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SUMMARY

Governance of protein phosphorylation by kinases and phosphatases constitutes an essential 

regulatory network in eukaryotic cells. Network dysregulation leads to severe consequences and is 

often a key factor in disease pathogenesis. Previous studies revealed multiple roles for protein 

phosphorylation and pathway structures in cellular functions from different perspectives. We seek 

to understand the roles of kinases and phosphatases from a protein homeostasis point of view. 

Using a streamlined tandem mass tag (SL-TMT) strategy, we systematically measure proteomic 

and phosphoproteomic responses to perturbations of phosphorylation signaling networks in yeast 

deletion strains. Our results emphasize the requirement for protein normalization for more 

complete interpretation of phosphorylation data. Functional relationships between kinases and 

phosphatases were characterized at both proteome and phosphoproteome levels in three ways: (1) 

Gene Ontology enrichment analysis, (2) Δgene-Δgene correlation networks, and (3) molecule 

covariance networks. This resource illuminates kinase and phosphatase functions and pathway 

organizations.
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In Brief

Li et al. measure (phospho)proteomic responses to perturbations of phosphorylation signaling 

networks in 110 yeast deletion strains. The results emphasize that broad interpretation of 

phosphorylation data requires protein normalization. Kinase and phosphatase relationships are 

characterized at both proteome and phosphoproteome levels. Phosphorylation signaling pathway 

organizations are illuminated by network analyses.

INTRODUCTION

Protein phosphorylation signaling networks are essential regulatory guardians of cellular 

functions and are involved in the pathogenesis of many diseases, including cancer. Kinases 

and phosphatases are key components of signaling networks. Multiple roles for 

phosphorylation in cellular processes and pathway architectures have been uncovered. In 

focused studies, pathways have often been studied in isolation with different readouts, 

limiting the ability to gain a global view of concerted pathways. With emerging high-

throughput technologies, such as RNA sequencing (RNA-seq) and mass spectrometry-based 

proteomics, comprehensive analyses of signaling networks can be achieved (Bodenmiller et 

al., 2010; Riley and Coon, 2016).

Previous efforts have used mRNA (van Wageningen et al., 2010), lipids (da Silveira Dos 

Santos et al., 2014), metabolites (Schulz et al., 2014), and protein phosphorylation 

(Bodenmiller et al., 2010) as endpoint measurements to systematically uncover the workings 
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of many pathways in yeast using deletion strains. Deletion of a kinase, for example, silences 

both its kinase activity and its protein expression. Either or both of these effects might cause 

yeast to compensate via altered protein expression or protein activities. In 

phosphoproteomics, differences in measured phosphopeptide levels can be affected either in 

part or in whole by changes in protein abundance (Wu et al., 2011a). A full interpretation of 

phosphoproteomic perturbations generally requires protein abundance changes to be 

considered. An important previous study on phosphoproteomic analysis of yeast kinase and 

phosphatase mutants did not include a systematic protein abundance assay, which may limit 

the broad elucidation of the phosphoproteomic phenotypes (Bodenmiller et al., 2010).

Globally addressing all 518 protein kinases and 147 protein phosphatases with replicates in 

human cells is challenging (Bodenmiller et al., 2010). With many pathways conserved 

throughout evolution, yeast represents a useful model organism to study phosphorylation 

networks. Yeast harbors 159 genes encoding protein kinases and phosphatases and 136 of 

these have human homologs. In this study, we carried out a systems-level proteomic and 

phosphoproteomic analysis for 110 yeast single-kinase or phosphatase deletion strains under 

standard growth conditions. The high overlap between protein and phosphoprotein 

quantifications enabled the normalization of phosphorylation to account for protein 

abundance differences. Functional relationships between kinases and phosphatases were 

characterized at both proteome and phosphoproteome levels in several ways including 

traditional enrichment analysis, Δgene-Δgene correlation networks, and molecular 

covariance networks. Known pathways, such as high-osmolarity glycerol (HOG) and cell 

wall integrity (CWI) pathways, were accurately recapitulated, and potentially novel pathway 

architectures were suggested. The results represent a valuable resource for further 

investigations of kinase and phosphatase functions and regulatory organizations of signaling 

networks.

RESULTS

Proteomic and Phosphoproteomic Profiling of 110 Yeast Kinase and Phosphatase Deletion 
Strains

We profiled 110 yeast strains with single deletions of nonessential genes encoding 84 kinase 

and 26 phosphatase catalytic subunits in duplicate, covering about 82% of all viable yeast 

kinase and phosphatase deletion strains (Figure 1A; Table S1). Yeast were grown in yeast-

peptone-dextrose (YPD) media under standard conditions and harvested at OD600nm ≈ 1.0 

(Figure 1A). Gene deletions were confirmed by either proteomics (significant decreases in 

encoded proteins) or PCR assays (Figure S1A). Using the streamlined tandem mass tag (SL-

TMT) protocol (Navarrete-Perea et al., 2018), we quantified > 4,600 proteins and > 13,000 

phosphosites, both at a 1% protein-level false discovery rate (FDR) (Figure 1A).

For protein expression work, we averaged >4,100 proteins quantified per TMT11-plex with 

>4,300 across half of the samples (Figures 1B and S1C; Table S2). For phosphorylation 

work, we quantified an average of >6,600 phosphosites per TMT11-plex. Altogether, 

>13,000 phosphosites were captured (Figures 1B and S1D; Table S2). This dataset had a 

high overlap between protein data and phosphorylation data. For example, 96% of 

phosphosites had protein-level measurements distinguishing differential phosphorylation 
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from altered protein abundance (Figure 1B). Proteins and phosphosites quantified in at least 

50% of all deletion strains were considered for subsequent analyses (Figure 1C). Altogether, 

4,475 yeast-verified open reading frames (ORFs) and 246 uncharacterized ORFs were 

quantified, covering 86% and 33% of all yeast verified and uncharacterized ORFs, 

respectively (Figure S1E).

Hierarchical clustering of all samples showed that biological duplicates clustered tightly 

with no batch effect from growth batches or TMT groups (Figure S1F). Figure 1D shows a 

small subset of the deletion strain dendrogram from Figure S1F highlighting clustering of 

replicates as well as no obvious grouping based on TMT batch. Figure 1E highlights some 

examples of known protein expression and protein phosphorylation regulation across all 

deletion strains. For example, GPD1 is a HOG1-dependent osmostress-induced protein and 

its expression is regulated by HOG pathway, which consists of HOG1, PBS2, SSK2, etc. 

(Albertyn et al., 1994). GPD1 showed reduced protein levels in these three kinase deletion 

strains. PKP1 and PKP2 are kinases that phosphorylate of PDA1 at S313 (Gey et al., 2008). 

PDA1 pS313 exhibited distinctly lower phosphorylation levels in strains lacking these two 

kinases (Figure 1E).

Analysis of Proteomic and Phosphoproteomic Phenotypes in Deletion Strains

First, we systematically surveyed the datasets for significant protein or phosphorylation 

perturbations across all deletion strains at individual protein or phosphosite levels. Proteins 

or phosphosites quantified in ≥50% deletion strains were considered. Conservative 

thresholds included a standard deviation (3 × in both duplicates), and a minimum fold 

change difference (protein, 1.3; phosphorylation, 1.4) was used as 1% of the difference 

between duplicates exceeded these thresholds (Figure S2A).

Phosphopeptide measurements are a composite of protein expression and phosphorylation 

stoichiometry differences (Wu et al., 2011a). As shown in Figure 2A, SRO9 pT159 in Δsit4 
and MIA40 pS356 in Δbud32 showed larger differences after protein abundance differences 

were considered. The change of PHO89 pT331 in Δsky1 could be attributed to the protein 

abundance change, while the perturbation of BUD3 pS904 in Δswe1 represented a change in 

phosphorylation status (Figure 2A). Overall, more than 50% of regulated phosphorylation 

events could be attributed to changes in protein abundance (Figure 2B). In some deletion 

strains, this percentage was even higher, such as 68% in Δbud32 and 70% in Δdbf2 (Figure 

S2B). With protein normalization, more than 30% of the regulated phosphorylation events 

were newly captured (Figure 2B). To rule out the variances from protein abundance 

differences and better reflect the real impact of kinase and phosphatase perturbations on 

phosphorylation status, we normalized the phosphorylation quantifications with protein 

quantifications in all subsequent data analyses unless otherwise specified.

In total, 9,110 protein-level differences and 10,645 phosphorylation-level differences were 

counted as regulated (Figures 2C, S3A, and S3B). Some protein kinases (BUD32, YVH1, 

CTK1, SIT4, etc.) exhibited high impact at both proteome and phosphoproteome levels, 

while others (KIN82, KCC4, MKK1, etc.) had little impact (Figures 2D and S3C). Among 

all regulated events, about 66% of protein measurements and 55% of phosphorylation events 

changed in ≥2 deletion strains (Figures S3D and S3E).
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Protein and Phosphorylation Regulation Network Analyses

We organized all significant protein or phosphorylation perturbations in corresponding 

deletion strains as regulation networks (Figures 3A and 3B; Tables S3 and S4). The protein 

regulation network consisted of 74 kinase and 25 phosphatase regulators, 3,492 protein 

effectors, 4,400 downregulations, and 4,710 upregulations. The phosphorylation regulation 

network was composed of 80 kinases and 26 phosphatases, 4,885 regulated phosphosites on 

1,511 proteins, 4,955 downregulated events, and 5,690 upregulated events. In kinase deletion 

strains, downregulated phosphorylation events significantly enriched direct substrates in 

previous studies or NetworKIN predictions (Figure S4A) (Breitkreutz et al., 2010; Horn et 

al., 2014; Mok et al., 2010; Ptacek et al., 2005; Sharifpoor et al., 2011).

The HOG pathway regulates stress responses and is mainly related to the adaptation to 

hyperosmotic stress in yeast (Romanov et al., 2017). Components and downstream targets of 

the HOG pathway have been extensively characterized. First, we examined the proteomic 

and phosphoproteomic perturbations in strains lacking HOG pathway components to assess 

the datasets at the pathway level. With enrichment analysis of regulators, we found 36 

proteins that were distinctly regulated by the HOG pathway (Figure 3C). Among them, 35 

are known osmolality-responsive genes or showed consistent changes at mRNA level in 

cognate deletion strains previously (Baccarini et al., 2015; García et al., 2009; Greatrix and 

van Vuuren, 2006; Nadal-Ribelles et al., 2012; Norbeck and Blomberg, 1997; Norbeck et al., 

1996; van Wageningen et al., 2010), demonstrating the robustness and reliability of our 

analysis. Similarly, we detected 39 phosphosites (on 33 proteins) that were significantly 

modulated by the HOG pathway (Figure 3D). Among them, SKO1 and HOT1 are target 

proteins of this pathway and HOT1 pS153 is one of the target phosphosites (Alepuz et al., 

2003). Another study also revealed that VPS9 S375, VAS1 S294, REG1 S898, and HOG1 

S153 were HOG pathway effectors (Romanov et al., 2017). Our results successfully 

reflected linear relationships among components of the HOG pathway cascades and indicate 

that our strategy was sensitive enough to analyze pathways active even at basal levels.

Next, with Gene Ontology enrichment analysis on protein and phosphoprotein effectors, we 

explored further functional relationships between kinases and/or phosphatases from 

biological pathway, protein complex, biochemical pathway, and cellular component 

perspectives. Using the Uniprot biological pathways database, at the protein level we 

determined that >700 pathways were significantly impacted, and 42% were modulated by ≥2 

functionally related kinases and phosphatases (Table S3). Similarly, at the phosphorylation 

level we observed that >500 pathways were distinctly affected, and 48% were altered by ≥2 

associated kinases and phosphatases (Table S4). For each active kinase or phosphatase, 

averages of 16 and 8 pathways were enriched in affected proteins and phosphoproteins, 

respectively. The effects of kinases and phosphatases on controlled biological processes 

were broad at both the proteome and phosphoproteome levels. For many kinases and 

phosphatases, related pathways were enriched among their effectors (Figures 4A and 4B). In 

addition, in cellular component enrichment analysis for phosphoprotein effectors, many 

enriched categories were known subcellular localizations of their corresponding kinases or 

phosphatases (Figure S4B). For instance, five cellular components were enriched in the 

downregulated phosphoproteins in Δhsl1, and four were known localizations of HSL1. This 
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cellular component enrichment analysis can be used to predict cellular compartments where 

active kinases or phosphatases function.

Kinases and phosphatases that impinge on the same biological process or protein complex 

imply functional coordination in regulating corresponding cellular functions. As shown in 

Figure 4C, glucose import (GO: 0046323) proteins were concertedly modulated by five 

kinases and a phosphatase. It is known that the HOG pathway (SSK2 and HOG1 in this 

result) transcriptionally regulates hexose transporters (HXTs) (Nadal-Ribelles et al., 2012). 

This sub-network indicated that CKA2, SCH9, YPL150W, and YVH1 also played roles in 

maintaining the homeostasis of proteins involved in glucose import. Ergosterol biosynthesis 

enzymes were significantly decreased in Δyvh1, Δsky1, Δcla4, and Δste11, and increased in 

Δdbf2, indicating a functional sub-network of these regulators in modulating ergosterol 

biosynthesis (Figure 4C). The overall lower levels of ergosterol biosynthesis enzymes in 

Δyvh1 could also explain the significant decreased ergosterol abundance observed in a 

previous study (da Silveira Dos Santos et al., 2014). Proteasome proteins all went up in 

Δyvh1, Δmck1, Δctk1, and Δbud32, suggesting associated roles of these kinases and 

phosphatases in proteasome homeostasis (Figure 4C). There is likely a connection between 

upregulated proteasomes and growth defects in these mutants as well, as all four of these 

mutants have shown decreased fitness (Saccharomyces Genome Database) (Cherry et al., 

2012).

Phosphoprotein effectors of TOR1, SCH9, YPK1, and CTK1 were all enriched in the TOR 

signaling pathway (Figure 4D, left). TOR1 is a subunit of the TORC1 complex, which plays 

a central role in the TOR signaling pathway in response to external stimuli. SCH9 and YPK1 

are downstream components of the TOR signaling pathway in yeast (Urban et al., 2007; 

Yerlikaya et al., 2016). This evidence supported our results that these kinases were linked 

via the TOR signaling pathway. The altered phosphorylation status of TOR signaling 

members in Δtor1, Δsch9, and Δypk1 could be results of direct regulation on downstream 

targets or feedback regulation. Kinase YPK1, HRK1, and HOG1 and phosphatase PTC1, 

PTC2, PTC3, and SIT4 also showed coordinated phosphorylation regulation on the 

glycolysis pathway (Figure 4E, right). Kinase CLA4, TOR1, PTK2, and SKY1 and 

phosphatase YVH1 and PTC1 displayed a functional sub-network in modulating the 

phosphorylation status of the vacuolar transporter chaperone complex (Figure S4C). These 

example sub-networks suggested functionally related kinases and phosphatases in 

controlling specific biological functions via regulation of protein homeostasis or 

modification of phosphorylation status.

In addition to enrichment analysis, we also examined our data for potential mechanisms that 

could explain phenotypes observed in the literature. A previous study investigating lipidomic 

perturbations in yeast kinase and phosphatase mutants uncovered novel candidates for 

regulation of sphingolipid homeostasis (da Silveira Dos Santos et al., 2014). We extracted all 

significantly altered sphingolipid metabolism enzymes and their regulators from the protein 

and phosphorylation regulation networks (Figure S4D). Here, phosphorylation data without 

protein normalization were shown, as we aimed to explore connections between 

phosphorylated enzymes and their substrates (Oliveira et al., 2012). In our data, sphingolipid 

metabolism enzymes showed altered abundance or phosphorylation levels in about 30% of 
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previously reported low-hit or high-hit deletion strains (Figure S4D). For example, in Δyvh1 
decreased ceramides were observed previously (da Silveira Dos Santos et al., 2014). In our 

data, three key enzymes (TSC10, LCB1, and LCB2), which control the flow of substrates 

(palmitoyl-CoA and serine) through the single point of entry in the ceramide synthesis 

pathway, were decreased in Δyvh1. Due to the lack of information on how phosphorylation 

affects the activities of sphingolipid metabolism enzymes, it is difficult to infer specific 

mechanisms from a phosphorylation perspective. However, our data provide a valuable 

resource for researchers to conduct further investigations.

In summary, in line with a previous study, our results showed that at steady state, 

inactivation of most kinases and phosphatases affected large parts of the phosphorylation-

modulated signal transduction network (Bodenmiller et al., 2010). But not only signal 

transduction machinery, we found that protein homeostasis was also impacted profoundly on 

a broad range of biological processes. Furthermore, functionally connected kinases and 

phosphatases inferred from the enrichment analysis can shed light on future investigations 

on signaling pathway architectures (Tables S3 and S4).

Functional Correlations through Regression Analysis of Δgene-Δgene Perturbation 
Profiles

Next, Δgene-Δgene correlations were computed through pairwise comparisons of global 

proteomic or phosphoproteomic perturbations (Figure 5A; Table S5). Overall 77 positive and 

45 negative correlations were identified between 37 kinases and/or 8 phosphatases at the 

protein abundance level; 56 positive correlations and 35 negative correlations between 33 

kinases and/or 12 phosphatases were discovered at the phosphorylation level. Deletion of 

kinases or phosphatases within the same pathway, such as STE11, STE7, and FUS3 in the 

pheromone responsive pathway and BCK1 and SLT2 in the CWI pathway, displayed highly 

significant correlations between each other (Figure 5B). Significant correlations came from 

similar or opposite perturbations of a subset of proteins or phosphosites. Correlated kinases 

and phosphatases suggested that they could be linearly or partially redundant components of 

a pathway, or components of crosstalking signaling pathways. Protein abundance is the 

readout that integrates effects from regulatory pathways converging on protein synthesis 

and/or protein degradation, while phosphorylation dynamics is the readout that could reflect 

potential direct mechanisms.

Kinase DBF2 and its paralog DBF20 both function during the cell cycle as mitotic exit 

network proteins, and DBF2 accounts for the majority of the DBF2/DBF20-associated 

kinase activity (Hotz et al., 2012; Toyn and Johnston, 1994). Δdbf2 and Δdbf20 strains are 

viable but deletion of both is lethal (Toyn and Johnston, 1994), suggesting some functional 

redundancy between these two kinases. Consistent with previous knowledge, our data 

revealed a greater impact in Δdbf2 than Δdbf20 at both the proteome and phosphoproteome 

levels (Figure S3A). Phosphoproteins altered in Δdbf2 were also enriched in regulation of 

cytokinesis (GO: 0032465) (Figure 4B). Correlation of Δdbf2 and Δdbf20 at the 

phosphorylation level reflected their common function in cell-cycle progression and 

common regulation by SPO12 (Toyn and Johnston, 1993) (Figure 5A). Requirement of 

DBF2 and another protein kinase BUB1 in anaphase (Farr and Hoyt, 1998) was 

Li et al. Page 7

Cell Rep. Author manuscript; available in PMC 2020 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recapitulated by correlations between them at both protein and phosphorylation levels 

(Figure 5A). More interestingly, Δdbf20 also presented correlations with other kinases, 

particularly components of the HOG pathway (PBS2, SSK2, HOG1, etc.). Activity of the 

cyclin-dependent kinase CDC28 is negatively modulated by MAPK pathways and 

inactivation of CDC28 was a critical factor in DBF2 and DBF20 functions (Hwa Lim et al., 

2003), which explained the correlations between the DBF20 and HOG pathway components. 

Although common functions and regulations exist between DBF2 and DBF20, studies also 

indicated different roles for these kinases (Attner and Amon, 2012; König et al., 2010). The 

lack of correlations between the DBF2 and MAPK components could imply different 

functions or divergent mechanisms employed by DBF2. It is also likely that compensation 

from DBF20 in Δdbf2 masked the correlation between DBF2 and MAPK components.

YPL150W is an uncharacterized kinase with an unknown function in yeast. In our data it 

was correlated (either positively or negatively) with 15 other kinases and 2 phosphatases 

(Figure 5C). Among them five kinases in the HOG pathway (SKM1, SSK2, PBS2, HOG1, 

and SWE1) showed positive correlations, suggesting YPL150W could be functionally 

associated with the HOG pathway. Additionally, biological pathway enrichment analysis of 

YPL150W effectors indicated its involvement in sugar metabolism, mitochondria function, 

stress responses, etc. (Figure 5D). YPL150W was recruited to cytoplasmic foci as cells 

entered the G0-like quiescent state (Shah et al., 2014). Accordingly, phosphoprotein 

effectors of YPL150W were enriched in pseudohyphal growth, responses to glucose 

limitation, and salt stress categories (Figure 5D). Our results further support a role of 

YPL150W in entering quiescence under stress in yeast cells. Overall, the information 

encapsulated with the Δgene-Δgene correlation networks provided extra biological insights 

for characterizing YPL150W functions and, more broadly, can be used to resolve pathway 

organizations from a different perspective.

Protein Functions and Pathway Organizations by Molecular Covariance Network Analysis

Lastly, we analyzed the correlations across the complete protein dataset and phosphorylation 

dataset to collect covariant proteins and covariant phosphosites, respectively. Results were 

visualized as networks of proteins or phosphosites (nodes) and correlations (edges). With 

correlations strictly filtered with ∣r∣ ≥ 0.7 and Bonferroni-adjusted p value ≤ 0.001, 

permutation tests showed 0.05% and 0.44% false positives for the protein covariance and 

phosphosite covariance networks, respectively (Figure S5A).

Overall, nearly 3,000 proteins showed >60,000 significant correlations (44,671 positive and 

16,726 negative), which was 0.65% of all possible connections (Figure 6A; Table S6). About 

half of the protein correlations could be attributed to a particular mechanism, the highest 

being from shared subcellular localizations (Figure 6B). Unexplained edges may come from 

incomplete gene annotation and potentially represent undiscovered biology. Many known 

pathways or structures were captured in the protein covariance network, such as sulfur 

metabolism, chaperonin-containing T-complex, glycolysis/gluconeogenesis, mitochondrial 

ribosome, proteasome, and cytosolic ribosome (Figures 6C and S5B). Encouraged by the 

numbers of attributable edges and successful recapitulation of known biology, we sought to 

elucidate functions of uncharacterized proteins by conducting Gene Ontology enrichment 
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analysis on their network neighbors. Many uncharacterized proteins were linked to 

neighbors of known functions, providing foundations for generating hypotheses about their 

functions (Figures 6D, 6E, and S6; Table S6). For instance, uncharacterized protein 

YDL085C-A was localized to the nucleus in a previous large-scale study (Huh et al., 2003). 

In our data, its positively correlated neighbors were significantly enriched in intracellular 

ribonucleoprotein complex and ribosome, suggesting a role for YDL085C-A in these 

structures (Figure 6D, left). A view of variance of YDL085C-A and its neighbors across all 

deletion strains indicated that BUB1, BUD32, CTK1, and SIT4 played associated roles in 

regulating the protein homeostasis of the YDL085C-A subnetwork (Figure 6D, right). As 

another example, MCO8 was recently named and assigned to mitochondrion with functions 

still unknown (Morgenstern et al., 2017). In agreement with the previous study, MCO8 was 

predicated to be a mitochondrial protein (Figure 6E, left). More significantly, its covariant 

proteins indicated a function of MCO8 in oxidative phosphorylation (Figure 6E, left). A 

heatmap illustration showed that the MCO8 subnetwork was coordinately modulated by 

BUD32, CKA2, CLA4, and PPZ1 (Figure 6E, right).

In the phosphosite covariance network, >4,000 phosphosites displayed >36,000 distinct 

correlations (33,819 positive and 2,881 negative), accounting for 0.14% of all possible links 

(Figure 7A; Table S7). About 4.5% of the correlations were between phosphosites on the 

same protein. Due to the lack of functional relevance for the majority of these phosphosites, 

performing a similar analysis on the phosphosite covariance network is challenging. 

However, for a given phosphosite, its nearest-neighbor network can still reveal valuable 

insights on the pathway architecture in the subnetwork (Figures 7B, 7C, and S7). For 

example, 30 phosphosites showed similar or opposite changing patterns with RLM1 pT166, 

and RLM1 pS164 across all deletion strains. The heatmap of their changes across all 

deletion strains implied that BCK1, PTC1, SIT4, and SLT2 were involved in the dynamics of 

these phosphosites. Kinases BCK1 and SLT2 are known MAPK components of the CWI 

pathway. Phosphatase PTC1 is associated with the CWI pathway by dephosphorylating 

MKK1 (Tatjeret al., 2016). Phosphatase SIT4 is essential for downregulation of PKC1 

activity and consequently required for the CWI pathway (Angeles de la Torre-Ruiz et al., 

2002). These kinases and phosphatases all play roles in the CWI pathway and we 

successfully captured their functional relationships from the neighbor phosphosite 

covariance subnetwork of RLM1 pT166 and RLM1 pS164. RLM1 S427 and T439 are 

targets of SLT2 (Jung et al., 2002; Watanabe et al., 1997) and we did not identify these two 

phosphosites. The functions of RLM1 pT166 and RLM1 pS164 remain unknown, and they 

could be targets of the CWI pathway. Similarly, other phosphosites in this subnetwork also 

indicate specific downstream substrates of the CWI pathway. Among them, Rcn2 S152 and 

Rcn2 S160 are known direct substrates of SLT2 (Alonso-Rodríguez et al., 2016).

As another example, the phosphorylated DIG1 and DIG2 subnetwork also recapitulated 

known target proteins (BNI5, FAR1, PBS2, STE12, and STE50) and the architecture of the 

pheromone responsive pathway (STE7, STE11, and FUS3) (Cappell and Dohlman, 2011; 

Juanes and Piatti, 2016; Kanehisa and Goto, 2000) (Figure S7A). In a similar way, potential 

novel pathway architectures could be inferred from the phosphosite covariance network. For 

instance, the HIF1 pS353 subnetwork suggested a functional module of BUB1, BUD32, 

CTK1, DBF2, and DUN1 (Figures S7B-S7E). Overall, for a given phosphosite, the 
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phosphosite covariance network is a useful resource for retrieving information of co-

regulated phosphosites and the regulatory mechanism employed, which can help to 

illuminate new pathway architectures.

DISCUSSION

With the SL-TMT strategy, measurements of both protein expression and phosphorylation 

levels occur on the same labeled starting material. This minimizes differences due to sample 

handling and labeling effects while maintaining excellent depth of analysis (>4,000 proteins 

across all samples). We present here a systems-level analysis of responses to interventions of 

phosphorylation signaling pathways with both proteomic and phosphoproteomic readouts in 

yeast. Our datasets showed high agreement with preexisting results. More significantly, they 

have predictive power, which will help us to understand and model phosphorylation 

signaling transduction networks in yeast.

The numbers of proteins and phophosites with altered levels caused by the ablation of a 

specific kinase or phosphatase varied considerably. More than 50% of the deletion strains 

exhibited a modest impact at protein abundance and phosphorylation levels (Figure S3C). 

The lack of a strong proteomic or phosphoproteomic phenotypes may be caused by the 

absence or inactivation of kinases or phosphatases under non-inducing growth conditions, or 

compensation or buffering effects from functionally redundant proteins (van Wageningen et 

al., 2010). For instance, single deletion of paralog genes would have minimal effect on the 

proteome and phosphoproteome if their substrates are overlapping, such as Δrck1/Δrck2, 
Δpkh1/Δpkh2, Δnpr1/Δprr2, and Δmkk1/Δmkk2 in this work. Various environmental or 

pharmacological conditions, such as different culture conditions, different carbon sources, or 

interventions with activators, can be used to further explore functions of silent kinases and 

phosphatases. For example, Zelezniak et al. (2018) observed profound and broader impacts 

on the metabolic enzyme proteome in 97 kinase deletion strains grown in minimal media.

The modulation of the homeostasis of proteins involved in a specific function could be 

achieved by coordinated regulation of the phosphorylation status of common transcription 

factors. For instance, in proteasome homeostasis regulation (Figure 4C), we found that in 

total 444 phosphorylation events (84 unique phosphosites on 34 transcription factors) went 

up in Δmck1, Δyvh1, Δctk1, and Δbud32. According to the Yeastract database (Teixeira et 

al., 2018), each of these 34 transcription factors targeted at least one of the 26 upregulated 

proteasome proteins in Figure 4C. Former study also revealed consistent mRNA changing 

patterns of these 26 proteins in Δmck1, Δyvh1, and Δctk1 (van Wageningen et al., 2010). 

Under the assumption that these transcription factors are activated by phosphorylation, this 

result implied that the proteasome protein augmentations in Δmck1, Δyvh1, Δctk1, and 

Δbud32 were mediated by increased phosphorylated transcription factors.

In Δgene-Δgene correlation network analysis, similar profiles of deletion strains indicated 

common downstream effects between kinases and/or phosphatases. Functions or pathways 

with which a specific kinase or phosphatase are involved can be inferred from neighbors in 

the Δgene-Δgene correlation network. Groups of covariant substrates were revealed and their 

changing patterns across kinases and phosphatases could imply novel functional 
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organizations of signal pathways. It should be noted that some correlations or structures 

could be missed due to the inactivation or absence of a particular kinase and/or phosphatase.

This work measured both the global proteome and phosphoproteome, and further 

investigations of phosphorylation stoichiometries can be conducted for some phosphosites 

(Olsen et al., 2010; Wu et al., 2011b). However, caution is advised for the interpretation of 

the stoichiometry results, as some methods have special requirements for the data in order to 

return valid occupancies. Additionally, the data in this work can also be used to facilitate the 

development of new methods for stoichiometry calculation.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Steven P. Gygi (steven_gygi@hms.harvard.edu). This study 

did not generate new unique reagents.

EXPERIMENT MODEL AND SUBJECT DETAILS

The parental wild-type Saccharomyces cerevisiae strain for this study was the haploid 

MATalpha BY4742. Single gene deletion derivatives of BY4742 were obtained through the 

gene deletion consortium (Giaever et al., 2002). All gene deletions were confirmed by either 

proteomics or PCR assays. Single lots of YPD media and YPD+G418 (200 μg/mL) plates 

were used. Yeast from a −80°C stock were streaked onto YPD+G418 plates and incubated 

(30°C, ~48 h). Starter cultures (3 mL YPD media) were inoculated with a patch of yeast 

cells and incubated overnight (30°C, 230 rpm). YPD media (15 ml) were inoculated with 

starting OD600nm = 0.1, incubated (30°C, 230 rpm) and harvested at OD600nm≈1.0. Cells 

were washed 3 times with cold water and pelleted by centrifugation (4000 g, 5 min, and 

4°C). The pellets were stored at −80°C. All deletion strains were grown in 16 batches. WT 

cultures were grown under exactly the same condition as deletion strains.

METHOD DETAILS

Sample Preparation Based on a Streamlined Tandem Mass Tag (SL-TMT) 
Protocol—Sample preparation followed a previously published protocol with minor 

adjustments (Navarrete-Perea et al., 2018). Briefly, yeast pellets were lysed by bead-beating 

in lysis buffer (8 M Urea, 200 mM HEPES, pH 8.5) supplemented with protease inhibitors 

and phosphatase inhibitors. Protein concentration was determined with BCA assays. 

Samples were reduced with 5 mM TCEP, alkylated with 10 mM iodoacetamide and then 

quenched with 10mM DTT. For each sample, a total of 100 μg protein was chloroform-

methanol precipitated and reconstituted in 100 μL 200 mM HEPES (pH 8.5). Samples were 

digested by Lys-C overnight at room temperature and then trypsin for 6 h at 37°C, both at 

1:100 protease-to-protein ratio. TMT11-plex reagents were reconstituted according to 

manufacturer’s instructions and then diluted 4 times with acetonitrile. To each digest 40 μL 

TMT reagent was added for labeling. Each deletion strain was randomly assigned into one 

of 14 TMT groups. Duplicates of each group increased the number of TMT groups to 28. To 

check labeling efficiency, 2 μL of each sample was pooled, desalted and analyzed by MS. 

Li et al. Page 11

Cell Rep. Author manuscript; available in PMC 2020 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



After labeling efficiency check, samples were quenched by adding 9 μL 5% hydroxylamine. 

All samples were subsequently pooled into 28 TMT groups with a wild-type in each and 

desalted with 100 mg Sep-Pak solid-phase extraction columns. Pierce High-Select Fe-NTA 

phosphopeptide enrichment kit was used to enrich phosphopeptides from the pooled 

mixture. Unbound fractions were desalted and then fractionated with basic-pH reversed-

phase high-performance liquid chromatography. Fractions were collected in a 96-well plate 

and combined for a total of 12 fractions prior to desalting and subsequent LC-MS/MS 

analysis.

MS Analysis—Proteomic data were collected on an Orbitrap Fusion mass spectrometer 

(ThermoFisher Scientific) coupled to a Proxeon EASY-nLC 1000 liquid chromatography 

(LC) pump (ThermoFisher Scientific). Peptides were separated on a 35 cm column (i.d. 100 

μm, Accucore, 2.6 μm, 150 Å) packed in-house using a 120 min linear gradient from 2% to 

23% and a subsequent 15 min linear gradient from 23% to 36% of acetonitrile with 0.1% 

formic acid at 550 nl/min. MS1 data were collected using the Orbitrap mass analyzer 

(120,000 resolution at 200 m/z; 350-1400 m/z; maximum injection time 50 ms; AGC 4e5). 

Determined charge states between 2 and 5 were required for sequencing and a 120 s 

dynamic exclusion window was used. Data-dependent “Top10” MS2 scans were performed 

in the ion trap with CID fragmentation (isolation window 0.7 Da; Turbo; 400-2000 m/z; 

NCE 35%; maximum injection time 120 ms; AGC 1e4). MS3 quantification scans were 

performed using multi-notch MS3-based TMT method (10 notches; 50,000 resolution at 200 

m/z; NCE 65%; maximum injection time 150 ms; AGC 1.5e5) (McAlister et al., 2014). All 

data were collected in positive ion mode and were centroided online.

Phosphoproteomic samples were injected twice on an Orbitrap Lumos mass spectrometer 

(ThermoFisher Scientific) coupled to a Proxeon EASY-nLC 1200 liquid chromatography 

(LC) pump (ThermoFisher Scientific). For analysis without multistage activation, 

phosphopeptides were separated on a 35 cm column (i.d. 100 μm) packed in-house with 

reversed-phase materials (Accucore, 2.6 μm, 150 Å) using a 90 min linear gradient from 3% 

to 10%, a subsequent 65 min linear gradient from 10% to 18% and a final 10 min linear 

gradient from 18% to 28% of acetonitrile with 0.1% formic acid at 550 nl/min. For analysis 

with multistage activation, phosphopeptides were separated on the same column using a 90 

min linear gradient from 5% to 16%, a subsequent 65 min linear gradient from 16% to 22% 

and a final 10 min linear gradient from 22% to 30% of acetonitrile with 0.1% formic acid at 

450 nl/min. MS1 data were collected using an Orbitrap mass analyzer (120,000 resolution at 

200 m/z; 350-1400 m/z; maximum injection time 50 ms; AGC 1e6). Determined charge 

states between 2 and 5 were required for sequencing and a 120 s dynamic exclusion window 

was used. Data-dependent “top 10” MS2 scans were performed in the ion trap with CID 

fragmentation with or without multistage activation for two injections (Turbo; 400-2000 

m/z; NCE 35%; maximum injection time 120 ms; AGC 1e4). MS3 quantification scans were 

performed using multi-notch MS3-based TMT method (10 SPS ions; 50,000 resolution at 

200 m/z; NCE 65%; maximum injection time 250 ms; AGC 1.5e5). All data were collected 

in positive ion mode and were centroided online.
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QUANTIFICATION AND STATISTICAL ANALYSIS

MS Data Analysis—MS data were analyzed with in-house software. Raw files were 

initially converted to mzXML for processing. Database searching included all entries from 

the Saccharomyces Genome Database (SGD, 2014). This database was concatenated with 

one composed of all protein sequences in reversed order. Searches were performed using a 

50 ppm precursor ion tolerance and 0.9 Da product ion tolerance. The wide mass-tolerance 

window for precursors was chosen to maximize sensitivity in conjunction with SEQUEST 

searches and linear discriminant analysis (Huttlin et al., 2010). TMT tags on lysine residues 

and peptide N termini (+229.1629 Da) and carbamidomethylation of cysteine residues 

(+57.0215 Da) were set as static modifications, while oxidation of methionine residues 

(+15.9949 Da) was set as a variable modification. For phosphoprotein analysis, +79.9663 Da 

was set as a variable modification on serine, threonine, and tyrosine residues.

Peptide-spectrum matches (PSMs) were adjusted to a 1% false discovery rate (FDR) (Elias 

and Gygi, 2007, 2010). PSM filtering was performed using a linear discriminant analysis as 

described previously (Huttlin et al., 2010), while considering the following parameters: 

XCorr, ΔCn, missed cleavages, peptide length, charge state, and precursor mass accuracy. 

Each run was filtered separately. Protein-level FDR was subsequently estimated. For each 

protein across all samples, the posterior probabilities reported by the LDA model for each 

peptide were multiplied to give a protein-level probability estimate. Using the Picked FDR 

method (Savitski et al., 2015) proteins were filtered to the target 1% FDR level.

Phosphorylation site localization was determined using AScore algorithm (Beausoleil et al., 

2006). AScore is a probability-based approach for high-throughput protein phosphorylation 

site localization. Specifically, a threshold of 13 corresponded to 95% confidence in site 

localization.

For TMT reporter ion quantification, a 0.003 Da window around the theoretical m/z of each 

reporter ion was scanned, and the nearest m/z was used. Reporter ion intensities were 

adjusted to correct for the isotopic impurities of the different TMT reagents according to 

manufacturer specifications. Peptides were filtered for a summed signal-to-noise of 200 

across all 11 TMT channels and an isolation specificity of at least 0.5 in the MS1 isolation 

window. For each protein, the filtered unique peptide TMT values were summed to create 

non-normalized protein quantifications.

To control for differential protein loading within an 11-plex, the summed protein quantities 

were adjusted to be equal within an 11-plex. Phosphosite quantifications were also 

normalized by correction factors generated in this process to account for protein loading 

variance. Following this, values were log2-transformed, and within each 11-plex the bridge 

channel (wild-type strain) protein or phosphosite quantity was subtracted from each sample 

quantity to create a ratio to the wild-type. For each protein and phophosite, there is some 

measurement error in the measurement of the bridge sample. To account for this, within each 

11-plex, the trimmed mean protein or phosphosite expression was centered at 0. Finally, 11-

plexes were joined by protein or phosphosite identification to create the complete datasets. 

Phosphosite quantifications were further normalized by cognate protein ratios when needed.
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Identification of Proteomic and Phosphoproteomic Phenotypes in Δgene 
Strains—Proteomic and phosphoproteomic phenotypes were determined at individual 

protein or phosphosite level. Proteins or phosphosites quantified in at least 50% of all 

deletion strains were considered in this analysis. For each protein or phosphosite, duplicates 

were merged and then a trimmed standard deviation (SD) was calculated with top 5% and 

bottom 5% of changes removed. For proteins or phosphosites quantified in both biological 

duplicates and one of the duplicates, 3 SD cutoff and 6 SD cutoff were applied, respectively. 

Proteins and phosphosites were further filtered with log2-ratio cutoffs 0.38 and 0.5, 

respectively. Of all delta log2-ratios between biological replicates, 1.2% and 0.9% showed 

values higher than 0.38 and 0.5 for protein data and phosphosite data, respectively. Results 

were visualized as regulation networks with Cytoscape 3.6.0 (Shannon et al., 2003). 

Analysis was conducted in R 3.4.2.

Regression Analysis of Δgene-Δgene Perturbation Profiles—For pairwise 

combinations of all deletion strains, linear regression analysis was conducted at protein and 

phosphorylation levels, respectively. Fold changes of deleted proteins in cognate strains were 

set as missing values to avoid false correlations caused by gene deletions. Log2-ratios ≥ 0.38 

or ≥ 0.5 were used for protein and phosphosite data, respectively. A minimum of 25 proteins 

or phosphosites were required. These measurements were fit to a line and the associated 

Pearson correlation coefficient (r) was reported. A ∣r∣ ≥ 0.6 cutoff was applied and maximum 

Benjamini-Hochberg adjusted p values were 0.003 for results from proteomic and 

phosphoproteomic profiles. For pairs of deletion strains showing low correlations or lacking 

a sufficient number of proteins or phosphosites that met the aforementioned criteria, the 

Pearson coefficient was reported as 0. Results were visualized with hierarchical clustering 

with R package “pheatmap” 1.0.8 and Cytoscape 3.6.0. Analysis was conducted in R 3.4.2.

Protein Covariance Network and Phosphosite Covariance Network Analysis—
For all pairwise combination of proteins or phosphosites, regression analysis was performed 

using log2-ratios having measurements in at least 50% of all Δgene strains in the pair. Fold 

changes of deleted proteins in corresponding strains were set as missing values to avoid false 

covariance caused by gene deletions. Pearson regression analysis was conducted to obtain 

correlation coefficients (r). All p values were corrected for multiple hypothesis testing 

(Bonferroni) and correlations where ∣r∣ ≥ 0.7 and adjusted p value ≤ 0.001 were reported. 

Permutation tests (n = 1000) were conducted to estimate false positives. Covariance 

networks were visualized with Cytoscape 3.6.0. Percentages of protein-protein correlations 

explained by known relationships were computed by matching BioGRID (downloaded on 

April 23, 2018) (Stark et al., 2006) for protein interactions, SGD GO slim pathway database 

for biological pathways, SGD GO slim cellular component database for subcellular 

localizations, SGD GO slim function database for molecular functions and SGD protein 

complex database (downloaded on August 27, 2018) (Cherry et al., 2012) for protein 

complexes. Analysis was conducted in R 3.4.2.

Gene Ontology (GO) Enrichment Analysis—For enrichment analysis of regulators 

(kinases and phosphatases) against HOG pathway components, 6 kinases and phosphatases 

in HOG pathway were tested, including SSK22, SSK2, PBS2, HOG1, PTC1 and PTP3. 
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These six kinases and phosphatases showed impact at protein or phosphorylation levels and 

were within three cascades of HOG1 according to KEGG pathway database (downloaded on 

September 19, 2018) (Kanehisa and Goto, 2000). All 99 kinases and phosphatases showing 

effect at protein level, or 106 kinases and phosphatases displaying impact at phosphorylation 

level were used as background for protein data and phosphorylation data, respectively. 

Enrichment was computed via hypergeometric distribution tests and Benjamini-Hochberg 

adjusted p values were filtered at 1%. Two proteins and four phosphosites showing 

inconsistent altered patterns in HOG pathway were further removed.

For enrichment analysis of effectors (regulated proteins or phosphoproteins), databases used 

included KEGG yeast pathway database (downloaded on September 19, 2018) (Kanehisa 

and Goto, 2000), Uniprot yeast biological pathway database (downloaded on August 21, 

2018) (UniProt Consortium, 2019), SGD biochemical pathway database, SGD protein 

complex and SGD GO slim cellular component databases (downloaded on August 27, 2018) 

(Cherry et al., 2012). Multiple phosphosites on a phosphoprotein were counted as one. All 

perturbed proteins or phosphoproteins in regulation networks were used as background. 

Enrichment was calculated via hypergeometric distribution tests for upregulated proteins and 

downregulated proteins separately. P values were corrected across all deletion strains and all 

GO categories per database with Benjamini-Hochberg method and then filtered at 1%.

For enrichment analysis of covariant proteins, the databases used were KEGG yeast pathway 

database (downloaded on September 19, 2018) (Kanehisa and Goto, 2000), Uniprot yeast 

biological pathway database (downloaded on August 21, 2018) (UniProt Consortium, 2019), 

SGD protein complex and SGD GO slim cellular component databases (downloaded on 

August 27, 2018) (Cherry et al., 2012). For a given protein, all positively correlated 

neighbors were tested. All proteins (except for the one surveyed) having positive correlations 

with others were used as background. Enrichment was calculated via hypergeometric 

distribution tests. P values were corrected across all nodes and all GO categories per 

database with Benjamini-Hochberg method and then filtered at 1%.

All GO enrichment analysis was conducted in R 3.4.2.

DATA AND CODE AVAILABILITY

The mass spectrometry data have been deposited to the ProteomeXchange Consortium with 

the dataset identifier PXD015575.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SL-TMT strategy enables (phospho)proteome analysis of 110 yeast deletion 

strains

• Complete interpretation of phosphorylation data requires protein 

normalization

• Kinase and phosphatase relationships are characterized at multiple levels

• Network analyses illuminate phosphorylation signaling pathway organizations
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Figure 1. Quantitative Proteomic and Phosphoproteomic Analysis of 110 Yeast Kinase and 
Phosphatase Deletion Strains
(A) Experimental workflow. In total, 84 kinase and 26 phosphatase deletion strains were 

investigated, covering 82% of all viable yeast kinase and phosphatase deletion strains. Yeast 

were grown in duplicate under standard conditions and harvested at optical density 600 

(OD600) ≈ 1.0. With SL-TMT-based (phospho) proteomics, >4,600 proteins and >13,000 

phosphosites were quantified.

(B) Summary of the datasets. Bars show average numbers of molecules quantified per 

TMT11-plex and overlap of molecules quantified across 110 deletion strains. About 96% 

quantified phosphosites have protein quantifications and could be normalized by cognate 

protein ratios. Error bars indicate minimum and maximum numbers of molecules among 28 

TMT11-plexes.

(C) Overview of the data analyses. Functional relationships between kinases and/or 

phosphatases were analyzed in three ways: (1) Gene Ontology enrichment analysis, (2) 

Δgene-Δgene correlation networks, and (3) molecule covariance networks.

(D) Hierarchical clustering analysis of a subset of 58 samples (see Figure S1F for full 

dendrogram). Biological duplicates clustered tightly. Deletion strains did not cluster with 

TMT groups or growth batches.

(E) GPD1 (a HOG1-dependent osmostress-induced protein) showed low levels in Δhog1, 
Δpbs2, and Δssk2. HOG1, SSK2, and PBS2 are MAPK components of the HOG pathway. 

PDA1 S313 showed decreased phosphorylation levels in strains lacking its known kinases 

(PKP1 and PKP2). Colored dots represent measurements in biological duplicate. Dashed 

lines indicate 3 SD cutoff (see the STAR Methods).

See also Figure S1 and Table S1.
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Figure 2. Analysis of Proteomic and Phosphoproteomic Phenotypes
(A) Examples of how protein abundance alterations impacted phosphorylation quantification 

results. Black solid lines connect biological duplicates.

(B) More than 50% of regulated phosphorylation events could be explained simply by 

differences at protein expression levels. Using values normalized to protein expression, 

many previously uncaptured phosphorylation changes were now captured.

(C) Summary of phenotypes at the protein and phosphorylation levels (with protein 

normalization).

(D) Proteome-wide and phosphoproteome-wide impact of each kinase and phosphatase. 

Impact factor (%) is the fraction of proteins or phosphosites affected relative to the number 

of quantified proteins or phosphosites.

See also Figure S2.
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Figure 3. Protein Regulation Network and Phosphorylation Regulation Network Analyses
(A) Protein regulation network. Overall, 4,400 downregulated and 4,710 upregulated events 

were captured in 74 kinase and 25 phosphatase deletion strains.

(B) Phosphorylation regulation network. Together, 4,955 downregulated and 5,690 

upregulated phosphorylation events were captured in 80 kinase and 26 phosphatase deletion 

strains.

(C) Altered proteins for which cognate kinases and phosphatases were enriched in the HOG 

pathway (BH-adjusted p value ≤ 0.01). The gray bar above the heatmap indicates proteins 

showing consistent changes in previous studies.

(D) Regulated phosphosites for which cognate kinases and phosphatases were enriched in 

the HOG pathway (BH-adjusted p value ≤ 0.01). Gray bar indicates known target 

phosphoproteins or phosphosites of the HOG pathway.

See also Figure S3 and Tables S3 and S4.
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Figure 4. Functional Relationships by Gene Ontology (GO) Enrichment Analysis of Protein 
Regulation Networks and Phosphorylation Regulation Networks
For each kinase and phosphatase, GO categories enriched among their regulated proteins or 

phosphoproteins were computed.

(A) Part of the enrichment analysis results on protein effectors using the Uniprot biological 

pathways database (see Table S3 for full results). Cells with black borders indicate kinases 

and phosphatases for which known pathways were enriched in their protein effectors.

(B) Part of the enrichment analysis results on phosphoprotein effectors using the Uniprot 

biological pathways database (see Table S4 for full results). Cells with black borders are the 

same as in (A).

(C) Examples showed functionally related kinases and phosphatases in regulating proteins 

involved in glucose import, ergosterol biosynthesis, and proteasome.

(D) Examples of subnetworks of kinases and phosphatases coordinately modulating the 

TOR signaling pathway and glycolysis.
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See also Figure S4 and Tables S3 and S4.
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Figure 5. Functional Correlations through Regression Analysis on Proteomic and 
Phosphoproteomic Perturbation Profiles
(A) Heatmaps of Pearson correlation (r) for pairs of Δgene proteomic (left) and 

phosphoproteomic (right) perturbation profiles (∣r∣ ≥ 0.6). Cells with black borders highlight 

correlations between Δdbf2/Δdbf20 and other strains.

(B) Regression analysis recapitulated known relationships between kinases and/or 

phosphatases in MAPK signaling pathways at both proteome and phosphoproteome levels. 

Edge colors denote correlation (r) values and are the same as in (A).

(C) Uncharacterized kinase YPL150W and its correlated kinases and phosphatases. Edge 

colors denote correlation (r) and are the same as in (A). Solid edges and dashed edges 

indicate correlation at the proteome and phosphoproteome levels, respectively.

(D) Biological pathways enriched in regulated proteins (left) and phosphosproteins (right) in 

Δypl150w. Benjamini-Hochberg FDR adjustment was applied to account for multiple 

hypothesis testing.

See also Table S5.
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Figure 6. Protein Covariance Network Analysis
(A) Some proteins grouped via properties (protein interaction, biological pathway, 

subcellular localization, molecular function, protein complex, etc.) showed consistent, 

changing patterns across 110 deletion strains and constituted the protein covariance network 

(∣r∣ ≥ 0.7, adjusted p value ≤ 0.001).

(B) Percentage of protein correlations that could be explained by known biological 

relationships.

(C) Protein covariance network analysis captured known functional structures. Edge colors 

denote correlation (r) and are the same as in (A).

(D) Neighbor protein covariance networks uncovered functions for the uncharacterized 

protein YDL085C-A (left). For a given protein, neighbors were tested for GO term 

enrichment with Benjamini-Hochberg adjustment to account for multiple hypothesis testing. 

Edge colors in subnetworks on the left denote correlation (r) and are the same as in (A). 

Cells not labeled with a pound sign (#) in heatmaps on the right denote missing values. 

Heatmaps on the right show the changing patterns of YDL085C-A and its covariant proteins 

across all deletion strains.
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(E) Neighbor protein covariance networks implied functions for uncharacterized protein 

MCO8. Annotations are the same as in (D).

See also Figures S5 and S6 and Table S6.
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Figure 7. Phosphosite Covariance Network Analysis
(A) Some phosphosites showed correlations across 110 deletion strains and composed the 

phosphosite covariance network (∣r∣ ≥ 0.7, adjusted p value ≤ 0.001).

(B) Correlation between RLM1 pT166, RLM1 pS164, and their covariant phosphosites. 

Edge colors denote correlation (r) and are the same as in (A).

(C) Changing patterns for RLM1 pT166, RLM1 pS164 and their correlated phosphosites 

across all deletion strains. Cells not labeled with a pound sign (#) denote missing values.

See Figure S7 and Table S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Saccharomyces cerevisiae kinase/phosphatase 
deletion strains

Giaever et al., 2002 http://www-sequence.stanford.edu/group/
yeast_deletion_project/deletions3.html

Chemicals, Peptides, and Recombinant Proteins

YPD medium Research Product International Cat. # Y20090-5000.0

Protease inhibitors Roche Cat. # 11836170001

Phosphatase inhibitors Roche Cat. # 04906837001

Pierce BCA Protein Assay Kit ThermoFisher Cat. # 23225

TMT 11-plex reagents ThermoFisher Cat. # 90406, Cat. # A34807

Sep-Pak solid-phase extraction column Waters Cat. # WAT036820

High-Select Fe-NTA phosphopeptide enrichment 
kit

ThermoFisher Cat. # A32992

Deposited Data

Mass spectrometry data This paper ProteomeXchange (PXD015575)

Software and Algorithms

In-house mass spectrometry data analysis software Huttlin et al., 2010 N/A

Cytoscape 3.6.0 Shannon et al., 2003 https://cytoscape.org/

R 3.4.2 N/A https://www.r-project.org/

R package “dplyr” 0.7.4 N/A https://cran.r-project.org/web/packages/dplyr/
index.html

R package “pheatmap” 1.0.8 N/A https://cran.r-project.org/web/packages/pheatmap/
index.html

R package “tidyr” 0.8.0 N/A https://cran.r-project.org/web/packages/tidyr/
index.html

R package “tibble” 1.4.2 N/A https://cran.r-project.org/web/packages/tibble/
index.html

Other

Uniprot biological pathway database UniProt Consortium, 2019 https://www.uniprot.org/

KEGG pathway database Kanehisa and Goto, 2000 https://www.genome.jp/kegg/

BioGRID protein-protein interaction database Stark et al., 2006 https://thebiogrid.org/

SGD GO database and protein complex database Cherry et al., 2012 https://www.yeastgenome.org/

Cell Rep. Author manuscript; available in PMC 2020 July 26.

http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
https://cytoscape.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/tidyr/index.html
https://cran.r-project.org/web/packages/tidyr/index.html
https://cran.r-project.org/web/packages/tibble/index.html
https://cran.r-project.org/web/packages/tibble/index.html
https://www.uniprot.org/
https://www.genome.jp/kegg/
https://thebiogrid.org/
https://www.yeastgenome.org/

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Proteomic and Phosphoproteomic Profiling of 110 Yeast Kinase and Phosphatase Deletion Strains
	Analysis of Proteomic and Phosphoproteomic Phenotypes in Deletion Strains
	Protein and Phosphorylation Regulation Network Analyses
	Functional Correlations through Regression Analysis of Δgene-Δgene Perturbation Profiles
	Protein Functions and Pathway Organizations by Molecular Covariance Network Analysis

	DISCUSSION
	STAR★METHODS
	LEAD CONTACT AND MATERIALS AVAILABILITY
	EXPERIMENT MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	Sample Preparation Based on a Streamlined Tandem Mass Tag (SL-TMT) Protocol
	MS Analysis

	QUANTIFICATION AND STATISTICAL ANALYSIS
	MS Data Analysis
	Identification of Proteomic and Phosphoproteomic Phenotypes in Δgene Strains
	Regression Analysis of Δgene-Δgene Perturbation Profiles
	Protein Covariance Network and Phosphosite Covariance Network Analysis
	Gene Ontology (GO) Enrichment Analysis

	DATA AND CODE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

