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Abstract Lipid biosynthesis and fatty acids composition
of oleaginous zygomycetes, namely Cunninghamella
bainieri 241, cultured in media with excess or limited
nitrogen were quantitatively determined at different times
of culture growth. Accumulation of lipids occurred even
when the activity of NAD'-ICDH (pB-Nicotinamide
adenine dinucleotide-isocitrate dehydrogenase) was still
detectable in both media. In C. bainieri 241, under
nitrogen limitation, the ratio of lipids was around 35%,
whereas in nitrogen excess medium (feeding media
supplemented with ammonium tartarate), the lipid ratio
decreased. The amount of this decrease depended on the
level of ammonium tartarate in the media. The main
findings in this paper were that C. bainieri 241 has the
ability to accumulate lipid although nitrogen concentration
detected inside the media and that NAD-ICDH was active
in all culture periods. These results proved that the strain
C. bainieri 241 has an alternative behavior in lipid
biosynthesis that differs from yeast. According to the old
hypotheses, yeasts could not accumulate lipid more than
10% when nitrogen was detected inside the media.
Nitrogen-limited and excess media both contained the
same fatty acids (palmitic acid, stearic acid, olic acid,
linoleic acid and +v-linolenic acid), but at different
concentrations. The C:N ratio was also studied and
showed no effects on total lipid accumulation, but a
significant effect on y-linolenic acid concentration.

E. M. Taha (D<) - O. Omar + W. M. W. Yusoff- A. A. Hamid
School of Biosciences and Biotechnology , Faculty of Science
and Technology, University Kebangsaan Malaysia,

43600 Bangi, Selangor, Malaysia

e-mail: ekhlassch@yahoo.com

Keywords Lipid biosynthesies - Nitrogen-excess media -
Nitrogen-limited media - Gamma linolenic acid -
NAD'-ICDH enzyme

Introduction

The biosynthesis of lipids such as triglycerides, phospholipids
and glycolipids by oleaginous microorganisms is well
documented and might represent an alternative source of fats
and oils, a topic which has been widely studied (Fakas et al.
2006, 2008a, 2009; Ratledge 1982; Ratledge and Boulton
1985; Vani et al. 1988).

Specifically, Cunninghamella echinulata strains have
been shown to accumulate lipid bodies rich in polyunsat-
urated fatty acids (PUFA) including y-linolenic acid (GLA)
(Gema et al. 2002; Chen and Chang 1996; Fakas et al.
2007, 2008b, 2008c; Tao and Zhang 2007). Other micro-
organisms producing oils containing a large amount of
PUFA, including Mortierella alpina, Mortierella isabellina,
Mucor circinelloides, Cryptococcus curvatus, Crypthecodi-
nium cohnii and Yarrowia lipolytica, have been widely
studied (Papanikolaou and Aggelis 2003; Papanikolaou et
al. 2004a; Ratledge 2004; Szczesha-Antczak et al. 2006).
Lipid accumulation in these microbes is triggered by cell
exhausting nitrogen, but glucose continues to be assim-
ilated as well as inhibition of ICDH activity within the
mitochondrion. This leads to the accumulation of citrate,
which is transported into the cytosol and cleaved to
acetyl-CoA by ATP:citrate lyase (Papanikolaou et al.
2004b; Ratledge 2002). The biochemical mechanism of
lipid accumulation in oleaginous fungus seems to be more
complicated than that reported for yeasts ( Ratledge 1994;
Wynn et al. 2001). The characteristics of NAD*-ICDH of
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oleaginous molds were shown to be distinct from those
described for oleaginous yeasts, as fungal NAD-ICDH was
not absolutely dependent on cellular AMP for activation
(Wynn et al. 2001). Synthesis of fatty acids in yeasts is
induced by decreased activity of the isocitrate dehydrogenase
enzyme under diminished nitrogen levels in culture (Evans
and Ratledge 1984). The transition from biomass synthesis
to lipogenesis was regulated by NAD"-ICDH (Makri et al.
2010)

The nature and concentration of the nitrogen source used
in the medium is an essential factor for regulation of
lipogenesis. Many reports have described various nitrogen
sources employed for fungal fatty acid production (Certik
et al. 1993, 1999), and have also suggested that the initial
C:N ratio is important for lipid accumulation (Yong-Hong
et al. 2006; Papanikolaou et al. 2004b).

In this study, the growth, lipid accumulation, types of
fatty acids present, and activity of ICDH were studied in C.
bainieri 241 cultured in nitrogen-limited (N-limited) or
nitrogen-excess (N-excess) media. Different concentrations
of glucose and different levels of nitrogen were used. The
fatty acid composition of the cellular lipids was determined,
and the N-limited and N-excess media were compared with
respect to lipid yield, biomass yield, and y-linolenic acid
concentration.

Materials and methods
Microorganism and culture conditions

The fungus Cunninghamella bainieri 241 was maintained on
potato dextrose agar (PDA) plates at 30°C for 7 days. The
growth medium, Kendrick medium (Kendrick and Ratledge
1992) contained (g/L): glucose, 30; (NH4),C4H4O4q,
1; KH,POy4, 7; Na,HPOy, 2; MgSO,4H,0, 1.5; yeast extract,
1.5; CaCl,2H,0, 0.1; FeCl;6H,0, 0.008; ZnSO,47H,0,
0.0001; CuSO45H,0, 0.001; Co(NO5)6H,0, 0.0001 and
MnSO,45H,0, 0.0001. The PH was adjusted to 6. After
sterilization (121°C for 15 min), the media were inoculated
with the spore suspension at a final concentration of 1 x 10°
spores/ml, which was produced by growing the strain on
PDA for 7 days at 30°C. All cultivation experiments were
performed in 500-ml Erlenmeyer flasks containing 200 ml of
the above medium, incubated in a rotary shaker at 200 rpm
and 30°C.

Analytical methods
Total biomass was harvested by vacuum filtration
through a Whatman No. 1 filter, washed with distilled

water, frozen at —20°C, freeze-dried for 24 h, and then
gravimetrically determined. The dry biomass was disrupted
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and homogenized, and lipids were extracted with chloroform/
methanol (2:1, v/v) using the method of Folch et al. (1957).
Total lipids were determined gravimetrically. Lipid fractions
were converted to methyl esters by using n-hexane to
dissolve the oil and 1 M sodium methoxide to get methyl
ester, and analyzed in a gas chromatograph shimadzu GC-
2010 FID wusing packed column (DB-23) and flame
ionization detector (FID) at 250°C. The fatty acids compo-
sition present in the sample was calculated based on the peak
area of corresponding methyl ester against reference standard
FAME mixture.

Preparation of cell-free extracts and assays
for NAD"-ICDH

Harvested mycelia were washed using cold distilled water,
and cell extracts for the determination of enzyme activities
were prepared by suspending and disrupting mycelia in an
extraction buffer (Wynn 1998). The disrupted cell suspension
was centrifuged at 6,000g for 15 min at 4°C and the
supernatant was filtered through a Whatman No.1 filter paper.
The protein in the clear supernatant was measured according
to the protocol of Bradford (1976), and NAD"-ICDH (EC
1.1.1.41) was assayed using the method described by
Kornberg (1955); AA was measured at 340 nm and 30°C
and changes were the result of reduction of NAD".

Analysis of the culture supernatant

The glucose concentration in the culture medium was
determined using a GOD test kit according to the
manufacturer's instructions. The ammonium concentration
in the culture filtrate was determined using the indophenol
test (Chaney and Marbach 1962).

Reproducibility of data

All experiments were carried out at least three times, all
data presented are reproducible. One-way ANOVA of
triplicate data revealed a significant difference in lipid ratio
between the first and third days, but no significant
difference between the second and fourth days.

Results and discussion
Growth and accumulation of reserve lipid in N-limited media:

The kinetics of growth and lipid accumulation in C.
bainieri 241 were investigated in N-limited batch cultures
with different concentrations of glucose including 30 g/L
(Fig. 1; Table 1). At the early stage of culture, the biomass
accumulated as the culture period increased (Fig. 1). Lipid
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yield increased quickly from the first day of cultivation to
the third day, where this might have been due to
expenditure of nitrogen sources, resulting in the use of
glucose to synthesize lipids. Other reasons for phenomena
observed during this culture period include the closed
nature of the batch culture system, the abundance of
nutritional substrates, and limited metabolic materials at
the initial stage of culture. C. bainieri 241 quickly entered
the logarithmic phase after a short period of retention and
accelerated growth, where it began to make use of nitrogen
sources and other nutritional substrates to reproduce.
During this period, a great amount of biomass accumulated
(5.2 g/L). After the nitrogen sources were expended (at
about 24 h after inoculation), carbon sources in the culture
liquid were used. ICDH enzyme activity was present at all
culture times from the first (129 nmol/min mg) until the
fifth day (119 nmol/min mg), despite the depletion of
nitrogen in the media.

Our findings with respect to the C. bainieri 241 growth
curve were in agreement with those of Tao and Zhang
(2007), who showed that Cunninghamella echinulata
mainly used glucose to synthesize lipids, and accumulated
lipids until they reached a maximum on the fourth day. The
same study also showed that, in the growing stage, biomass

Table 1 Growth of C. bainieri 241 in N-limited media

and lipid yield accumulation was the fastest process. The
GLA percentage did not increase. During the lipid
accumulation stage, the lipid yield reached a maximum on
the fourth day and then began to decrease with time. In
contrast, Papanikolaou et al. (2004a) reported that the
maximum lipid level was achieved after 310-400 h.
Another study in 2002 showed that the maximum lipid
level was achieved after 250 h, and that this strain C.
echinulata cultivated in medium with a C:N ratio >100
accumulated more than 35% of cellular lipid with a GLA
content greater than 11% (Gema et al. 2002), while our
study achieved the same results with C:N ratio 42 and after
96 h of cultivation.

The hypothesis was that oleaginous microorganisms
degrade AMP in low-nitrogen conditions in order to release
nitrogen, thereby allowing synthesis of cellular materials.
The 'energy charge' ratio should thus be increased inside the
cell, resulting in inhibition of ICDH and accumulation of
intracellular citric acid. Acetyl-CoA would then be pro-
duced by citric acid cleavage via the ATP:citrate lyase
reaction (Botham and Ratledge 1979; Moreton 1988). Our
results related to NAD'-ICDH show that ICDH in C.
bainieri 241 appeared in high activity during the period of
growth, and it appears that this enzyme was not implicated

C/N Gle (g/L) X (g/L) Y/Gle YLGle L/X (% wt/wt) Pro X (mg/ml h) Pro L(mg/ml h)
42 30 9.4 0.37 0.13 35 0.09 0.035

69 50 10.6 0.28 0.097 34 0.14 0.05

97 70 11.6 0.23 0.085 36 0.12 0.043

Maximum L/X was achieved after 72-96 h. Culture conditions: initial pH 6 and temperature 30°C

X total biomass, Y,/ total biomass yield on glucose consumed, Y; ;. reserve lipid yield on glucose consumed, L/X maximum ratio of lipid
accumulated, Pro X productivity of biomass, Pro L productivity of reserve lipid
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in lipid biosynthesis and that this activity may be due to the
implication of NAD'-ICDH in different pathways, as, for
example, it can be suggested to have a role in maintaining
complete TCA cycle operation under conditions of suffi-
cient isocitrate supply. Also, participation of two ICDH in
mitochondria and one ICDH in cytosol in interconversions
between isocitrate and oxoglutarate represents a flexible
mechanism in which the ICDH enzymes are involved in the
maintenance of the metabolic balance between reduced and
oxidized pyridine nucleotides (Igamberdiev and Gardestrom
2003). Generally, NAD'-ICDH was inhibited by two key
metabolites, citrate and the ratio of NAD/NADH, which
again illustrates the strategic position of this enzyme in
cellular metabolism. Citrate is a weak inhibitor but, as it
accumulates in the mitochondria, it could feed forward to
increase its own production due to the equilibrium of
aconites. NAD, on the other hand, is very strongly inhibitory.
There are some indications that the catalysis by NAD'-
ICDH is not reversible and that it is highly inhibitory with
the ratio of NAD"/NADH. In contrast, the NADP-ICDH
catalyzed reaction is easily reversible. This may be
connected with different enzyme functions in isocitrate
metabolism (Evans and Ratledge 1985). This enzyme was
studied widely in yeast as such changes in Rhodosporidium
toruloides CBS 14 would result in rapid inactivation of
NAD"ICDH, thus indicating why this enzyme occupies
such a strategic position in the sequence of events leading to
lipid accumulation (Evans and Ratledge 1985). The recent
research on yeast by Makri et al. (2010) also proved that
NAD'-ICDH activity was gradually decreased during tran-
sition from biomass production to lipogenic phase and
further to citric acid production phase. In contrast, the
activity of NADP"-ICDH that was essentially located in the
cytoplasm, especially during both lipogenic and citric acid
production phases, remained unchanged during the growth
cycle. During biomass production phase, glycerol was
essentially converted into fat-free cellular material, and when
ammonium nitrogen was depleted, some quantities of storage
lipid were then synthesized during the lipogenic phase. This
data again suggest that transition from biomass synthesis to
lipogenesis and then to citric acid synthesis was regulated by
NAD"-ICDH. The stringent control of citrate metabolism at
the level of ICDH therefore provides the necessary first step
in the accumulation of lipid by oleaginous yeasts. This
phenomena cannot be applied to our outcome as in C.
bainieri 241 our data show high activity of ICDH in the
growth phase. This activity may be due to the involvement
of ICDH in other pathways or may be due to the build-up of
lipid-free material which is produced until the stationary
phase. The phenomena of C. bainieri 241 growth in Bach
culture seems to be different from other species in the
biomass production and lipogenic phases. The two phases
come together at the same time and this result is in contrast
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to yeast and to other studies on fungi (Papanikolaou et al.
2004b), who demonstrated that the restriction of ICDH
activity in the mycelium of C. echinulata and M. isabellina
strains induced lipid biosynthesis. This was accompanied by
a considerable decrease of respiration rate, and it is
remarkable that, in C. echinulata, the activity of NAD-
ICDH was maintained at high levels considerably later after
nitrogen depletion in the medium, explaining the biosynthesis
of lipid-free material biosynthesis for an extensive period of
time and the simultaneous low reserve lipid accumulation
inside the mycelia. These results in some way agreed with our
results in cases of build-up of lipid-free material. Nitrogen,
indispensable for lipid-free material synthesis, may be
provided by AMP-desaminase reaction, while ICDH activity
should be unaffected by the reduction of AMP. Indeed, it was
found that NAD'-ICDH of some oleaginous zygomycetes
was active even at high energy charge ratios (Certik et al.
1999; Wynn et al. 2001), whereas in the cases of oleaginous
yeasts it was not (Botham and Ratledge 1979).

The effect of glucose concentrations on the growth of C.
bainieri 241 and lipid accumulation in N-limited media
were also investigated (Table 1) with specific respect to
biomass, lipid content of biomass, ,Yy/Gic (total biomass
yield on glucose consumed), Yy g (reserve lipid yield on
glucose consumed) productivity for lipids, and productivity
for biomass. Different C:N ratios were achieved by varying
the concentration of glucose (30, 50, 70 g/L) while fixing
the concentrations of the nitrogen sources, which consisted
of yeast extract (1.5 g/L) and ammonium tartrate (1 g/L).
Maximum lipid accumulation occurred at C:N 42, although
it should be emphasized that yeast extracts containing
significant quantities of N (8.9%) were included in the C:N
ratio calculation, as were contributions from ammonium
tartrate. Higher Yx,gic and Yy Gl values were also observed
at C:N 42. There were no significant differences among
different C:N ratio with respect to the lipid percentage.

Oleaginous organisms usually do not accumulate lipids
to any great extent in media with initial C:N ratios <20; the
optimum ratio for any organism will probably be between
30 and 80 (Moreton 1988). Previous studies showed that
the lipid content of C. echinulata grown with various
concentrations of the carbon source (soluble starch, 3—12%)
decreased with increasing starch concentration and C:N
ratio throughout the experimental range (Chen and Chang
1996). Maximum lipid accumulation and GLA yield both
occurred at 10% soluble starch concentration, where this
was equivalent to an initial C:N ratio of 35. The previous
study was somewhat in agreement with our results showing
no effect of carbon concentration on reserve lipids in total
biomass. The maximum Y,,G. and Y1 i were observed at
C:N ratios (42) of 0.37 and 0.13, respectively, while the
best productivity was observed at C:N ratios (69) of 0.14
and 0.05, respectively. Another study in 2004 demonstrated



Ann Microbiol (2010) 60:615-622 619

Fig. 2 Evaluation of total bio- 1049 18 20 r 300

mass (g/L #), lipid in total biomass
% (wt/wt m), GLA% (wt/wt @), 16 1 e .
and isocitrate dehydrogenase 81 14 16 2% E
activity (NAD™-ICDH nmol/min L 14 £
mg,) during growth of C. bainieri g 12 4 ~ pa0 %
2A1 in N-excess media with Z 645 F12 2 £
thrice daily feeding with ammo- £ P Lo 2 Liso z
nium tartrate (1 /L) - 8 °
IS ] 2 2
< 4@ re & E
a 6 | = b0 3§
£
4 7
2 4 i Fso &
21 2
od o . . . . . 0 Lo
0 24 48 72 9% 120
Time h

that the initial C:N ratio is important for lipid accumulation
(Papanikolaou et al. 2004b). Specifically, in C. echinulata
cultivated in multiple limited media, when the C:N ratio
was increased from 83.5 to 133.5, lipid content in C.
echinulata subsequently increased from 36 to 47%.
Papanikolaou et al. (2004b) also found that, at a high C:N
ratio varying from 150 to 340, lipid productivity increased
from 0.05 to 0.07 g/h.

The role of the C:N ratio in lipid accumulation has been
shown to depend on the microorganism and the fermenta-
tion liquid medium (Vani et al. 1988). During growth-phase
batch fermentation with an initial C:N ratio of 17, the lipid
yield of the cells increased from 0.25 to 0.48 at the end of
fed-batch mode, when the initial C:N was 30. When the C:
N was further increased to 40 in fed-batch mode, the lipid
yield decreased to 0.33. Another study of yeast reported
that the optimum C:N ratio was 420, but at this ratio,
biomass and lipid production was very low (Yong-Hong et al.
20006).

Growth and accumulation of reserve lipids in N-excess
media

Growth and lipid accumulation were studied by feeding
cultures with ammonium tartrate and by controlling the
ammonium tartrate concentration (Fig. 2); cultures were fed
thrice daily with ammonium tartrate (1 g/L).

With three times daily feeding, biomass was (13 g/L)
and lipid accumulation was (16%). Nitrogen concentration
was between 0.4 and 0.6 g/L in the first days, and glucose
gradually decreased (Fig. 3).

Based on the above findings, we focused more on
nitrogen level by controlling the nitrogen concentration
(0.2-0.8, 0.5-1 and 0.8-1 g/L) for 2 days of culture
(Table 2). There were significant differences among the

—&— Biomass (g/1)
—8— Lipid % (wt/wt)

—0— GLA% (wt/wt lipid)
—— Specific activity ICDH(nmol/min.mg)

three nitrogen concentrations with respect to biomass, lipid
percentage, lipid yield, and biomass yield. N-excess media
with different levels of nitrogen showed more biomass
yield than N-limited media. However, the lipid yield in N-
excess media with different levels of nitrogen was less than
that observed in N-limited media. Despite the effects of
excess nitrogen on microorganisms, the lipid yield when
the nitrogen level was held between 0.5-1 g/L was around
15%. This finding disagrees with the old hypothesis
suggesting that microorganisms can only accumulate lipids
in N-limited media. However, to date, few studies have
focused on N-concentration. Certik et al. (1999) used
different concentrations of nitrogen (NaNOs3) at the begin-
ning of culture in modified Czapek—Dox media. On the
second day of cultivation, the percent lipid accumulation
was between 5 and 10% when using 1.2 g/l NaNOj and

r31

0.8 r24

0.6

0.4

Nitrogen concentration (g/1)
Glucose concentration (g/1)

0.2

—4&— Nitrogen concentration (g/1)

—&— Glucose concentration (g/1)

0.0 T — T — T — T — T T 0
0 7 17 24 31 41 48 55 65 72 79 89 96 103 113120

Time h

Fig. 3 Evaluation of reduced glucose (g/L ¢) and nitrogen concen-
tration before and after feeding with ammonium tartrate (g/L) during
C. bainieri 241 growth in N-excess media with thrice daily feeding
with ammonium tartrate (1 g/L)
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Table 2 Growth of C. bainieri 241 in N-excess media

Nitrogen
level (g/L)

X (g'L) Yxaie Yuale L/IX Pro X Pro L
(% wt/wt) (mg/ml h) (mg/ml h)

0.2-0.8 8.3 055 012 21 0.17 0.039
0.5-1 9.3 06 0.09 15 0.19 0.03
0.8-1 10 0.7 0.08 11 0.2 0.02

X total biomass, Y, /. total biomass yield on glucose consumed, Y;,c.
reserve lipid yield on glucose consumed, /X maximum ratio of lipid
accumulated, Pro X productivity of biomass, Pro L productivity of
reserve lipid during 48 h of culture

around 15% when using 0.4 g/L. NaNO;. On the fourth day
of cultivation, the percent lipid accumulation was around
10% when using 1.2 g/ NaNO; and around 20% when
using 0.4 g/L. NaNO; levels and NAD'ICDH activity
increased concomitantly with NaNO; concentration. This
study thus indicated that lipid accumulation in C. echinulata
is indirectly correlated with nitrogen concentration.

In contrast, in C. echinulata cultivated on hydrolyzed
tomato waste (Fakas et al. 2007), the lipid content increased
to up to 25% of the biomass during the growth and
lipogenic phases. Although approximately 0.4 g/L of
organic nitrogen were measured in the growth environment,
lipogenesis still commenced, indicating that this nitrogen
could not be assimilated. Acid treatment for hydrolyzed
tomato waste (TWH) oil yield reached around 40% at the
highest nitrogen concentration utilized (Fakas et al. 2008b),
the main trend observation being that increasing nitrogen
concentration increased biomass production but decreased
oil accumulation, except for growth on TWH. Our
observation agreed with (Fakas et al. (2008b) in the case

of increasing nitrogen concentration resulting in increased
biomass production but decreased oil accumulation, the
only difference being that, even when we controlled the
level of nitrogen, the microbes still accumulate lipid but not
the same as in limited media. The glucose concentration
may divert the carbon source to either lipid-free cellular
mass production or storage lipid synthesis. However, when
the nitrogen source has no effect on glucose uptake, the C:
N is an important factor affecting lipogenesis, which means
that when carbon uptake rate was high, lipid accumulation
occurred, even in the presence of relative high amounts of
nitrogen in the growth medium (Fakas et al. 2008c). From
this explanation, we can conclude that, when C. bainieri
241 is cultured in N-excess media, glucose uptake was
high, so lipid accumulation occurred, even in the presence
of nitrogen.

There have been insufficient previous studies of N-
excess media to explain the phenomena observed in the
present study since all previous studies have used N-limited
media. The hypotheses for N-limited media were that
oleaginous species could accumulate more than 10% lipids
and that they would then degrade AMP in order to release
additional nitrogen from ammonium. This would result in
an increased energy charge ratio inside the cell, resulting in
inhibition of ICDH and intra-cellular citric acid accumula-
tion. Acetyl-CoA would then be produced by citric acid
cleavage via the ATP:citrate lyase reaction (Holdsworth and
Ratledge 1988; Holdsworth et al. 1988). However, in the
present study, the microorganisms accumulated lipids to
around 15% despite the presence of excess nitrogen (0.5—
1 g/L). Thus, further studies are required to explain lipid
production in N-excess media.

Table 3 Fatty acid composition

of total lipid produced by C. CN  Culture time (h)

Fatty acid concentration (wt/wt) in total mycelium lipids

bainieri 241 in N-limited media

Cl6:0  C180  2°C18:1  2*PC182  4%%2C18:3 (240

42 24 18.8 10.0 40.2 14.6 8.6 2.5

48 19.3 10.5 40.11 13.3 9.2 3.1

72 17.8 10.4 39.6 15.0 9.6 3.2

96 16.6 8.4 41.11 15.4 11.0 3.1

120 16.3 8.3 40.4 16.1 11.2 3.2

69 24 18 27.1 31.2 9.4 4.5 4.3

48 19.3 23.6 333 9.7 5 4.1

72 18.1 23.6 33.8 9.7 5.5 43

69 17.4 22.4 34.3 9.9 6.4 4.5

120 18.9 18.7 36.4 104 6.5 4.0

97 24 19.2 24.6 334 8.8 5.1 3.7

48 18.3 18.9 37.6 8.8 6.0 5.3

72 19.2 16.2 38.6 10.9 6.9 34

Culture conditions: initial pH 6, 96 18.6 16.4 39.0 10.2 6.7 4.1
temperature 30°C and C:N ratios 120 18.4 15.2 39.6 10.2 7.0 43

42, 69 and 97
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Table 4 Fatty acid composition of total lipid produced by C. bainieri
241 in N-excess media

Culture  Fatty acid concentration (wt/wt) in total mycelium lipid
time (h)
C16:0 CI18:0 2°C18:1 27'2C18:2 4%712C18:3 (C24:0

24 155 160 413 9.2 6.4 4.1
48 154 184 378 11.3 6.5 4.9
72 159 155 374 12.6 6.3 6.4
96 158 149 37.1 15.6 6.9 49
120 147 12,6 37.1 15.2 7.8 6.8

Culture conditions: initial pH 6, temperature 30°C, glucose, 30 g/L,
and thrice daily feeding with ammonium tartrate (1 g/L)

Fatty acid composition of total lipid produced by C.
bainieri 241

In C. bainieri 241 cultivated on N-limited media at C:N 42,
the principal cellular fatty acid was oleic acid (*°C18), the
concentration of which remained constant during growth. In
contrast, the concentrations of palmitic (C16:0) and stearic
(C18:0) acids slightly decreased and that of linolenic
(A9’12C18:3) acid slightly increased (Table 3). In the first
phase of growth, y-linolenic acid GLA content was elevated
during lipid accumulation. Our results demonstrate the effect
of the C:N ratio on fatty acid concentration. y-linolenic acid
GLA content reached 11.2% during lipid accumulation when
using C:N 42, but only reached 6.5% and 7.0% when using
C:N ratios of 69 and 97, respectively (Table 3). These findings
indicate that the C:N ratio increases have effects contrary to
those of GLA concentration. The fatty acid composition of N-
excess media differed from that of N-limited media; palmitic
acid (C16:0) remained almost constant during growth, and the
v-linolenic acid GLA content remained constant (Table 4 ). A
negative relationship was observed between ammonium
tartrate level and <y-linolenic acid concentration (Table 5).

A correlation between the quantity of GLA produced and
the amount of lipid-free material was established in both media
types. Ygra/xr Was determined to be 0.22 in N-limited media
and 0.1 in N-excess media by linear regression analysis of
GLA produced and units of lipid free biomass (Fig. 4).

correlationbetween GLA and lipid free biomass
1.4 7 Youanipid free biomass= 0.2263
1.24 *

1
go,a— .
< 0.6
B 0.4

0.2

0 T . )
0 5 10 15

lipid free biomass(g/l)

YGLAlpid free biomass= 0.1008

Fig. 4 GLA (g/L) in the reserve lipid versus lipid-free materials
determine (g/L) in N-limited media (m) and N-excess media ()

Conclusion

Lipid biosynthesis in C. bainieri 241 occurred in N-
limited media at C:N ratios of 42, 69, and 93, and activity
of NAD™- ICDH at C:N 42 appeared in high activity
during the period of growth; this activity may be due to
the build-up of lipid-free material which is produced until
the stationary phase,. The lipid percentage was around
35% and GLA was around 11%. However, there were no
significant differences among the three types of C:N ratio
in total reserve lipids, whereas there were significant
differences in GLA content. Statistical analysis of the lipid
profile demonstrated a significant difference between the
first day of culture and the third day, whereas there were
no significant differences from the second to the fifth
days. In N-excess media, lipid biosynthesis still occurred
even when N was still detected in the media at levels of
0.2-0.8, 0.5-1, and 0.8—1 g/L, where the lipid percentages
were 21, 15, and 11, respectively. NAD'- ICDH activity
was strongly detected on all the 5 days of culture.
Microbial growth and production of reserve lipids were
not negatively affected by N-excess media and this may be
due to the high uptake of glucose. Fatty acid composition
was thus affected by the use of N-excess and N-limited
media, by different C:N ratios, and by different levels of
nitrogen. This result proved that the strain C. bainieri 241
has an alternative behavior in lipid biosynthesis that
differs from yeast.

Table 5 Fatty acid composition

of total lipid produced by C. Ammonium tartrate

Culture time

Fatty acid concentration (wt/wt) in total mycelium lipid

bainieri 241 in N-excess media (g’ ()
Cl16:0 C18:0 2°C18:1 ~%1°C182 2%%2CI8:3  (C24:0
0.2 -0.8 24 222 14.4 38.1 10.4 6.4 3
48 20.2 17.3 36.4 9.7 6.4 4
0.5-1 24 22.3 15.6 34.9 10.4 5.5 34
Culture conditions: initial pH 6, 43 20.7 18.5 35 9.2 5.2 5.2
temperature 30°C, glucose 30 g/L, 0.8-1 24 20.6 20.9 31.5 11.3 4.5 53
and different levels of ammonium 48 20.3 19.5 33.6 11.4 4.7 50

tartrate
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