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Abstract: Breeding maize lines with the improved level of desired agronomic traits under optimum
and drought conditions as well as increased levels of resistance to several diseases such as maize
lethal necrosis (MLN) is one of the most sustainable approaches for the sub-Saharan African region.
In this study, 879 doubled haploid (DH) lines derived from 26 biparental populations were evaluated
under artificial inoculation of MLN, as well as under well-watered (WW) and water-stressed (WS)
conditions for grain yield and other agronomic traits. All DH lines were used for analyses of genotypic
variability, association studies, and genomic predictions for the grain yield and other yield-related
traits. Genome-wide association study (GWAS) using a mixed linear FarmCPU model identified
SNPs associated with the studied traits i.e., about seven and eight SNPs for the grain yield; 16 and
12 for anthesis date; seven and eight for anthesis silking interval; 14 and 5 for both ear and plant
height; and 15 and 5 for moisture under both WW and WS environments, respectively. Similarly,
about 13 and 11 SNPs associated with gray leaf spot and turcicum leaf blight were identified. Eleven
SNPs associated with senescence under WS management that had depicted drought-stress-tolerant
QTLs were identified. Under MLN artificial inoculation, a total of 12 and 10 SNPs associated with
MLN disease severity and AUDPC traits, respectively, were identified. Genomic prediction under
WW, WS, and MLN disease artificial inoculation revealed moderate-to-high prediction accuracy. The
findings of this study provide useful information on understanding the genetic basis for the MLN
resistance, grain yield, and other agronomic traits under MLN artificial inoculation, WW, and WS
conditions. Therefore, the obtained information can be used for further validation and developing
functional molecular markers for marker-assisted selection and for implementing genomic prediction
to develop superior elite lines.

Keywords: genome-wide association study; genomic prediction; water stress; well-watered; maize
lethal necrosis; genotyping by sequencing; well-watered; water stress

1. Introduction

Maize is an important staple food crop in sub-Saharan Africa (SSA) where a large area
is under maize production [1]. In east Africa, 82.48 million hectares (m ha) were covered
by maize and about 156.21 million tons of maize grain were produced with productivity
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of 1.89 tons per ha (http://www.fao.org/faostat/, accessed on 2 November 2021). Both
biotic and abiotic stresses are the major threats to crop production, particularly maize in
SSA. Drought stress, high costs of improved seeds and fertilizers [2], and biotic stresses
such as maize lethal necrosis (MLN) disease are the limiting factors for maize production
in east Africa.

MLN was first reported in Kenya in 2011 and later reported in Tanzania, Uganda,
Rwanda, D.R. Congo, and Ethiopia [3–5]. Maize chlorotic mottle virus (MCMV) and sugarcane
mosaic virus (SCMV) viruses were the confirmed pathogens that have jointly incited the
MLN disease [5–7]. Both MCMV and SCMV are transmitted by insect vectors (MCMV
by thrips and semipersistent beetles; SCMV by aphids) [5,8]. MCMV has been confirmed
for its transmission by seeds and infected soils, making the management of MLN more
challenging [6,9–11]. Based on the maize plant growth stages and environment conducive-
ness for MLN causing pathogens, the yield losses ranged from 30–100% [12]. Thus, the
management of MLN demands proper identification of resistant germplasm sources and
associated genes or quantitative trait loci (QTL) that aid to develop the resistant hybrids or
varieties [13].

Doubled haploid (DH) lines allow complete homozygosity over lines developed
through pedigree breeding; this allows precision in phenotyping over multiple locations
and years [14]. Further, high genetic variance in DH lines enhances response to selection [15]
by increasing heritability for various traits. Compared to breeding under well-watered
(WW) conditions, the genetic variability, trait heritability, disease resistance, and selection
gain are very low for breeding under water stress (WS) conditions [16]; thus, WS condi-
tion makes the identification of best genotypes and expression of complex traits. These
challenges are designed to be solved through established managed drought tolerance and
disease screening facilities, not to lose the genetic variations, and to produce good yield
under stress conditions. Understanding the maize crop’s behavior under WS for grain yield
and yield-related traits, proper statistical design and breeding scheme help to select the
best genotypes under WS environments [16,17].

Advancement in next-generation sequencing tools promoted genome-wide association
studies (GWAS) in many crops including maize [18]. Association analysis is based on the
non-random association between genotypes and phenotypes of the diverse distantly related
individuals [19]. The significance of the marker–phenotype association could be declared
when the marker polymorphism is located within the linkage disequilibrium (LD) region.
To detect an association of complex traits, a minimum LD average with cut-off point of
r2 =0.1 was used [19]. In maize, the rate of LD decay approximated to 1, 2, and 200–500 kb
in landraces, diverse inbred lines, and commercial elite inbred lines, respectively [20].

GWAS is useful in allele mining by dissecting the quantitative traits [19]. QTL or
gene mapping consists of linkage map construction and identifying genomic regions
associated with the targeted QTL [21]. QTL mapping helps to understand the genetic
inheritance of quantitative traits [22,23]. Breeding for drought tolerance is complex since
the trait is influenced by the environment and many genes with small effects [24]. In
maize, about 239 QTLs related to drought tolerance were reported [25,26]. Five drought-
tolerant QTLs closely linked to grain yield were reported by Agrama and Moussa [27].
Semagn et al. [2] reported four meta-QTLs associated with grain yield for both under
drought and optimum management. The high QTL detection power and fine resolution
of mapping are exploited by joint linkage association mapping in multiple biparental
populations [28–30]. The identification and validation of novel genomic regions associated
with economically important traits under WW and WS as well as MLN are important to
accelerate the development of climate-resilient improved maize varieties to enhance high
maize productions in smallholder families and contribute to food security [12,31,32].

Genomic selection (GS) uses genome-wide markers to predict the breeding values of
individuals by trapping the effects of both major and minor genes [33]. In GS, from the
training population, the effect of all markers are estimated, and then the genomic estimated
breeding values (GEBVs) of the untested but genotyped lines are computed [33]. Lines
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in the testing population are only genotyped, not phenotyped, and thus important in
reducing the breeding cycle and increasing the genetic gain per unit time. GS is effective
in several crops over a wide range of marker densities, trait complexities, and breeding
populations [34–36], where varying levels of prediction accuracy have been achieved in
different studies.

To understand how WS affects grain yield and other key traits, this study was per-
formed using a tropical maize population under drought and optimum conditions across
multi-location field trials and the MLN effect under artificial inoculation in Kenya. The
objectives of the study were to (i) evaluate the large set of 879 tropical and subtropical
maize DH lines for their responses to MLN disease severity under artificial inoculation,
grain yield (GY), and other yield-related traits under WW and WS conditions; (ii) identify
genomic regions and putative candidate genes associated with these traits across the three
management conditions; and (iii) assess the potential of GS within management conditions.
This study will provide valuable information for uncovering the genetic basis of GY under
WW and WS conditions.

2. Materials and Methods
2.1. Plant Materials and Field Trials

In this study, 1462 DH lines from 40 populations were phenotyped in multiple locations
under WW, WS, and MLN artificial inoculation conditions. Whereas, among these DH
lines, 879 DH lines derived from 26 DH populations were genotyped, for the final analyses,
we used only 879 DH lines. There are 26 parental lines were used to develop these DH
populations (Supplementary Table S1). Among these, three lines with LapostaSequiaC17
background are known for their drought tolerance, whereas other CIMMYT maize lines
such as CML312, CML395, CML442, CML444, and CML539 are commonly used as parents
for most of single cross testers of most of commercial hybrids released in east and southern
Africa. Additionally, new lines, which showed a better level of resistance for foliar diseases,
were also used in a way to bring both biotic and abiotic stress tolerant lines together in a set
of lines. The DH lines were crossed to a single cross tester from the opposite heterotic group.
All DH lines were formed 17 sets and planted as 17 trials. There were seven commercial
checks used, which were repeated in each trial, acting as connecting genotypes for each
trial. Both genotypes and checks were replicated two times. The trials were connected by
common checks (DK8031, H517, Pioneer30G19, PAN4M19, DUMA43, DH04, and WE1101).
All the DH lines were evaluated in 17 connected trials under WW (Kakamega and Kiboko),
WS (Kiboko), and MLN (Naivasha) conditions in Kenya. A single row of the plot with 4 m
length in two replications was arranged in an α lattice design. Two seeds were planted
per hill and thinned to one while 75 cm spacing between rows and 25 cm between plants
was used. Eleven commercial checks were used in each trial. All recommended agronomic
practices were applied uniformly to each trial.

2.2. Mass Production and Artificial Inoculation of MLN Viruses

The detailed protocol on the preparation of inoculum is explained in earlier stud-
ies [12,13,37]. In brief, the stock isolates of MCMV and SCMV pathogens were mass-
produced in separately managed greenhouses. The sap extraction of both MCMV and
SCMV pathogen inoculum was made using 0.1 mM potassium–phosphate and pH 7.0
extraction buffers in 1:10 ratio and mixed at a ratio of 4 SCMV:1 MCMV to create MLN
disease inoculum. The inoculum was sieved using cheesecloth, and then carborundum
was added to the mixture of MLN inciting pathogen inoculum at the rate of 0.02 g/mL
to create a wound that enhances an attachment and penetration of the virus particles
into the host plant. Before field inoculation, the mixture of MCMV and SCMV virus in-
oculum was checked using the target pathogen-specific antibodies using enzyme-linked
immuno-sorbent assay (ELISA). Field inoculation was performed using a backpack mo-
torized knapsack sprayer at the four weeks of plant growth stage after planting, and the
second inoculation was made one week after the first spray to keep a uniform inoculation.
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Two weeks after the second inoculation, the establishment, development, and existence
of the MLN disease-causing viruses were rechecked using ELISA kits. The MLN disease
severity (MLN-DS) rating scale of 1–9 was used, where 1 is highly resistant with no MLN
disease symptoms and 9 is highly susceptible or necrosis symptoms or total death of the
plant. The MLN disease data were recorded four times at ten-day- intervals starting from
the third week of the post-inoculation. The progress of MLN disease or area under the
disease progress curve (AUDPC) was calculated from the recorded MLN-DS data over four
time intervals [5,32,38].

2.3. Phenotyping and Data Analysis

The DH lines were evaluated at Kakamega under WW management, Kiboko under
both WW and WS at different sites, and Naivasha under artificial inoculation of MLN for
two seasons. Grain yield (GY, ton/ha), anthesis date (AD, 50% of pollen shed), silking date
(SD, 50 % of silking), anthesis silking interval (ASI, the difference between anthesis and
sinking dates), plant height (PH, cm) measured from the ground level to the base of the
tassel after milk stage, ear height (EH, cm) measured from the ground level to the node
bearing the uppermost ear after milking stage, moisture (MOI, percent moisture content of
the grain at the time of harvesting using moisture meter), senescence (SEN, percent leaves
lost chlorophyll to green leaves at the mid-silking), grey leaf spot (GLS, recorded using
1–9 scale), turcicum leaf blight (TLB, measured using 1–9 rating scale), common rust (CR,
recorded using 1–9 rating scale), and MLN-DS (measured using the rating scale of 1 to
9 score) were recorded and analyzed. All the traits were phenotyped in all the trials but not
in all the management conditions. For example, AD, ASI, EH, PH, MOI, and GY traits were
phenotyped under both WW and WS; TLB, GLS, and CR under WW; SEN and ER under
WS; and MLN-DS and AUDPC under MLN management conditions.

Statistical model fitting for different traits was checked by plotting the histogram
with standardized residuals. A plot of residuals against fitted values has shown that the
residuals were symmetrically distributed with constant variance for all traits; thus, the data
were not transformed. The phenotypic traits were analyzed with the restricted maximum
likelihood (REML) method designed in the multi-environment trial analysis (META) R
software developed in CIMMYT [39]. The following mixed model was used for across
environments data analyses.

Yijkl = µ + Gi + Lj + (GL)ij + R(L)kj + B(RL)l jk + eijkl

where: Yijkl is the phenotypic observation at the ith genotype, jth environment in kth
replication of the lth incomplete block, µ is overall means, Gi is the genetic effect of the
ith genotype, Lj is the effect of the jth environment, (GL)ij is genotype by environment
interaction, R(L)kj is the effect of the kth replication at the jth environment, B(RL)l jk is the
effect of the lth incomplete block in the kth replication at the jth environment, and eijkl is
the residual. The selected traits’ broad-sense heritability (H2) was calculated as follows:

H2= σ2
G/(σ2

G/

(
σ2

G +
σ2

GxE
L

+
σ2

e
LR

)
),

where σ2
G, σ2

GxE, σ2
e , L, and R referred to the genotypic, genotype by environment interaction,

error variance, environment, and replication, respectively. Best linear unbiased estimates
(BLUEs) and best linear unbiased predictions (BLUPs) for all traits were calculated. The
traits phenotypic distribution and Pearson’s correlation coefficient were performed and
displayed using R scrips (http://www.R-project.org, accessed on 17 November 2021).

2.4. Genotypic Data Analyses

All 879 DH lines were genotyped with a high-density genotype by sequencing (GBS)
platform using the pre-developed protocol at the Institute for Genomic Diversity, Cornell
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University, Ithaca, USA [2,31,40]. DNA was extracted from the young leaves using the
cetyltrimethylammonium bromide (CTAB) method [41]. Raw GBS data had a total of
955,120 SNPs loci distributed across maize genome. The raw GBS SNPs data were imputed
by default parameter filling methods [24,42]. Different filtering criteria were applied to
the raw data to obtain input data for LD and GWAS analyses. For LD, the raw data were
filtered based on no missing data and >10% minor allele frequency (MAF). The BLUPs
for the selected traits (MLN-DS, AUDPC, AD, ASI, GY, EH, MOI, SEN, and PH) across
environments were used for the GWAS study. SNPs quality screening was performed
using trait analysis by association, evolution, and linkage (TASSEL v.5.2.24) software [43]
by filtering and discarding the SNPs with a <0.05 of MAF and heterozygosity of >0.05,
resulted into 226,940 SNPs. SNPs and physical distance between SNPs were used to detect
genome-wide LD [44]. LD decay was calculated at r2 = 0.2 and r2 = 0.1 using average
pairwise distance, where the nonlinear model r2 was used [45,46]. Scatter plots and fitted
smooth curves for estimating LD decay were plotted using the LOESS function in R [47].

2.5. Population Structure and GWAS

The genetic relationship tree construction for 879 DH lines was performed using
Darwin 6.0.21 software. At the first step, the genetic distance matrix was calculated based on
the mean Euclidean method where homozygote 100 and heterozygote 50% similarity were
considered. Secondly, the unweighted neighbor-joining clustering method was employed
to construct the diversity tree of the genotypes. The population structure of 879 DH
lines, which had both phenotypic and genotypic data, were analyzed and sub-grouped
using structure software 2.3.4 version with 6745 SNPs [48,49] based on the variability of
allele frequencies both within and between populations genetic distance. The number of
discontinuous population structure clusters (K) was predicted from one to five with ten
iterations. The true number of population structure clusters (delta K value) were harvested
online using an available structure harvester software based on the highest ln P(D). The
unique population genetic subcluster was represented by each color bar at a p = 0.001. The
period of length of burn-in was set to 10,000, and Markov Chain Monte Carlo (MCMC)
values were set to 10,000 cycles [48].

GWAS analysis was performed with the R package “FarmCPU—Fixed and random
model Circulating Probability Unification” [50]. GBS marker data in the “hapmap” format
were converted to numeric (0, 1, 2) with the “GAPIT” package [51]. The first three principal
components (PCs) obtained from TASSEL [43] were used as an input for GWAS in FarmCPU.
The kinship matrix was calculated with the default kinship algorithm. The analysis was
performed with a maxLoop of five, p threshold of 0.01, a quantitative trait nucleotide
(QTN) threshold of 0.01, and a MAF threshold of 0.05. The maxLoop refers to the total
number of iterations used. The p values selected into the model for the first iteration,
the p-value selected into the model from the second iteration, and the minimum MAF of
SNPs used in the analysis refers to the p threshold, QTN threshold, and MAF threshold,
respectively. To determine the significance threshold, multiple testing correction was
conducted where the total number of tests was estimated based on the average extent of
LD at r2 = 0.1. Concerning the above, the significant associations were declared when
p values in independent tests were less than 9 × 10−6 [38,52]. The Blast search against
maize reference genome “B73” was performed for the significant SNPs; subsequently,
the candidate gene adjacent or exactly in the same position with the significant SNPs
identified and annotated and the candidate gene biological function described for each of
the studied target traits (http://blast.maizegdb.org/home.php, accessed on 23 November
2021; http://www.maizegdb.org, accessed on 23 November 2021). CurlyWhurly Version
1.19 was used to plot and visualize the first three analyzed PCA components (https://ics.
hutton.ac.uk/curlywhirly/, accessed on 19 November 2021).

http://blast.maizegdb.org/home.php
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2.6. Genomic Predictions

The phenotypic traits BLUEs were used for the GS analysis. Ridge-regression BLUP
(RR-BLUP) with five-fold cross-validation was applied. From the GBS data, a subset of
6745 SNPs distributed uniformly across the genome, with no missing values, and minor
allele frequency >0.10 were used for GS in GWAS panel under different management condi-
tions. Details of the implementation of the RR-BLUP model are described in Zhao et al. [36].
We applied a five-fold cross-validations ‘within population’ approach, where both training
and estimation sets were derived from within the association panel under different man-
agement conditions. The prediction accuracy was calculated as the correlation between
genomic estimated breeding values (GEBVs) and the observed phenotypes. A sampling of
the training and validation sets was repeated 100 times for each approach.

3. Results
3.1. Phenotypic Variations and Correlations

The normal distribution was observed for each trait under WW and WS conditions
(Figure 1). The analysis of variance revealed significant genotypic variance (Table 1) for
the studied traits: MLN-DS and AUDPC under MLN management and GY, AD, ASI, PH,
EH, TLB, MOI, CR, SEN, and GLS traits measured under WW and/or WS management.
The variation for GY ranged from 4.35 to 11.66 tons/ha (mean = 7.54 t/ha) under WW
condition and from 0.03 to 5.67 tons/ha (mean = 2.7 t/ha) under WS conditions (Table 1).
The mean performance for AD showed 0.41 days earliness under WS compared to WW
conditions. The range is higher for ASI under WS (−3.95 to 8.17 days) compared to WW
(−3 to 4.5 days) conditions. The mean of PH and EH were reduced significantly under
WS compared to WW conditions. Further, the range of distribution reduced drastically for
SEN under WS. The META R combined analyses result revealed that the studied genotypes
had a wide range of responses against the MLN-DS ranging from 2 to 9 (Figure 2, Table 1).
GY had moderate broad-sense heritability (H2) under both WW and WS conditions, while
MLN-DS and TLB had relatively high H2 with 0.67 and 0.80, respectively.

Under WS management, the genotypes CKDHL140940, CKDHL142056, CKDHL142091,
CKDHL141377, and CKDHL142061 had produced the highest GY values of 5.67, 4.91, 4.85,
4.81, and 4.77 t/ha, respectively. The genotype CKDHL140037 had a lesser AD (62.11 days)
than the grand mean (67.55 days) and the best check Duma43 (62.68 days). Genotype
CKDHL140091 has shown 0.38 days less than the best check (0.74 days) and grand mean
(2.28 days). Comparatively, plant height (185.55 cm), which is not too tall or short, was
obtained in the genotype CKDHL140125, even though it was slightly higher than the best
check KD8031 (183.88 cm) and grand mean (176.40 cm). Under WW management, the
genotype CKDHL141097 was performed better than the best check CML444 and overall
mean, which had the GY values of 9.17, 7.20, and 8.28 t/ha, respectively. An AD (65.93 days)
was recorded in the CKDHL140933 genotype, which was earlier than the overall mean
(67.78 days) and comparable to the best check Duma43 (64.47 days) under WW manage-
ment. Similarly, the genotype CKDHL140876 had a good ASI of 0.37 days lesser than
the grand mean (0.42 days) but not better than the check CZL04003 (0.35 days). About
52 DH lines were rated from two to four and have depicted the resistance reactions against
the MLN-DS, while 735 DH lines rated from four to seven were grouped as moderately
resistant, and the remaining 92 DH lines had seven to nine values and were grouped as
susceptible genotypes (Figure 2).
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Figure 1. Phenotypic distributions of MLN_DS, MLN_AUDPC, AD, ASI, EH, PH, and MOI and
TLB, SEN, and GY traits were measured under WW (blue), WS (red), and MLN (green) management.
AD—anthesis date; ASI—anthesis silking interval; AUDPC—area under disease progress curve;
EH—ear height; GY—grain yield; MLN_DS—maiz lethal necrosis disease severity; MOI—moisture
content; PH—plant height; SEN—senescence; and TLB—turcicum leaf blight; WW—well watered;
WS—water stressed.
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Table 1. Estimation of mean, range, and variance components and broad-sense heritability of
phenotypic traits evaluated under WW, WS, and MLN managements.

Trait Mean (Range) σ2
G σ2

GxE σ2
e H2 LSD0.05

Well-watered management

GY 7.54 (4.35–11.66) 0.54 ** 1.19 ** 2.02 0.33 1.12
AD 67.72 (61.5–73.5) 2.88 ** 4.14 ** 2.83 0.51 3.83
ASI 0.39 (−3.0–4.5) 0.48 ** 0.17 ** 1.07 0.58 1.36
PH 236.21 (155.4–292.1) 73.02 ** 62.05 ** 191.62 0.48 18.02
EH 126.12 (79.9–169.9) 63.32 ** 67.05 ** 82.88 0.54 17.32
TLB 2.9 (1.0–4.9) 0.29 ** - 0.27382 0.81 1.03
MOI 23.41 (19.8–26.92) 3.00 ** 0.01 7.12268 0.63 5.3
CR 1.08 (0.99–3.01) 0.02 ** - 0.05727 0.58 0.47

GLS 1.27 (0.91–2.92) 0.05 ** - 0.15261 0.57 0.77

Water stress management

GY 2.7 (0.03–5.67) 0.21 ** - 0.64 0.40 0.78
AD 67.31 (61.1–75.5) 2.05 ** - 3.05 0.57 2.45
ASI 2.26 (−3.95–8.17) 1.61 ** - 3.02 0.52 1.84
PH 176.54 (115.5–231.8) 91.88 ** - 231.91 0.44 16.34
EH 91.26 (55.6–131.7) 28.17 ** - 82.63 0.41 12.71

MOI 12.97 (7.8–16.5) 1.02 * - 1.55 0.57 1.1
SEN 5.96 (1.91–9.14) 0.52 ** - 1.33 0.44 0.9
ER 1.86 (0.02–51.1) 12.03 ** - 42.71 0.36 3.78

MLN management

MLN-DS 6.02 (2.1–9.0) 1.01 ** - 0.99 0.67 0.79
AUDPC 166.47 (75.2–264.8) 642.8 ** - 453.9 0.74 20.11

H2: broad-sense heritability; LSD: least significant difference; *, ** significance at p < 0.05 and p < 0.01, respectively.
σ2

G, σ2
GxE and σ2

e, represents genotypic, genotype x environment interactions and error variance, respectively.
AD—anthesis date; ASI—anthesis silking interval; AUDPC—area under disease progress curve; CR—corn rust;
EH—ear height; ER—ear rot; GLS—Gray leaf spot; GY—grain yield; MLN_DS—Maize lethal necrosis disease
severity; MOI—moisture content; PH—plant height; SEN—senescence; and TLB—turcicum leaf blight.

Figure 2. The reaction responses of 879 DH lines to MLN disease under artificial inoculation. MLN-DS
rating scale (1–9) has been converted to a percentage.

The phenotypic traits correlation analysis was performed independently for genotypes
evaluated under both WW and WS management conditions. Significant strong positive
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correlations were observed between PH and EH both under WW and WS management,
which was 0.71 and 0.80, respectively (Figure 3). EH and PH traits have revealed a positive
correlation with GY that had the correlation values of 0.17 and 0.38 under WW manage-
ment and 0.27 and 0.49 under WS management, respectively (Figure 3A,B). This positive
correlation has indicated that an increase in EH and PH increased the GY to certain extent.
AD had significant positive correlations with ER under WW (0.56) and MOI under WS
(0.34) managements. Both AD and ASI were negatively correlated both under WW (−0.32)
and (−0.23) WS environments. TLB under WW and SEN under WS management had slight
negative correlations of −0.29 and −0.40, respectively, with GY that may have played a
vital role in proportional yield reduction. Similarly, SEN had negative correlation (−0.29)
with PH under the WS environment. MOI has depicted a negative correlation (−0.23)
under WW with GY (Figure 3A,B).

Figure 3. Pearson’s correlation of the phenotypic traits measured under WW (A) and WS (B) man-
agements. The correlation level is color-coded according to the color key plotted in the center.
Correlations with >0.10 and >0.15 were significant at 0.05 and 0.01 levels, respectively. AD-anthesis
date; ASI-anthesis silking interval; CR-common rust; EH-ear height; ER-ear rot; GLS-gray leaf spot;
GY-grain yield; MOI-grain moisture; PH-plant height; SEN-senescence; and TLB-turcicum leaf blight.

3.2. Genetic Relationship, Population Structure, and Linkage Disequilibrium

The selected markers distribution was graphically presented in Supplementary Figure S1.
A kinship matrix was developed that depicts the relatedness among the used DH lines
(Supplementary Figure S2). Population relationship analyses in Darwin’s software had
displayed the neighbor-joining of 879 DH lines dissimilarity tree, which was constructed
based on the genetic distance matrix of 0.01 calculated by the Euclidean method. The
total populations were clustered into three main diverse groups with many subtrees (Sup-
plementary Figure S3). The first population diversity group had DH lines derived from
CML395/CML505, which has contained about 440 individuals represented by red, the sec-
ond group had LaPostaSeq C7-F64 as a common parent with 174 individuals represented
by blue, and the third group had DH lines having one of either LaPostaSeq C7-F86 or
LaPostaSeq C7-F18 as common parent with 265 DH lines represented by a purple color
(Supplementary Figure S3).

Population structure analyses revealed delta K probability value with three to four
clusters of 879 DH lines based on the highest ln P(D) values (Figure 4). An Evanno table
was constructed in the structure harvester with the highest values of 204,444.45 ln P(K),
156.41 standard deviations ln P(K), and 1307.01 delta K. The delta K value-based line plot
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had suggested that the population could be structured into two to four groups (Figure 4).
Pair-wise markers LD decay was measured as the r2 and plotted against their distance. LD
sliding window type with 11,225 comparisons were obtained from adjacent markers, while
each dot represented a pair of distances between two markers on the window and their
squared correlation coefficient. The LD decay cut-off point (r2) at 0.2 and 0.1 had 3.69 and
10.49 Kbs average physical distance, respectively (Figure 5).

Figure 4. The four sub-populations of the 879 DH lines using GBS markers. (A) Best delta K
estimation by Evanno method. (B) Estimated population structure of 879 tropical maize DH lines as
revealed by GBS SNP markers for K = 2 and (C) for K=4. Blue, green red and yellow color represents
sub-population 1, 2, 3, and 4, respectively.

Figure 5. Genome-wide markers linkage disequilibrium (LD) plot representing the average pairwise
distances genome-wide LD decay at r2 = 0.2 and r2 = 0.1 in set of DH populations with 879 lines.

Based on principal component analyses all the DH lines were broadly categorized into
three groups: Category One (215), Category Two (223), and Category Three (441) based on
the displayed plot (Supplementary Figure S4). The populations CML444/LaPostaSeqC7-
F64, CML395/CML505, CML538/LaPostaSeq C7-F18, CML442/ LaPostaSeqC7-F86,
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CML537/LaPostaSeqC7-F18, CML539/LaPostaSeqC7-F64, CML442/INTA-F2-192, and
CML539/INTA-F2-192 were grouped into Category One, while CZL04003/LaPostaSeqC7-
F18, CML538/ LaPostaSeqC7-F64, INTA-F2-192/LaPostaSeqC7-F18, CML537/LaPostaSeqC7-
F86, CML536/LaPostaSeqC7-F18, CML539/LaPostaSeqC7-F64, CZL04003/LaPostaSeqC7-
F86, CML445/LaPostaSeqC7-F64, CML536/LaPostaSeqC7-F64, CML444/LaPostaSeqC7-
F86, CML312/LaPostaSeqC7-F64, and CML538/ CL-G1628 G16BNSeqC0F118 populations
were grouped under Category Two; similarly, LPSC7-F180/ Katumani, Ry x CML395,
WL429-40/[CML444/DRB-F2//DTPWC8F3], CML395/CML505, WL429-40/ [CML444/
DRB-F2//DTPWC8F3], L118 6/[CML312/CML444//[DTP2WC4H255/LATA-F2], and
I-38 x CML442 populations were grouped into Category Three (Supplementary Figure S4
and Supplementary Table S1). The first four principle components explained 10.51%, 7.63%,
6.16% and 3.19% of the total variation (Supplementary Figure S4).

3.3. GWAS Results

Based on the marker p-value at the significance threshold cut-off (p = 9 × 10−6), the
marker positions, putative candidate gene, and its biological function were annotated
for each trait. The GWAS results for all traits are summarized using Manhattan plots
(Figure 6A,B) and QQ plots (Supplementary Figure S5). The GWAS analyses identified
SNPs associated with the studied traits, i.e., 7 and 8 SNPs were associated with GY; 16 and
12 SNPs with AD; 7 and 8 SNPs with ASI; 14 and 5 SNPs with EH; 14 and 5 SNPs with
PH; and 15 and 5 with MOI under WW and WS management, respectively (Table 2 and
Supplementary Table S2). Similarly, 14 and 11 SNPs were associated with GLS and TLB
resistance under WW environments, respectively. Under the WS environment, 11 SNPs
were associated with SEN, whereas 12 and 10 SNPs associated with MLN-DS and AUDPC
traits, respectively, under MLN artificial inoculation (Tables 2 and 3). Some of the SNPs
that had the highest significance value were closely associated with the putative genes
governing the studied target traits (Supplementary Table S2).

Table 2. Number of SNPs significantly associated with grain yield and other traits at 5% false discov-
ery rate (FDR) threshold level under well-watered (WW), water stress (WS), and MLN management.

Trait WW WS MLN

GY 7 8 -
AD 16 12 -
ASI 7 8 -
EH 14 5 -
PH 14 5 -

MOI 15 5 -
GLS 14 - -
TLB 11 - -
SEN - 11

MLNDS - - 12
AUDPC - - 10

Total 98 54 22
AD—anthesis date; ASI—anthesis silking interval; AUDPC—area under disease progress curve; CR—corn rust;
EH—ear height; ER—ear rot; GLS—Gray leaf spot; GY—grain yield; MLN_DS—Maize lethal necrosis disease
severity; MOI—moisture content; PH—plant height; SEN—senescence; and TLB—turcicum leaf blight.

The most closely associated and identified SNPs to the studied traits on different
chromosomes and their position on the chromosomes are the SNPs S5_206615806 and
S7_157468954 on chromosomes 5 and 7 linked to GY (Table 4), S8_148392640 and S10_88394535
on chromosomes 8 and 10 linked to AD; S2_194040196 and S9_136924349 on chromosomes
2 and 9 to ASI (Table 5), S5_27226539 and S8_158986117 on chromosomes 5 and 8 to PH,
S4_166924899 and S7_87194068 on chromosomes 4 and 7 to EH (Table 6), and S8_162561752
and S5_200299111 on chromosomes 8 and 5 to MOI (Supplementary Table S2) under WW
and WS environments. The SNPs S1_87301408 and S1_92348483 on chromosome 1 were
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associated with the GLS and TLB resistance, whereas S3_205474517 SNP was associated
with the SEN trait under the WS environment. Under MLN artificial inoculation, the SNPs
S3_184235364 and S1_22259426 were among the best marker associated with MLN-DS and
AUDPC values, respectively (Tables 3–6 and Supplementary Table S2).

Figure 6. Cont.
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Figure 6. (A) Manhattan plots for GY and other related traits measured under WW, and WS manage-
ments. The X-axis shows the SNPs position on the chromosome, and the Y-axis shows the negative
log base 10 of the p-values; for ease of discrimination, each chromosome was colored differently.
The horizontal line portrays the significance threshold (marker p-value < 9 × 10−6). AD-anthesis
date, ASI—anthesis silking interval, EH—ear height, GY—grain yield, PH—plant height, WW—
well-watered, WS—water-stressed. (B) Manhattan plots for MOI, TLB, SEN, MLN-GS and AUDPC
measured under WW, WS, and MLN managements. The X-axis shows the SNPs position on the
chromosome, and the Y-axis shows the negative log base 10 of the p-values; for ease of discrimination,
each chromosome was colored differently. The horizontal line portrays the significance thresh-
old (marker p-value < 9 × 10−6). AUDPC—area under disease progress curve, MLN-DS—maize
lethal necrosis disease severity, MOI—grain moisture, TLB—turcicum leaf blight, SEN—senescence,
WW—well-watered, WS—water-stressed.
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Table 3. Details of the GWAS results for MLN disease severity and AUDPC values associated SNP markers and their closest candidate genes identified in the large
set of association mapping panel.

Trait SNP a Chr p Value MAF Effect Putative Candidate Gene Predicted Function of Candidate Gene

MLN-DS

S3_184235364 3 4.74 × 10−8 0.21 −0.25 GRMZM2G429982 Osmotin-like protein
S9_139517081 9 6.93 × 10−7 0.36 −0.15 GRMZM2G007514 Protein SCAR2
S7_131111643 7 9.35 × 10−7 0.15 −0.23 GRMZM2G467907 uncharacterized LOC100278143
S8_160531262 8 9.51 × 10−7 0.31 −0.15 GRMZM2G151614 SUPPRESSOR OF ABI3-5
S6_139620542 6 1.52 × 10−6 0.15 0.22 GRMZM2G061912 uncharacterized LOC100282310
S9_3561642 9 1.79 × 10−6 0.18 0.19 GRMZM2G110832 uncharacterized LOC100282577

S4_166924851 4 1.94 × 10−6 0.29 −0.15 GRMZM2G141036 Aspartyl protease family protein At5g10770
S3_144742460 3 1.98 × 10−6 0.28 −0.13 GRMZM2G062587 Protein NETWORKED 2D

S10_127441666 10 3.63 × 10−6 0.46 −0.12 GRMZM2G047370 uncharacterized LOC100280076
S6_35895705 6 4.45 × 10−6 0.11 0.34 GRMZM2G035502 Glutathione dehydroascorbate reductase3
S6_38115747 6 4.50 × 10−6 0.09 −0.37 GRMZM5G818106 phospholipase A1-II 7
S3_218903424 3 6.12 × 10−6 0.15 0.19 GRMZM2G032244 Adenine C2 methyltransferase pseudogene

AUDPC

S1_22259426 1 3.70 × 10−9 0.24 4.81 GRMZM2G388915 DNA repair protein UVH3
S9_139517081 9 7.48 × 10−9 0.36 −5.08 GRMZM2G007590 Spliceosomal protein
S7_131127271 7 3.26 × 10−7 0.15 5.14 GRMZM2G467907 uncharacterized LOC100278143

S10_125845596 10 3.56 × 10−7 0.28 −4.61 GRMZM2G003917 fasciclin-like arabinogalactan protein 7
S4_234398586 4 3.77 × 10-7 0.13 −5.64 GRMZM2G111886 uncharacterized LOC100383387
S6_139620542 6 4.23 × 10−7 0.15 5.86 GRMZM2G061912 uncharacterized LOC100282310
S8_165275778 8 7.81 × 10−7 0.38 −3.59 GRMZM2G300375 ATP-dependent RNA helicase DHX8
S6_38115747 6 2.25 × 10−6 0.09 −9.84 GRMZM5G818106 phospholipase A1-II 7
S2_16652265 2 5.07 × 10−6 0.12 5.50 GRMZM2G003752 fasciclin-like arabinogalactan protein 10
S2_3795343 2 7.82 × 10−6 0.27 6.20 GRMZM2G321394 protein trichome birefringence-like 8

MAF-minor allele frequency, Effect-allele effect, p-value probability value for the mixed linear model, MLN-DS-MLN disease severity, and AUDPC-area under disease progress curve
values under artificial inoculation of MLN conditions; a The exact physical position of the SNP can be inferred from marker’s name, for example, S9_3561642: chromosome 9; 3,561,642 bp
(Ref Gen_v2 of B73).
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Table 4. Details of the associated SNP markers and their closest candidate genes identified in the large set of association mapping panel for GY under WW and
WS conditions.

Trait SNP a Chr p Value MAF Effect Putative Candidate Gene Predicted Function of Candidate Gene

GY_WW

S1_298824055 1 2.46 × 10−7 0.46 −0.15 GRMZM2G017470 Dof zinc finger protein DOF3.6

S2_213205445 2 2.17 × 10−6 0.24 0.16 GRMZM2G030713 O-fucosyltransferase 36

S3_13277926 3 2.62 × 10−7 0.41 −0.15 GRMZM2G026783 uncharacterized

S3_32128255 3 3.49 × 10−7 0.26 −0.21 GRMZM2G401294 uncharacterized

S4_177585108 4 8.53 × 10−7 0.20 0.20 GRMZM2G422190 uncharacterized

S5_206615806 5 5.79 × 10−8 0.34 −0.21 GRMZM2G050734 uncharacterized

S5_208069452 5 1.03 × 10−6 0.39 −0.15 GRMZM2G421899 uncharacterized

GY_WS

S1_8635464 1 4.07 × 10−6 0.09 0.23 GRMZM2G072814 uncharacterized

S1_285928879 1 1.07 × 10−6 0.09 0.23 GRMZM2G472167 peptide transporter PTR2

S2_4269206 2 2.99 × 10−7 0.13 0.18 GRMZM2G019404 plasma-membrane H+ATPase 2

S4_168744841 4 7.33 × 10−6 0.13 0.17 GRMZM2G422190 uncharacterized

S4_177585059 4 5.13 × 10−8 0.21 0.18 GRMZM2G021339 uncharacterized

S6_160605809 6 1.83 × 10−6 0.14 −0.19 GRMZM2G701221 uncharacterized

S7_142907882 7 3.87 × 10−6 0.27 0.17 GRMZM2G108133 β-glucosidase 11

S7_157468954 7 4.61 × 10−8 0.21 −0.20 GRMZM2G134545 dof zinc finger protein 2

MAF-minor allele frequency, Effect: allele effect, p-value: probability for the mixed linear model, GY-grain yield under optimum (WW) and drought stress (WS) conditions; a The exact
physical position of the SNP can be inferred from marker’s name, for example, S9_3561642: chromosome 9; 3,561,642 bp (Ref Gen_v2 of B73).
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Table 5. Details of the associated SNP markers and their closest candidate genes identified in the large set of association mapping panel for AD and ASI under WW
and WS conditions.

Trait SNP a Chr p Value MAF Effect Putative Candidate Gene Predicted Function of Candidate Gene

AD_WW

S1_196052986 1 5.80 × 10−11 0.47 −0.3 GRMZM2G142383 Uridine kinase-like protein 2 chloroplastic

S1_181338998 1 2.47 × 10−8 0.27 −0.36 GRMZM2G131254 uncharacterized LOC100191530

S1_45513978 1 3.15 × 10−6 0.08 0.37 - uncharacterized LOC100383423

S1_77141315 1 5.83 × 10−6 0.14 0.37 GRMZM2G425736 uncharacterized LOC100283616

S1_85991848 1 9.18 × 10−6 0.44 −0.22 GRMZM2G040743 putative calcium-dependent protein kinase family protein

S2_164888999 2 3.56 × 10−106 0.06 −0.51 GRMZM2G151549 eukaryotic translation initiation factor 3 subunit 6

S2_24033162 2 6.81 × 10−6 0.08 −0.39 GRMZM2G178998 uncharacterized LOC100273446

S3_219697767 3 3.91 × 10−6 0.09 −0.29 GRMZM2G180815 rae1-like protein

S4_115254061 4 1.97 × 10−7 0.16 0.28 GRMZM2G127690 U-box domain-containing protein 27

S5_32847998 5 4.48 × 10−7 0.12 0.31 GRMZM2G130580 uncharacterized LOC100216815

S6_135702947 6 6.59 × 10−7 0.13 −0.29 GRMZM2G441565 Mediator of RNA polymerase II transcription subunit 32

S7_15457114 7 4.55 × 10−8 0.18 0.3 GRMZM2G028129 uncharacterized LOC100191940

S7_172975188 7 4.84 × 10−7 0.12 −0.35 GRMZM2G158130 uncharacterized LOC100272539

S7_174788925 7 1.37 × 10−6 0.47 −0.22 GRMZM2G006119 corticosteroid 11-β-dehydrogenase isozyme 1

S10_88394535 10 1.09 × 10−11 0.3 −0.3 GRMZM5G848692 uncharacterized LOC100191174

S10_87090061 10 8.84 × 10−8 0.06 0.37 GRMZM2G028104 3-N-debenzoyl-2-deoxytaxol N-benzoyltransferase

AD_WS

S1_70577921 1 3.41 × 10−6 0.28 −0.42 GRMZM2G049070 E3 ubiquitin-protein ligase EL5

S2_28044014 2 9.88 × 10−6 0.46 0.31 GRMZM2G113990 coiled-coil-helix-coiled-coil-helix domain-protein 4

S4_33885186 4 1.79 × 10−11 0.08 −0.69 GRMZM5G814904 catechol-O-methyltransferase

S5_196250543 5 6.05 × 10−6 0.17 −0.33 GRMZM2G124136 Putative glycerol-3-phosphate transporter 4

S7_127270714 7 3.75 × 10−8 0.31 −0.54 GRMZM2G096092 uncharacterized LOC101027214

S7_132076042 7 7.51 × 10−6 0.17 0.41 GRMZM2G070375 FIP1

S7_147051998 7 3.71 × 10−7 0.46 −0.32 GRMZM2G325238 putative cysteine-rich receptor-like protein kinase 35

S7_174752364 7 2.16 × 10−7 0.14 0.44 GRMZM2G139870 uncharacterized LOC103633488
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Table 5. Cont.

Trait SNP a Chr p Value MAF Effect Putative Candidate Gene Predicted Function of Candidate Gene

S8_148392640 8 1.76 × 10−11 0.06 −1.01 GRMZM2G439168 E3 ubiquitin-protein ligase AIRP2

S9_141790219 9 2.08 × 10−6 0.21 −0.34 GRMZM2G165357 uncharacterized LOC100193447

S9_150809900 9 9.68 × 10−7 0.16 −0.45 GRMZM2G305027 D-type cyclin

S10_85581257 10 5.47 × 10−6 0.49 0.3 GRMZM2G060798 uncharacterized LOC100279979

ASI_WW

S2_194040196 2 1.11 × 10−8 0.24 −0.2 GRMZM2G137541 uncharacterized LOC100286191

S2_2055642 2 2.63 × 10−6 0.35 0.1 GRMZM2G343317 uncharacterized LOC100274748

S2_30840909 2 9.16 × 10−6 0.08 0.3 GRMZM2G048366 uncharacterized LOC100194081

S3_2218652 3 3.10 × 10−6 0.15 0.16 GRMZM2G026868 uncharacterized LOC100276559

S5_53522965 5 8.54 × 10−8 0.22 −0.2 GRMZM2G113349 uncharacterized LOC100191684

S6_5506422 6 7.96 × 10−6 0.34 −0.12 GRMZM2G450546 expansin-A19

S8_3482389 8 2.45 × 10−8 0.3 0.24 GRMZM2G136158 Peroxidase 24

ASI_WS

S1_215203966 1 3.62 × 10−6 0.1 −0.43 GRMZM2G067235 uncharacterized LOC100275190

S1_4748614 1 7.55 × 10−7 0.46 −0.26 GRMZM2G040762 uncharacterized LOC100381417

S2_205904889 2 2.34 x 10−6 0.26 −0.28 GRMZM2G105869 histone-lysine N-methyltransferase SUVR3

S5_211764882 5 9.75 × 10−6 0.14 −0.38 GRMZM2G415327 uncharacterized LOC100216930

S9_100485294 9 4.21 × 10−6 0.21 −0.31 GRMZM2G104866 uncharacterized LOC100193380

S9_136924349 9 5.99 × 10−8 0.2 0.38 GRMZM2G051896 nuclear poly(A) polymerase 3

S10_135678936 10 6.72 × 10−6 0.44 0.3 GRMZM2G016819 Ubiquitin carboxyl-terminal hydrolase family protein

S10_37346033 10 8.63 × 10−6 0.48 0.24 GRMZM2G472703 receptor kinase pseudogene

MAF-minor allele frequency, Effect-allele effect, p-value: probability for the mixed linear model, AD-anthesis date and ASI- anthesis silking interval under optimum (WW) and drought
stress (WS) conditions; a The exact physical position of the SNP can be inferred from marker’s name, for example, S9_3561642: chromosome 9; 3,561,642 bp (Ref Gen_v2 of B73).



Genes 2022, 13, 351 18 of 28

Table 6. Details of the associated SNPs and their closest candidate genes identified in the large set of association mapping panel for PH and EH under WW and
WS management.

Trait SNP a Chr p Value MAF Effect Putative Candidate Gene Predicted Function of Candidate Gene

PH_WW

S1_234263371 1 2.52 × 10−6 0.39 1.63 GRMZM2G153233 uncharacterized LOC100304210

S1_32087637 1 1.57 × 10−8 0.5 −2.04 GRMZM2G100629 uncharacterized LOC100277213

S1_51399301 1 4.64 × 10−8 0.27 −2.60 GRMZM5G851485 uncharacterized LOC100274900

S2_12352637 2 2.32 × 10−7 0.26 2.29 GRMZM2G156356 maltose excess protein 1-like

S3_13264837 3 5.95 × 10−7 0.24 2.00 GRMZM2G026783 uncharacterized LOC100278056

S3_166807659 3 1.52 × 10−8 0.39 2.30 GRMZM2G366142 uncharacterized LOC100193554

S4_228623517 4 2.49 × 10−6 0.35 −1.73 GRMZM2G016923 uncharacterized LOC100502389

S5_27226539 5 7.78 × 10−12 0.24 3.31 GRMZM2G428356 uncharacterized LOC100277327

S6_161804186 6 2.08 × 10−9 0.25 −2.64 GRMZM2G170625 Jacalin-related lectin 3

S7_163790932 7 2.10 × 10−7 0.08 −3.81 GRMZM2G106548 scarecrow-like protein 23

S7_163967764 7 2.75 × 10−9 0.36 −2.32 GRMZM2G006942 exocyst complex component EXO84C

S7_164656257 7 7.38 × 10−6 0.23 −1.78 GRMZM2G037545 uncharacterized LOC100217043

S8_14844357 8 3.24 × 10−10 0.15 3.67 GRMZM2G052869 metallothionein-like protein 2A

S8_67856497 8 3.49 × 10−6 0.09 −3.04 GRMZM2G416216 uncharacterized LOC100384078

PH_WS

S2_18001352 2 6.22 × 10−7 0.21 3.52 GRMZM2G318956 uncharacterized LOC100381487

S2_43203188 2 6.87 × 10−6 0.15 3.09 GRMZM2G114523 lysine histidine transporter-like 6

S7_160313368 7 3.28 × 10−7 0.36 −2.85 GRMZM2G431039 glucan endo-1,3-β-glucosidase 13

S7_162003719 7 7.44 × 10−6 0.25 −3.11 GRMZM2G153162 eukaryotic translation initiation factor 4G

S8_158986117 8 4.46 × 10−9 0.23 4.22 GRMZM2G057416 uncharacterized LOC100216812

EH_WW

S1_5744898 1 2.81 × 10−7 0.13 2.23 GRMZM2G025642 uncharacterized LOC100383060

S2_184012021 2 5.92 × 10−6 0.22 1.4 GRMZM2G116196 AUGMIN subunit 5

S2_54204575 2 4.86 × 10−7 0.22 −1.84 GRMZM2G135727 60S ribosomal protein L3

S2_6821849 2 6.13 × 10−7 0.48 −1.37 GRMZM2G063519 putative galacturonosyltransferase 10
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Table 6. Cont.

Trait SNP a Chr p Value MAF Effect Putative Candidate Gene Predicted Function of Candidate Gene

S3_103574552 3 1.20 × 10−6 0.11 1.75 GRMZM2G147811 serine/threonine-protein kinase prpf4B-like

S3_15433905 3 8.42 × 10−11 0.18 −2.5 GRMZM2G162182 uncharacterized LOC103651780

S4_141091471 4 8.91 × 10−7 0.28 −1.56 GRMZM2G179810 Adenine phosphoribosyltransferase 2

S4_166924899 4 3.39 × 10−11 0.37 2.48 GRMZM2G141036 aspartyl protease family protein At5g10770

S4_230932334 4 2.10 × 10−6 0.26 −1.77 GRMZM2G004835 uncharacterized LOC100273059

S5_182542047 5 1.39 × 10−7 0.49 1.69 GRMZM2G121236 umecyanin

S5_205332507 5 1.33 × 10−8 0.16 2.47 - uncharacterized LOC100502221

S5_22544395 5 3.48 × 10−6 0.49 1.29 GRMZM2G059013 fringe-related protein

S6_96126766 6 1.51 × 10−6 0.29 −1.41 GRMZM2G088086 uncharacterized LOC100286007

S10_138873729 10 1.43 × 10−7 0.25 −1.64 GRMZM2G155776 uncharacterized LOC100276813

EH_WS

S2_195919610 2 2.45 × 10−7 0.44 −2.06 GRMZM2G365374 heat shock 70 kDa protein

S2_5904286 2 2.19 × 10−7 0.37 −1.84 GRMZM2G372102 36.4 kDa proline-rich protein

S7_87194068 7 2.01 × 10−7 0.4 −1.69 GRMZM2G157953 NAD(P)H dehydrogenase subunit CRR3 chloroplast

S9_118825634 9 2.55 × 10−7 0.17 −2.24 GRMZM2G108619 uncharacterized LOC100275618

S9_150868777 9 6.71 × 10−6 0.39 −1.31 GRMZM2G006721 D-type cyclin

MAF- minor allele frequency, Effect- allele effect, p-value probability for the mixed linear model, PH-plant height and EH-ear height under optimum (WW) and drought stress (WS)
conditions; a The exact physical position of the SNP can be inferred from marker’s name, for example, S9_3561642: chromosome 9; 3,561,642 bp (Ref Gen_v2 of B73).
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3.4. Genomic Prediction

The selected and measured traits under WW, i.e., GY, AD, ASI, EH, PH, MOI, GLS,
and TLB, had the genomic prediction accuracy values of about 0.53, 0.83, 0.68, 0.73, 0.56,
0.65, 0.39, and 0.61, respectively; while the phenotypic traits measured under WS, i.e., GY,
AD, ASI, PH, EH, MOI, and SEN, had a genomic prediction accuracy values of about 0.42,
0.72, 0.46, 0.33, 0.45, 0.41, and 0.45, respectively (Figure 7). Similarly, under MLN artificial
inoculation, both MLN-DS and AUDPC had 0.50 and 0.58 of genomic region prediction
accuracy, respectively (Figure 7). AD depicted the highest genomic prediction accuracy
under both WW and WS conditions, whereas the genomic prediction accuracy for the GY
under both WW and WS environments was moderate at 0.50.

Figure 7. Genomic prediction accuracy results for the GY and other related traits evaluated under
WW (light blue), WS (red), and MLN (green) managements. AD: anthesis date, ASI: anthesis silking
interval, AUDPC: area under disease progress curve, EH: ear height, GLS: grey leaf spot, GY: grain
yield, MLN-DS: maize lethal necrosis disease severity, MOI: grain moisture, TLB: turcicum leaf blight,
PH: plant height, SEN: senescence, WW: well-watered, WS: water-stressed.

4. Discussion

MLN is the major challenge to maize production in SSA, specifically in east African
countries. CIMMYT in collaboration with national research institutions has developed
resistance breeding strategies against MLN. A large number of maize genotypes were
screened, and MLN disease-resistant source materials and resistance QTLs were identified
to develop resistant varieties by integrating both conventional and molecular breeding
techniques [12,31,37,38]. Nevertheless, searching additional MLN disease-resistant lines,
evaluation of the genotype’s performance, identification and validation of QTLs associated
with the target disease, GY, and other related traits play a vital role in the development of
MLN disease-resistant varieties. In this study, 879 maize DH lines derived from 26 different
populations were genotyped, and the performance of genotypes were evaluated under
WW, WS, and MLN artificial inoculation management conditions. Among these 879 lines,
440 DH lines shared LapostaSeqC7 background lines as one of the parent, and the line
LapostaSeqC7-F64 alone used as one of the parent to develop >250 DH lines, so, data was
analyzed combinedly rather making it into subgroups based analyses.

A significant genotype, genotype by environment interaction variances, and moderate
to high broad-sense heritability were observed for GY and other related traits AD, ASI,
PH, EH, TLB, MOI, and GLS measured under WW and WS conditions similar with the
results reported by Yuan et al. [24]. MLN-DS and AUDPC were highly heritable with
0.67 and 0.74, respectively, which is consistent with earlier reported studies [31,37,53,54].
Several genotypes have been evaluated by CIMMYT against MLN disease in search for
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resistant materials [12,24,31,32,38,55]; with the current study, we identified about 52 MLN
disease resistant/tolerant genotypes while most of other genotypes were susceptible. Some
of the maize genotypes with a score from 2 to 3 against MLN-DS were CKLMLN145667,
CKLMLN145667, CKLMLN144135, CKLMLN145119, CKLMLN145173, CKLMLN143806,
and CKLMLN143351, which could be selected as resistant materials to MLN disease.
The mean performance of lines for GY was 7.54 t/ha and 2.7 t/ha under WW and WS
environments, respectively, which has revealed a similar result in earlier study [56]. The
GY had positive correlations with both EH and PH and negative correlations with ASI
and MOI under WW and WS management, respectively, which could help in an indirect
selection for the GY under WW and WS conditions [24].

The number of SNPs required to achieve maximum mapping resolution depends
on the magnitude of LD and LD decay with genetic distance [57]. For GWAS, a large
population is required since the LD or correlation between alleles in different genomic
locations is generally based on the historical recombination between polymorphisms. In
this study, we observed that the LD decay at r2 = 0.1 and 0.2 cut-offs were 10.49 and 3.69 kb,
respectively. Similarly, [54] in the IMAS association panel also reported the genome-wide
average LD decay of 14.97 kb at r2 = 0.1 and 5.23 kb at r2 = 0.2 [54], and a similar range of
LD decay was also reported by Rashid et al. [58] in their association panel. LD decay in
tropical maize germplasm was rapid compared to the temperate germplasm; possibly due
to a broader genetic base, resulting from high recombination events [59]. This provides
an opportunity for breeders to select germplasm that integrates high GY with disease
resistance and abiotic stress tolerance.

For population structure analyses, the Delta K line plot, principal component analyses,
and population genetic distance relationship analyses suggested that the utilized DH
populations are structured into three to four groups. In STRUCTURE, the optimum number
of subgroups was determined based on the output log-likelihood of data (LnP (D. The peaks
of the line plot (Figure 4) suggest that the population could be divided into three or four
distinct groups in order of possibility, with the K = 4 of delta K intersecting with LnP (D)
showing a higher possibility. When K = 4, all lines were grouped as a mixed group and were
further divided into three groups. The DH populations used in this study were grouped into
CML395/CML505 derived DH lines, LaPostaSeq C7-F64 derived DH lines (174 individuals),
and LaPostaSeq C7-F86 and LaPostaSeq F18 derived DH lines (265 individuals) (Figure 4).
Due to the inclusion of DH lines derive from crosses of selected inbred lines in the panel, we
observed moderate structure in the present study. Several researchers also been reported
moderate structure in the tropical maize germplasm [29,31,37,53,54,60].

In this study, we identified the significant SNPs associated with target traits under
WW, WS, and MLN artificial inoculations (Tables 3–6). The results of this study for MLN-DS
and AUDPC are similar to the reports in the biparental and DH population studied for
the MLN-DS, AUDPC, and other traits genetic architecture [12,31,38,53,54,60]. Several
putative candidate genes associated with the significant markers were identified for each
of the studied traits (Tables 3–6). For GY under WW, two putative candidate genes, GR-
MZM2G017470 and GRMZM2G030713, were identified, both located on chromosome 1 and,
respectively, described as Dof zinc finger protein DOF3.6-like and O-fucosyltransferase
36 synthesis biological functions; whereas the candidate genes, GRMZM2G472167 on chro-
mosome 1 and GRMZM2G019404 on chromosome 2, identified under WS were functionally
described as peptide transporter PTR2 mha2 that involved in seed germination maternal
control and plasma-membrane H+ATPase 2 that aid in activating secondary transport,
respectively [61–63]. These genes are more relevant to plants’ response to drought stress.

Putative candidate genes GRMZM2G142383 and GRMZM2G124136 detected for AD
under WW and WS are functionally designated as Uridine kinase-like protein 2 chloroplas-
tic involved in the pyrimidine salvage pathway [64] and putative glycerol-3-phosphate
transporter 4 involved in molecular function of transmembrane transporter activity [65].
The SNPs S8_3482389 and S2_205904889 on chromosomes 8 and 2 were closely linked to ASI
under both WW and WS associated with the putative candidate genes, GRMZM2G136158
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and GRMZM2G105869, respectively. These candidate genes are involved in Peroxidase 24
that aid in responding to environmental stresses such as wounding, pathogen attack, and
oxidative stress [66], and histone-lysine N-methyltransferase SUVR3 known to be involved
in the development of pollen and female gametophyte, flowering, plant morphology, and
the responses to stresses [67], respectively.

The two important SNPs linked to PH S6_161804186 under WW have shown a can-
didate gene GRMZM2G170625, and S2_43203188 under WS, which is located with the
candidate gene, GRMZM2G114523. Both designated candidate genes have been described
as Jacalin-related lectin 3 and lysine histidine transporter-like 6 functions, respectively.
Jacalin-related lectin 3 are proteins that bind carbohydrates and play an important role
in plant development and resistance development to fungal pathogens [68]. Lysine his-
tidine transporter-like 6 helps to transport amino acid within or between the cells and is
involved in plant uptake of amino acids [69]. SNP, S2_184012021 linked to EH under WW
management was associated with the putative candidate gene, GRMZM2G116196, that was
described as AUGMIN subunit 5 (AUG5) essential for the development of gametophyte
and sporophyte [70] reproductions; another annotated gene GRMZM2G365374 encoded
as heat shock 70 kDa protein (HSPA1A) under WS was known to respond to heat-shock
stress [71].

The SNPs S1_188031152 and S8_11662494 associated with the MOI were detected with
well-described putative candidate genes, GRMZM2G419436 and GRMZM2G700386, respec-
tively. The gene GRMZM2G419436 is characterized as well-associated receptor kinase 5
(WAK5), which significantly controls cell expansion, morphogenesis, and development [72],
while the GRMZM2G700386 gene characterized as β-1,2-xylosyltransferase XYXT1 is in-
volved in the xylosylation of xylan, the primary and secondary walls or major hemicellulose
of angiosperms [73]. The SNP, S1_204865984, linked to SEN under WS environment was
the annotated putative candidate gene, GRMZM2G328309, explained as ribonuclease E/G-
like protein, chloroplastic, which is a family of proteins that plays a pivotal function to
metabolize RNA [74].

The putative genes, GRMZM2G009591 and GRMZM2G101117, annotated from the
SNPs S1_246469847 and S7_82649117 linked to GLS disease resistance had been char-
acterized as pyrophosphate fructose 6-phosphate 1-phosphotransferase and GDSL es-
terase/lipase, respectively. The first gene, GRMZM2G009591, is known to catalyze D-
fructose 6-phosphate phosphorylation [75]; the second gene, GRMZM2G101117, is known
for the molecular function hydrolytic activities of GDSL esterases and lipases enzymes [76].
Under WW management, putative candidate genes, GRMZM2G039173, GRMZM2G071023,
and GRMZM2G106119 were identified based on the associated SNPs S6_157820129 and
S4_212595942 with the TLB resistance. Rédei [77] has described the GRMZM2G039173
gene as the major facilitator superfamily protein that aided in transporting small solutes
based on the chemiosmotic ion gradients, while the second putative gene characterized
by Chai et al. [78] has functioned as a probable NAD kinase 2 chloroplast, which is ac-
tively involved in the protection of chloroplast against oxidative damage and synthesis
of chlorophyll.

MLN-DS trait-associated SNPs S3_184235364 and S6_38115747 are annotated with
GRMZM2G429982 and GRMZM5G818106 candidate genes that have osmotin-like protein
and phospholipase A1-II 7 functions, respectively [79,80]. Kumar et al. [80] characterized
the candidate gene GRMZM2G429982 as being involved in biotic and abiotic stresses tol-
erance in plants, whereas the candidate gene GRMZM5G818106 has been described as
protective of high temperature, cold, salt, and drought [79]. Wu et al. [81] reported that
the function of the putative candidate gene GRMZM2G003752, which was characterized
as fasciclin-like arabinogalactan protein 10, was to respond to abiotic stress and mediate
the growth and development of the plant. This candidate gene was annotated from the
S2_16652265 marker associated with AUDPC values. Similarly, the S10_125845596 marker
was linked to the AUDPC value and then the putative candidate gene, GRMZM2G003917,
was identified. This gene has been described by Wu et al. [81] as a fasciclin-like arabino-
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galactan protein 7 (FLA7) gene responsible for the development of microspores and, under
salt stress environment, maintaining proper plant cell expansion.

In the present study, a total of 98, 54, and 22 SNPs associated with various agro-
nomic traits under WW, WS, and MLN conditions, respectively, were identified. Among
these SNPs, some existed within different gene models whose genetic role is associated
with either biotic or abiotic stress mechanisms. The favorable alleles can be identified by
resequencing the detected candidate genes from contrasting, and these SNPs could be po-
tentially converted to simple PCR-based markers to follow MAS in molecular breeding [82].
Similarly, several GWAS studies reported large numbers of SNPs associated with important
traits in maize [83,84].

High genetic gain can be achieved for complex traits by integrating modern tools
into maize breeding [85,86]. With several genotyping service providers available with a
lower cost per sample and availability of advanced statistical models, genomic prediction
is routinely applied in maize for several quantitative traits [24,85,86]. In the present study,
we compared the prediction accuracies under WW and WS conditions (Figure 7). As ex-
pected for all the common traits measured in both WW and WS conditions, the prediction
accuracies were slightly higher under WW conditions compared to WS conditions. The
observed accuracy for all traits under WW, WS, and MLN conditions reveals the effect of
heritability as the traits with higher heritability generally had higher prediction accuracy.
The main factors affecting genomic prediction accuracy are the relationship between the
training and testing populations, training population sizes, the population structure of
training and testing sets, marker densities, genetic architecture and heritability of target
traits, genotype by environment interactions, and statistical methods [36,62,87,88]. Know-
ing the genetic architecture of the target traits, it is possible to improve prediction accuracy
while implementing GS [35,89]. Moderate-to-high accuracies observed in this study for the
association panel offer promise in breeding for MLN and drought tolerance. The prediction
accuracy of the association panel for MLN-DS and AUDPC is in agreement with earlier
studies on MLN [31] and MCMV [38]. The prediction correlations observed for GY and
other agronomic traits are equivalent to earlier studies reported in maize under different
stresses [24,62,85]. In GS, AD and ASI had higher accuracy compared to GY, which is ex-
pected, as these traits are less complex compared to GY [24,61,62]. GWAS results revealed
GY, and other agronomic traits evaluated under WW and WS conditions are complex in
nature, controlled by many loci with minor effects, influenced by environmental factors.
Therefore, they are difficult to track effectively in conventional breeding alone. Increase
in prediction accuracy as well as increase in accumulation of favorable alleles with both
minor and major effects is possible by integration of GS with GWAS results leads.

5. Conclusions

Phenotypic evaluation of 879 DH lines under artificially inoculated MLN has identified
about 52 genotypes resistant/tolerant to MLN-DS, while seven of the selected genotypes
(CKLMLN145667, CKLMLN145667, CKLMLN144135, CKLMLN145119, CKLMLN145173,
CKLMLN143806, and CKLMLN143351) can be used as sources of resistance to MLN. GWAS
identified SNPs associated with the studied traits i.e., about seven and eight SNPs for the
GY; 17 and 31 for anthesis date; 10 and 22 for anthesis silking interval; 14 and 6 for ear
height; and 15 and 5 for moisture content under WW and WS environments, respectively.
Similarly, about 13 and 11 SNPs associated with GLS and TLB, respectively, were detected.
Eleven SNPs were significantly associated with senescence were identified under WS
management. Under MLN artificial inoculation, a total of 12 and 10 SNPs were associated
with MLN-DS and AUDPC traits, respectively; these SNPs and the identified candidate
genes for each trait can be used in the trait improvement program in maize breeding. GS
under WW, WS, and MLN disease artificial inoculation environments revealed moderate-
to-high prediction accuracies. All the detected SNPs in this study need further validation
before introducing to breeding pipelines, and it will be a great help for the understanding of
complex genetic architecture traits under WW and WS. Overall, the present study identified
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several significant SNPs associated with GY and other agronomic traits that help in the
selection of donor lines with favorable alleles for multiple traits. These results provide
insights into the genetics of MLN resistance and other agronomic traits under optimum
and drought stress conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13020351/s1, Figure S1: Distribution of GBS markers in
the maize genome. The color key with marker densities indicates the number of markers within a
window size of 1 Mb; Figure S2: Kinship heatmap generated for 879 inbred lines from 182,600 GBS
SNP markers; Figure S3: Genetic relationship of 879 DH maize lines neighbor-joining tree constructed
based on the population’s genetic distance matrix; Figure S4: Principal component analysis for
879 individuals with 182,600 GBS SNP markers.; Figure S5: Quantile-quantile (QQ) plot of P-values
with uniform distributions. The Y-axis is the observed negative base 10 logarithms of the P-values,
and the X-axis is the expected observed negative base 10 logarithms of the P-values.; Table S1: List of
different DH populations and their pedigrees used in the current study; Table S2: GWAS results for
Moisture content, Senescence, GLS, and TLB under well-watered and water stressed conditions.
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