N eff

c /(mg)≈ 0.6: 1) a plug-
less region on the left, where v s decreases monotonically with
increasing N eff

c and yet hc =0; and 2) a plug-full region where v s

decreases and hc increases monotonically with increasing N eff
c .

In order to test the generality of the above result further, we
have carried out additional simulations at a given angle (θ=29◦)
in the same spirit using the Hertzian-DMT model. The sensitiv-
ity of the flow to the stiffness and dissipation is recovered, and
the velocity profile is again found (SI Appendix, Fig. S5) to be
controlled by the dynamic “effective” adhesive force given by a
similar equation (SI Appendix, Eq. 4). The origin of the scaling
will be discussed in the last section. We also perform some sim-
ulations using the hysteretic contact model. We again find the
flow dynamics (at a given angle) to be dependent on the stiff-
ness (SI Appendix, Fig. S6), signifying that in this case as well,
the contact parameters, along with the interparticle adhesion,
determine the bulk cohesion. We examine below if this dynamic
“effective” adhesive force is relevant in the description of
the rheology.

Flow Cessation Is Controlled by the “Effective” Adhesive Force, but
Flow Initiation Is Controlled by the “Actual” Adhesive Force. A first
step toward exploring the rheology is to study the yield criteria
of our model cohesive material, i.e., to study the stress condi-
tions under which the flow stops (dynamic yielding) or starts
(static yielding). The yield criteria are usually described by using
a cohesive Mohr–Coulomb model stipulating that, on the plane
of incipient failure, the shear stress τyield

xz is related to the normal
stress σyield

zz by τyield
xz = τ stat,dyn

c +µstat,dyn
s σyield

zz , where µstat,dyn
s

is the static (respectively [resp.] dynamic) friction coefficient,
and τ stat,dyn

c is the static (resp. dynamic) cohesive stress. We
first focus on the dynamic yielding by considering the data of
the velocity profiles in the previous section. The dynamic yield
criterion is satisfied at the intersection of the plug and sheared
regions, denoted by “yield point” in Fig. 2A. The location of the
“yield point” shifts with changing the inclination angle. Thus,
a yield locus for a given set of particle properties (Nc , kn , and
Q) is obtained by noting a series of points (τyield

xz and σyield
zz ),

each corresponding to a “yield point” at a given angle. Fig. 4
A, Inset shows different yield loci (shown by symbols; only a few
are shown for clarity) for different sets of particle properties. All
of the yield loci are well approximated by straight lines, which
are the best fits of the Mohr–Coulomb model. The slope of each
straight line gives the dynamic friction coefficient µdyn and the
intercept with the y axis, the dynamic cohesive stress τdyn

c . We
have systematically extracted µdyn

s and τdyn
c for all of the cases

mentioned in Fig. 3. The dynamic friction coefficient µdyn
s ≈ 0.44

is found to be constant and to be independent of the particle
properties. On the other hand, the dynamic cohesive stress τdyn

c

increases with increasing Nc and decreasing kn or Q . However,
they all collapse on a single master curve if plotted against the
“effective” adhesion N eff

c (Fig. 4A), showing again that N eff
c is

the only variable controlling the dynamic yielding. A linear fit
through the data gives

τdyn
c ≈ 1.31N eff

c /d2. [3]

We next study the static yielding from the initiation of the flow.
We initially bring a steady flow of a given pile thickness H to a
halt by gradually lowering the inclination angle. We then grad-
ually increase the inclination by a step of 0.2◦ (a steady state
in the kinetic energy profile is ensured after each increment)
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A

B

Fig. 4. Dynamic and static yield criteria. (A, Inset) Yield shear stress
(τ yield

xz d2/(mg)) as a function of yield normal stress (σyield
zz d2/(mg)) for the

dynamic yielding in different cases. The keys are the same as in Figs. 2 and
3. The lines are the fits of the Mohr–Coulomb failure equation. In the main
plot, the variation of the dynamic macroscopic cohesive stress (τdyn

c d2/(mg))
with the “effective” adhesive force Neff

c /mg for all of the cases. The straight
line is the best fit to the data. (B, Inset) Yield shear stress (τ yield

xz d2/(mg)) as
a function of yield normal stress (σyield

zz d2/(mg)) for the static yielding in dif-
ferent cases. The dotted lines are the guides to the eye, and the solid lines
are the fits of the Mohr–Coulomb failure equation in the linear part of the
data. The main plot shows variation of the static macroscopic cohesive stress
(τ stat

c d2/(mg)) with the actual adhesive force Nc/(mg). The dotted line is a
guide to the eye, and the straight line is the best fit to the data.

until the flow starts (indicated by a threshold of kinetic energy
O(10−1)). We finally note the stresses (τyield

xz and σyield
zz ) at the

bottom of the pile, where the yielding happens. The procedure
is repeated by varying the initial pile thickness to get a series of
points (τyield

xz and σyield
zz ), which constitutes the yield locus for

a given set of particle properties (Nc , kn , Q). Fig. 4 B, Inset
shows different yield loci (shown by symbols) for different sets
of particle properties. The striking observation is that two yield
loci for two different kn for a given Nc and Q collapse well
on each other. A similar observation is made for two differ-
ent Q for a given Nc and kn (only one point is shown). This
result implies that the flow initiation is entirely controlled by
the interparticle adhesion, which contrasts with the observation
made above that the flow cessation is controlled by the dynamic
“effective” adhesion. A careful inspection reveals that the static
yield loci are not perfectly linear, especially for high values of
Nc , which have tails comprising data points at low values of the
normal stress. However, at sufficiently high values of the nor-
mal stress (corresponding to thick piles), one recovers a linear

variation of the shear stress with the normal stress, as expected
from the Mohr–Coulomb model. Hence, we restrict the fitting of
the model (shown by the straight lines) to the linear parts of the
yield loci; for a given Nc , the combined datasets corresponding
to different kn and Q are considered during fitting. The fitting
yields static friction coefficients (estimated by the slopes of the
straight lines): µstat

s ≈ 0.38 for Nc =0 and µstat
s ≈ 0.48 for the

others. Note that µstat
s is slightly higher than µdyn

s . We also obtain
the static cohesive stress τ stat

c from the intercept of the straight
line in each case, which is shown as a function of the interparti-
cle adhesion Nc in Fig. 4B. The variation of τ stat

c with Nc is well
approximated by

τ stat
c ≈ 0.07Nc/d

2. [4]

Different studies (4, 37, 38) have predicted theoretically such
a linear relation between the static cohesive stress and the
adhesion as

τ stat
c =

3µstat
s φZNc

2πd2
, [5]

where Z is the average coordination number (number of contacts
per particle). The contact network was assumed to be isotropic in
the derivation. Using measured Z =6 and φ=0.55 and extracted
µstat

s =0.48, Eq. 5 yields τ stat
c ≈ 0.76Nc/d

2, with a proportional-
ity constant of 0.76, which is a decade higher in comparison with
that (0.07) extracted from the fitting. Anisotropy in the contact
network in the present study may lead to this mismatch. A sim-
ilar mismatch has been reported by Rognon et al. (25) for flows
down inclines. The last noteworthy point, which can be inferred
from Fig. 4, is that the maximum dynamic cohesive stress τdyn

c

observed is smaller than the static cohesive stress τ stat
c for a given

adhesion.

Bulk Rheology Is Described by an “Effective” Cohesion Number. The
last step toward exploring the rheology is to go beyond the yield
criteria and analyze how the shear stress varies with the shear
rate. The inclined plane configuration serves as a rheometer
to enable us to measure the local shear rate γ̇= dvx/dz , shear
stress τxz , normal stress σzz , and volume fraction φ at every
vertical position in the flow. Rognon and coworkers (24–26) pro-
posed the following µ(I )-rheology framework: µ=µ(I ,C ) and
φ=φ(I ,C ), for describing the rheology of cohesive grains, as
mentioned in the introduction. However, the results obtained
in the previous sections suggest that the above framework is
not sufficient for the complete description of the rheology. The
observation that the “effective” adhesion N eff

c , not the inter-
particle adhesion Nc , controls the flow dynamics, prompts to
define a new cohesion number, the “effective” cohesion num-
ber C eff =N eff

c /(σzzd
2). One can then test if the rheology can

be described by using the new framework: µ=µ(I ,C eff ) and
φ=φ(I ,C eff ). We do the following to test the idea. We compute
local µ= τxz/σzz , I , and C eff for all of the simulations done for
different (kn , Q , and Nc) and at different angles θ. Recent stud-
ies (39–41) have emphasized the occurrence of nonlocal effects
in inhomogeneous flows, such as the one investigated here. For
each simulation, we try to minimize this effect on the analysis
by neglecting the data points (for which I < 0.01) adjacent to
the “yield point,” where the effect is significant. We also dis-
card six data points each adjacent to the free surface and the
rough base to avoid boundary effects. We consider the rest and
combine them for all of the simulations. The combined dataset
(C eff , I , µ, and φ) is then divided into eight subsets based on
the value of C eff (a bin size of 0.02 is chosen). For each sub-
set, µ, φ, and I are then averaged in small bins of size 0.01 in
I . Fig. 5 shows the variation of µ and φ with I for the eight
different values of C eff . The first important observation is that
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Fig. 5. Constitutive laws for the flow of cohesive granular media. Variation
of the effective friction (µ) (A) and the volume fraction (φ) (B) with the
inertial number (I) for different values of the “effective” cohesion number
(Ceff ). The assembled data are obtained by varying θ∈ (20◦, 34◦), Nc/(mg)∈
(0, 200), kn/(mg/d)∈ (2× 105, 2× 107), and Q∈ (0.94, 8.70).

the datasets are reasonably well sorted according to the value of
C eff , which indicates that the rheology is entirely controlled by
two dimensionless numbers, I and C eff , validating our model.
The µ(I ) curve (Fig. 5A) shifts upward with increasing C eff ,
showing that µ increases with increasing C eff , particularly for
small values of I . Substituting τdyn

c given in Eq. 3 into the Mohr–
Coulomb model and using the definition of µ and C eff , we show
that µ increases linearly with increasing C eff in the quasistatic
limit (I → 0), following µ(0,C eff )≈µdyn

s +1.31C eff . However,
the curves surprisingly seem to merge in the high-I regime, indi-
cating less impact of adhesion on the value of µ. µ appears to be
independent of I for sufficiently high values of C eff . The φ(I )
curve (Fig. 5B) shifts downward with increasing C eff , showing
that the volume fraction φ decreases with increasing C eff . A non-
monotonic behavior of φ(I ) appears for intermediate values of
C eff —the volume fraction first decreases and then increases with
increasing inertial number before decreasing again at high val-
ues. φ also appears to be independent of I for sufficiently high
values of C eff . Berger et al. (27) observed similar behavior of
the effective friction and volume fraction with the inertial and
cohesion numbers and proposed an empirical function to cap-
ture the rheology (SI Appendix, section SI 8). The same function
provides a reasonable fit of our data, as shown in SI Appendix,
Fig. S7.

Discussion and Conclusion
In this work, we have examined the flow of cohesive grains
down an inclined plane using discrete element method simula-

tions. We use a simplified adhesive interaction law, character-
ized by a minimum pull-off force Nc necessary to detach two
grains, to model the interparticle adhesion. Despite this simple
interaction model, a rich flow dynamics appears—the cohesive
nature of the flow becomes sensitive to the stiffness kn and
inelasticity of the grains 1/Q besides the interparticle adhe-
sion Nc , which contrasts with the flow of cohesionless granular
media. Although this sensitivity has never been reported for the
flows down inclines, a few studies on the fluidization of cohesive
powders observed it (42–44). This finding questions the use of
granular Bond number or cohesion number (based on the inter-
particle adhesion) in quantifying the degree of bulk cohesion. We
have demonstrated a way to take into account the effects of these
parameters, along with the interparticle adhesion into a single
parameter called the dynamic “effective” adhesion. This force
appears to control the flow dynamics solely and comes out to be
N eff

c =Nc [Nc/(knd)]
1/2/Q1/4 for the Hookean-JKR model and

N eff
c =Nc [Nc/(knd

3/2)]1/3/Q3/4 for the Hertzian-DMT model;
the success of obtaining a single control variable eases the prob-
lem from rheological perspectives. One can note from the above
equations that increasing Nc and decreasing kn or Q increases
the “effective” adhesion. Interestingly, the scalings obtained in
both the cases can be recast by using the equilibrium over-
lap δeq in the following form: N eff

c ∝Nc(δeq/d)
1/2/Qb , where

δeq =4Nc/kn for the Hookean-JKR model and δeq =(Nc/kn)
2/3

for the Hertzian-DMT model.
We have not succeeded in understanding the scaling. How-

ever, the existence of an interplay between the interparticle
adhesion and the mechanical properties of the grains can be evi-
denced, considering the dynamics of a binary collision. When
two cohesive grains collide, one can show that they remain
glued together if the relative kinetic energy before impact is
less than a critical value (SI Appendix, section SI 9) given by
Ec =NcδeqG(Q), where G(Q) is a decreasing function of the
quality factor, which depends on the interaction model. This
shows that not only the adhesion, but also the mechanical
properties of the grains influence a collision: The chance of a
rebound is less if Nc is large and also if kn (∝ 1/δeq) or Q is
small. To determine the “effective” adhesive force N eff

c , one
may estimate the typical kinetic energy involved in a collision
in a flow under a shear stress τ =N eff

c /d2 (45) and compare
it to the critical value Ec—a work which we aim to do in the
near future.

Fig. 6. A validity check for the “effective” cohesion number. Variation of
the volume fraction (φ) with the “effective” cohesion number (Ceff ) in the
case of gravity-driven compaction is shown. See Figs. 2 and 3 for addi-
tional legends. (Inset) Variation of the volume fraction (φ) with the cohesion
number (C).
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We have shown that the initiation of the flow is controlled by
a static cohesive stress proportional to Nc , whereas the arrest
of the flow, by a dynamic cohesive stress proportional to N eff

c .
The maximum dynamic cohesive stress observed is smaller than
the static cohesive stress for a given interparticle adhesion.
This implies that the characterization and quantification of the
“flowability” made at the quasistatic limit may not be appro-
priate for the dynamic limit. Although we have not been able
to understand the scaling of dynamic “effective” adhesive force,
we have shown that the “effective” cohesion number based on
this empirical force and the inertial number yield two consti-
tutive relations: µ=µ(I ,C eff ) and φ=φ(I ,C eff ), which give
a reasonably good description of the rheology. The determi-
nation of the exact forms of these two relations is beyond the
scope of this work and requires a separate study, possibly using
a plane shear flow. In SI Appendix, Fig. S8, we present some pre-
liminary rheological data obtained in a normal stress-imposed
shear cell (see SI Appendix, section SI 10 for simulation details).
The data of µ and φ for two different sets (Nc and kn) for a
given Q , yielding the same C eff , collapse well on each other
and also match reasonably the data from the inclined plane flow
(SI Appendix, Fig. S8), showing the generality of the proposed
description.

The relevance of the “effective” cohesion number in defining
the flow dynamics opens perspectives to analyze the behavior
of cohesive granular media in other configurations, and we give
one example below. We carry out additional simulations to mea-
sure the packing fraction in a pile of cohesive grains for various
(Nc , kn , and Q). The grains are poured randomly under gravity
in the same periodic box (θ=0) as used above, and the mea-
surements are taken once all of the grains settle down. Since
the packing fraction φ and the “effective” cohesion number
C eff =N eff

c /(σzzd
2) vary along the height of the pile, we obtain

a series of points (C eff and φ) from each simulation. Fig. 6
shows the variation of φ with C eff for all of the simulations,
neglecting the data points adjacent to the rough base and the
free surface. We obtain a good collapse of the data, resulting
in a master curve. However, this is not valid if the cohesion
number C based on the actual adhesion is considered instead
(Fig. 6, Inset). More configurations need to be studied to be able
to understand to which extent this concept of “effective” cohe-
sion number is valid for the flow of cohesive grains, which might

help in developing new approaches for the characterization
of powders.

Although the concept of “effective” adhesion is based on a
simplified model of adhesion, we find that it is generic for other
kinds of adhesive interactions; for example, (hysteretic) capillary
and electrostatic adhesion. In these cases, the particles experi-
ence an attractive force, even without a physical contact over
a small separation distance, and this distance plays an equiva-
lent role of the stiffness and influence the “effective” adhesion.
The bulk cohesion, in studies (26, 46) using capillary bridge
models, was noted to decrease when decreasing this separation
distance (named as the “rupture distance,” beyond which a capil-
lary bridge breaks). This outcome can be understood considering
the argument of energy proposed above—the work needed to
separate two bonded grains, in this case, is proportional to the
rupture distance.

One last remark concerns the limit of rigid particles. The scal-
ing reported above suggests that the “effective” adhesion will go
to zero in the rigid limit, implying that a direct comparison of
our results with those using contact dynamics simulations (27),
in which the grains are treated as perfectly rigid, is difficult. We
speculate that, in these simulations, the size of the time step
could be crucial and could play a role similar to the stiffness in
our soft-particle approach.

The main idea conveyed in this article that the “effective”
adhesion is not controlled solely by the interparticle adhesion,
but also dependent on material properties is a first step toward
a better understanding of the flow of cohesive granular media,
which may benefit engineering and geophysical communities to
understand the long-standing issue of “flowability” of cohesive
powders.

All data presented in this article are openly available
in the Zenodo repository, https://zenodo.org/record/3699632#.
XmJ048tKgaw.
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