
IJC Heart & Vasculature 34 (2021) 100762
Contents lists available at ScienceDirect

IJC Heart & Vasculature

journa l homepage: www. journals .e lsevier .com/ i j c -hear t -and-vascula ture
Risk prediction for new-onset atrial fibrillation using the Minnesota code
electrocardiography classification system
https://doi.org/10.1016/j.ijcha.2021.100762
2352-9067/� 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Department of Cardiovascular Medicine, Tohoku
University Graduate School of Medicine 1-1, Seiryo-machi, Aoba-ku, Sendai
980-8574, Japan.
Yu Igarashi a, Kotaro Nochioka b,⇑, Yasuhiko Sakata b, Tokiwa Tamai a, Shinya Ohkouchi a, Toshiya Irokawa a,
Hiromasa Ogawa a, Hideka Hayashi b, Takahide Fujihashi b, Shinsuke Yamanaka b, Takashi Shiroto b,
Satoshi Miyata c, Jun Hata d, Shogo Yamada e, Toshiharu Ninomiya d, Satoshi Yasuda b, Hajime Kurosawa a,
Hiroaki Shimokawa b,c

aDepartment of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
bDepartment of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
cDepartment of Evidence-based Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
dKyushu University Graduate School of Medicine, Fukuoka, Japan
eMorinomiyako Occupational Health Center5, Sendai, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 January 2021
Received in revised form 6 March 2021
Accepted 14 March 2021

Keywords:
Atrial fibrillation
Epidemiology
Risk factors
Risk score
Minnesota code
Background: Few risk models are available to predict future onset of atrial fibrillation (AF) in workers. We
aimed to develop risk prediction models for new-onset AF, using annual health checkup (HC) data with
electrocardiogram findings.
Methods and Results: We retrospectively included 56,288 factory or office workers (mean age = 51.5 years,
33.0% women) who underwent a HC at a medical center and fulfilled the following criteria;
age � 40 years, no history of AF, and greater than 1 annual follow-up HC in 2013–2016. Using Cox mod-
els with the Akaike information criterion, we developed and compared prediction models for new-onset
AF with and without the Minnesota code information. We externally validated the discrimination
accuracy of the models in a general Japanese population cohort, the Hisayama cohort. During the median
3.0-year follow-up, 209 (0.37%) workers developed AF. Age, sex, waist circumference, blood pressure, LDL
cholesterol, and c-GTP were associated with new-onset of AF. Using the Minnesota code information, the
AUC significantly improved from 0.82 to 0.84 in the derivation cohort and numerically improved from
0.78 to 0.79 in the validation cohort, and from 0.77 to 0.79 in the Hisayama cohort. The NRI and IDI
significantly improved in all and male subjects in both the derivation and validation cohorts, and in
female subjects in both the validation and the Hisayama cohorts.
Conclusions: We developed useful risk model with Minnesota code information for predicting new-onset
AF from large worker population validated in the original and external cohorts, although study interpre-
tation is limited by small improvement of AUC.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Atrial fibrillation (AF) is one of the most common types of
arrhythmias, affecting 33.5 million people worldwide in 2010 [1],
and contributes to significant mortality, morbidity, and impaired
quality of life. The number of patients with AF has been increasing
worldwide, and the prevalence and incidence of AF increases with
aging of the society. Therefore, it is important to effectively predict
new-onset AF [2]. In Japan, under the Industrial Safety and Health
Act, employees are obliged to undergo a general health checkup
(HC) at least once a year, including physical examination, labora-
tory tests, chest X-ray, and electrocardiogram (ECG), which pro-
vides a unique opportunity to assess the prevalence, incidence,
and risk factors for the development of AF. For the prediction of
AF, previous studies proposed several risk models incorporating
ECG [3–9]. However, most risk models employed only a part of
ECG findings, such as the P wave [3–6,9], PR intervals [7,8], QT
intervals [4], and left ventricular hypertrophy findings [4,7,8],
resulting in incomprehensive evaluation and misclassification of
the risk with over- or underestimation. The Minnesota code ECG
classification system was developed to objectively confirm ECG
findings [10]. In the present study, we thus aimed to develop a risk
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prediction model for new-onset AF, using the Minnesota code ECG
classification system and HC data.
2. Methods

2.1. Study setting and subjects

We used the database of a HC organization (Morinomiyako
Occupational Health Center) in Miyagi prefecture, Japan, with over
150,000 factory or office workers in 7,000 companies. After the
review of 96,957 HC records in 2013. After excluding the subjects
without any HC records from 2013 to 2016 (N = 20,299), those with
a prior history of AF (N = 398), and those aged under 40 years
(N = 19,972), we finally included 56,288 participants in the present
study (Supplemental Fig. 1). This research protocol was approved
by Ethics Review Committee of the Tohoku University Graduate
School of Medicine (approval number 2017–1-555). Written
informed consent was obtained from all participants regarding
the secondary use of the data at the time of the health screening
visit. Opt-out was not possible because the data were obtained
Fig. 1. ROC (receiver operating characteristic) curves for
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after full anonymization by the HC organization (Morinomiyako
Occupational Health Center).

2.2. Study measurements

We collected the following variables from the records; height,
body weight, waist circumference, blood pressure (BP), hemoglo-
bin, red blood cell (RBC) count, low-density lipoprotein (LDL)
cholesterol, high-density lipoprotein (HDL) cholesterol, triglyc-
eride, aspartate aminotransferase (AST), alanine aminotransferase
(ALT), c-glutamyl transpeptidase (c-GTP), fasting blood sugar level,
HbA1c, and ECG. Body weight was measured after removing excess
clothing using a digital weight scale (BWB-800, Tanita, Tokyo,
Japan). Waist circumference was measured at the level of the
umbilicus in a standing position using a tape measure after normal
expiration. If the umbilical level was displaced downward due to
the accumulation of abdominal fat, waist circumference was mea-
sured at the midpoint between the superior border of the iliac crest
and the inferior margin of the twelfth rib. BP was measured at the
upper arm twice after at least 5 min rest with the participant
seated using an automated BP measurement device (HBP-300,
each prediction models in overall, men, and women.
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Omron, Kyoto, Japan). If the result of the first measurement was
more than 130 mmHg in systolic or more than 85 mmHg in dias-
tolic BP, a second measurement was taken. We used the first mea-
surement of BP. A standard 12-lead ECG was recorded at a paper
speed of 25 mm per second in a supine position using CardioMax
FCP-8221 (FUKUDA DENSHI, Tokyo, Japan), which automatically
evaluated the electrical waveform and reported the Minnesota
codes. Blood test biochemistry was determined using AU5800 or
AU680 (Beckman Coulter Inc. CA, USA) except for blood sugar,
which was determined using BM-9130 (NIHON DENSHI, Tokyo,
Japan), while blood cell counts were determined using XN-1000
or XN-9100 (Sysmex, Hyogo, Japan).

2.3. Outcome

The study outcome was new-onset AF. All ECG findings were
reviewed, and the diagnosis of AF was confirmed by cardiologists.

2.4. Statistical analysis

All continuous variables are expressed as mean ± standard devi-
ation (SD). Categorical variables are expressed as numbers (per-
centage of the total). The baseline characteristics of the subjects
were compared using an unpaired t-test or v2-test, as appropriate.
Age, waist circumference, BMI, systolic and diastolic BP, hemoglo-
bin, RBC, LDL cholesterol, HDL cholesterol, triglyceride, AST, ALT, c-
GTP, and Minnesota codes were potential risk factors in the model.
We log-transformed c-GTP because of the skewness of its distribu-
tion. When performing the risk assessment of AF, we employed the
Minnesota code using the first and second categories of the coding
system.

We randomly divided the overall cohort into the derivation
(N = 37,562; age, 51.5 years; 33.0% women) and validation cohorts
(N = 18,762; age, 51.6 years; 32.8% women). In the derivation
cohort, the risk factors were assessed using Cox regression. The
proportional hazard assumption for each factor in the Cox model
was confirmed using the linearity of the additive Cox proportional
hazard model [11] using scaled Schoenfeld residuals. Model fitness
was assessed using the Akaike information criterion (AIC) [12]. We
assigned each point to the selected variables, corresponding to the
number of coefficients of the Cox regression. The predictive accu-
racy of the models was assessed by the area under the curve
(AUC) of the receiver operating characteristic (ROC) in all men
and women. We further examined the improvement of reclassifica-
tion of the model, using the net reclassification index (NRI) and
integrated discrimination improvement (IDI) by comparing the
prediction model with and without the Minnesota code [13]. We
analyzed the incidence rates of AF in 1000 person-years stratified
by age and sex, and stratified by score groups of the risk model
in each cohort. For external validation, to evaluate whether the
model developed by workers can apply to the general population,
we further applied the model to a population-based prospective
cohort study, the Hisayama study [14]. The Hisayama cohort is a
representative sample of the typical Japanese population from
the town of Hisayama, Japan; the study has been performed since
1961 and is still ongoing [14]. Of the 3,328 subjects who attended
the town health examination in 2002, 2,705 subjects were included
in this cohort, excluding the following subjects; those who did not
consent to participate, those with a prior history of AF, those with
missing follow-up data, and those with no data on ECG or other
factors included in our model. The baseline characteristics of the
2,705 subjects in the Hisayama cohort are shown in Supplemental
Table 1. ECG was repeated at the health examinations in 2007 and/
or in 2012 to determine whether a participant experienced a new-
onset AF. A 2-sided P value of < 0.05 was considered significant.
Statistical analyses were performed using R software ver. 3.6.3 (R
3

Foundation for Statistical Computing, Vienna, Austria) [15] and
SAS 9.4 (SAS Institute, Cary, NC, the United States).
3. Results

3.1. Baseline characteristics

The baseline characteristics of the 56,288 participants are
shown in Table 1. The mean age was 51.5 years and women
accounted for 33.0% of the study population. Mean systolic and
diastolic BP were 130.2 mmHg and 80.7 mmHg, respectively. The
mean waist circumference was 83.3 cm and the mean LDL
cholesterol and fasting blood sugar levels were 124.8 mg/dl and
96.0 mg/dl, respectively. The rates of medication use for hyperten-
sion, diabetes, and dyslipidemia were 16.3%, 4.6%, and 4.2%, respec-
tively. The proportion of current smokers was 39.7%, and excessive
alcohol intake was reported in 3.5%. Between the derivation and
validation cohorts, baseline characteristics did not differ signifi-
cantly or clinically, except diastolic BP.

3.2. Risk factors for AF

During the 3-year follow-up checkups, 135 subjects (0.36%)
developed AF in the derivation cohort. In the multivariable Cox
model, age (hazard ratio [HR], 1.11; 95% confidence interval [CI],
1.08–1.13; p < 0.01), male sex (HR, 2.13; 95% CI, 1.17–3.87;
p = 0.01), waist circumference (HR, 1.05; 95% CI, 1.03–1.07;
p < 0.01), diastolic BP (HR, 1.02; 95% CI, 1.00–1.03; p = 0.04),
logc-GTP (HR, 1.49; 95% CI, 1.15–1.92; p < 0.01) and the following
Minnesota codes were associated with an increased risk of AF;
Minnesota code 2–3 (HR, 4.74; 95% CI, 1.71–13.12; p < 0.01), 2–4
(HR, 21.84; 95% CI, 2.97–160.41; p < 0.01), 3–1 (HR, 1.99; 95% CI,
1.30–3.05; p < 0.01), 4–3 (HR, 2.21; 95% CI, 0.89–5.52; p = 0.09),
5–3 (HR, 2.04; 95% CI, 1.02–4.08; p = 0.04), 8–1 (HR, 3.00; 95%
CI, 1.87–4.82; p < 0.01), 8–2 (HR, 10.35; 95% CI, 1.92–55.84;
p = 0.01), 8–8 (HR, 2.65; 95% CI, 1.28–5.48; p = 0.01), and 9–3
(HR, 2.44; 95% CI, 0.89–6.72; p = 0.08). In contrast, LDL cholesterol
(HR, 0.99; 95% CI, 0.98–1.00; p < 0.01) and 9–4 (HR, 0.74; 95% CI,
0.52–1.05; p = 0.09) were associated with a decreased risk of AF
(Table 2). Of note, there was no significant association between
new-onset AF and taking cholesterol-lowering medication
(p = 0.75) (Supplemental Fig. 2).

3.3. Risk model and prediction accuracy

The AUC of the risk model without the Minnesota code, com-
prising age, sex, waist circumference, diastolic BP, LDL cholesterol,
and logc-GTP was 0.82 (men: 0.79, women: 0.80) in the derivation
cohort, 0.78 (men: 0.73, women: 0.80) in the validation cohort, and
0.77 (men: 0.72, women: 0.80) in the Hisayama cohort. The AUC of
the risk model including Minnesota codes was 0.84 (men: 0.82,
women: 0.83) in the derivation cohort, 0.79 (men: 0.75, women:
0.78) in the validation cohort, and 0.79 (men: 0.72, women: 0.83)
in the Hisayama cohort (Supplemental Table 2). The final model
was as follows; 0.103�(age) + 0.755�(male sex) + 0.046�(waist
circumference) + 0.016�(diastolic BP)+(-0.010)�(LDL
cholesterol) + 0.397�(log [c-GTP]) + 1.557�(Minnesota code;
MC2-3) + 3.084�(MC2-4) + 0.689�(MC3-1) + 0.794�(MC4-3) + 0.
714�(MC5-3) + 1.099�(MC8-1) + 2.337�(MC8-2) + 0.973�(MC8-
8) + 0.892�(MC9-3)+(-0.298)�(MC9-4). The model including the
Minnesota code variables had a significantly higher predictive
accuracy for all and male subjects in the derivation cohort, as com-
pared with the model without them. When conducting a 5-fold
cross validation, average AUC with the Minnesota code was
numerically higher (0.81) than that without the code (0.80). The



Table 1
Baseline characteristics of the office and factory workers in the derivation and validation cohorts.

Variables Over all (N = 56,288) Derivation cohort (N = 37,526) Validation cohort (N = 18,762) P value

Age (years) 51.5 ± 7.7 51.5 ± 7.7 51.6 ± 7.6 0.07
Women (%) 33.0 33.0 32.8 0.07
Waist circumference (cm) 83.3 ± 9.9 83.3 ± 9.9 83.3 ± 9.9 0.91
BMI (kg/m2) 23.6 ± 3.7 23.6 ± 3.7 23.6 ± 3.7 0.75
Systolic BP (mmHg) 130.2 ± 18.4 130.2 ± 18.4 130.0 ± 18.5 0.13
Diastolic BP (mmHg) 80.7 ± 12.0 80.8 ± 12.1 80.5 ± 12.0 0.01
LDL cholesterol (mg/dl) 124.8 ± 31.7 124.9 ± 31.7 124.6 ± 31.7 0.27
HDL cholesterol (mg/dl) 64.7 ± 17.8 64.7 ± 17.8 64.7 ± 17.9 0.86
Triglyceride (mg/dl)* 96 (67,145) 97 (67,145) 95 (67,144) 0.10
AST (mg/dl) 24.4 ± 15.9 24.4 ± 15.8 24.4 ± 16.2 0.63
ALT (mg/dl) 25.1 ± 18.9 25.2 ± 19.0 25.1 ± 18.7 0.52
c-GTP (mg/dl)* 29 (19,50) 29 (19,50) 29 (19,50) 0.31
Fasting blood sugar (mg/dl) 96.1 ± 21.3 96.0 ± 21.1 96.1 ± 21.7 0.38
HbA1c (%) 5.7 ± 0.7 5.7 ± 0.7 5.7 ± 0.7 0.22
Medication
Hypertension, N (%) 9193 (16.3) 6095 (16.2) 3098 (16.5) 0.40
Diabetes, N (%) 2588 (4.6) 1718 (4.6) 870 (4.6) 0.74
Dyslipidemia, N (%) 2377 (4.2) 1604 (4.3) 773 (4.1) 0.40
Current smoking status, N (%) 22,366 (39.7) 14,962 (39.9) 7404 (39.5) 0.38
Excessive alcohol intake, N (%) 1984 (3.5) 1336 (3.6) 648 (3.5) 0.39

* Median (interquartile range). BMI, body mass index; BP, blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; AST. Aminotransferase; ALT, alanine
aminotransferase; c-GTP, c-glutamyl transpeptidase

Table 2
Variables and scores in the prediction models.

Variables Score Variables Score

Age 0.103 Sex, men 0.755
Waist circumference 0.046 Diastolic BP 0.016
LDL cholesterol �0.010 Log・c-GTP 0.397
M.C.2–3 1.557 M.C.2–4 3.084
M.C.3–1 0.689 M.C.4–3 0.794
M.C.5–3 0.714 M.C.8–1 1.099
M.C.8–2 2.337 M.C.8–8 0.973
M.C.9–3 0.892 M.C.9–4 �0.298

BP, blood pressure; LDL, low-density lipoprotein; c-GTP, c-glutamyl transpepti-
dase; M.C., Minnesota Code
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NRI and IDI showed that reclassification with the addition of the
Minnesota codes significantly improved the model in all and male
subjects in the derivation and validation cohorts, and in female
subjects in the validation and Hisayama cohorts (Supplemental
Table 3). The ROC curves are shown in Fig. 1. The ROC curves
showed that the sensitivity and specificity of the optimal cut-off
point were 76.3% (men, 76.2%; women, 69.2%), and 75.7% (men,
71.4%; women, 81.5%) in the derivation cohort, and 67.6% (men,
68.2%; women, 62.5%), and 78.1% (men, 75.0%; women, 87.6%) in
the validation cohort.

3.4. Incidence rates of AF

Of 56,288 participants, 209 (0.36%) developed AF in the overall
cohort (1.4/1,000 person-years, 1.9 in men, 0.4 in women), of
which 188 (90.0%) were men. Supplemental Figure 3 shows that
the incidence rates of AF increased with age and were higher in
men than in women across all age categories. Fig. 2 shows the
occurrence rates of AF stratified by score groups of the risk model
in each cohort. The occurrence rates in all subjects and men
increased with higher scores, and women had a steep rise in the
high score group compared to men in both cohorts.

4. Discussion

Using data from 56,288 workers, we were able to develop a risk
model for predicting the 3-year incidence of new-onset AF, which
was externally validated in the Hisayama cohort, which is repre-
4

sentative of the general Japanese population. To the best of our
knowledge, this model is the first comprehensive and generalizable
risk model with Minnesota code and HC data, which can be used in
occupational and residential settings.

4.1. Risk factors for developing AF

In the present study, age, sex, waist circumference, BP, LDL
cholesterol, and c-GTP were identified as risk factors for the
development of AF. Age, sex, and hypertension were validated risk
factors for AF [16]. Obesity is also reportedly associated with AF
development [17–19]. Several mechanisms have been described
that link obesity to AF development, where left atrial remodeling
and ventricular diastolic dysfunction may be a substantial aspect
of the association between obesity and AF development [20,21].
Obesity could cause AF through increased oxidative stress, inflam-
mation [22,23], and sleep apnea [24,25]. Some studies reported
that higher levels of LDL cholesterol were associated with a lower
incidence of AF [24–27]. Indeed, several mechanisms of AF devel-
opment have been described in relation to cholesterol. First,
cholesterol is known to affect the composition of cell membranes
and cellular electrophysiological properties [28–30]. Second, sub-
clinical hyperthyroidism is associated with low cholesterol levels
and increased incidence of AF, which may be confounding factors
or reflections of the hidden link between cholesterol and AF
[27,31]. Third, the link between cholesterol and AF is accelerated
by inflammation. Inflammation is associated with the initiation
and perpetuation of AF [32]. LDL cholesterol levels are known to
be lower in inflammation due to the action of inflammatory cytoki-
nes [33]. Thus, lower levels of cholesterol could reflect the level of
inflammation. In the present study, cholesterol-lowering medica-
tion showed no significant relationship between LDL cholesterol
and the incidence of AF, a consistent finding with the previous
studies [34,35]. It is uncertain whether LDL cholesterol could be
protective against developing AF or whether lowering LDL choles-
terol levels increases the risk of AF. However, it is also important to
note that statins exert anti-inflammatory effects that may decrease
the incidence of AF [36].

Recent clinical studies have shown that elevated circulating
levels of c-GTP increase the incidence of AF [37–39]. In the present
study, we identified c-GTP as a model component in both sexes. c-
GTP is known as an indicator of alcohol consumption but is inde-



Fig. 2. Event rates stratified by the score groups in the derivation, validation, and Hisayama cohorts.
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pendently associated with the incidence of AF [37–39]. The patho-
physiological mechanism of the association between c-GTP and
the incidence of AF may be explained by the fact that c-GTP is
an indicator of metabolic abnormalities, inflammation, and oxida-
tive stress [40,41].

4.2. Predictive ability of the risk models

In the previous studies, the predictive ability of the risk models
developed from 3 large cohorts in the United States was 0.765
(0.748–0.781) as the C-statistic in the derivation cohort and
0.664 (0.632–0.697) and 0.705 (0.663–0.747) in the age, gene
and environment—Reykjavik study [42] and the Rotterdam Study
[43] in the external validation cohort, respectively. The Suita Study
5

in Japan reported that the C-statistic for internal validation of the
risk model was 0.75 (0.72–0.77) [44]. The Hamamatsu Study in
Japan reported that the C-statistic was 0.78 (0.76–0.80) in the
derivation cohort, and the validation of the C-statistic in bootstrap
sampling was 0.79 (0.78–0.80) [8]. The AUC of our model was 0.79
(0.74–0.84) in the validation cohorts for internal validation and
0.79 (0.74–0.83) in the Hisayama cohort for external validation.
The predictive ability of the model was comparable to that of other
models.

4.3. Utility of the models

In Japan, approximately 19 million Japanese individuals in the
community and 56 million workers undergo annual HCs, including
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ECG, following the law. Our risk model can be directly imple-
mented without any additional cost to HC and can stratify the risk
of developing AF. Therefore, it is theoretically possible to apply the
present risk model widely in Japan. The risk model may help us
prevent new-onset AF by identifying individuals at high risk and
by modifying their risk through appropriate management of their
risk factors (e.g., hypertension, obesity, sleep-disordered breathing,
smoking, and alcohol consumption), health guidance, and educa-
tion [45]. Early detection of AF could be possible by using self-
palpation [46], ECG, Holter ECG monitoring, and wearable health-
care devices [47,48]. Given the rapid aging of the society world-
wide, the number of older workers aged 55 or above is estimated
to increase from 270 million in 2020 to 750 million in 2030, which
will correspond to more than 18% of the total global labor force
[49]. To sustain working safety and health for older workers, the
prediction of AF is important in the global labor force.
4.4. Strengths and limitations

One of the most important strengths of the present study is the
development of a risk model from a large worker population using
the Minnesota code that can comprehensively and objectively
assess ECG. Another strength is the high predictive accuracy of
the risk model, which was externally validated in the Hisayama
cohort, a representative sample of the typical Japanese population
and has a high potential for social implementation.

The present study has some limitations. First, paroxysmal AF
might have been overlooked because HC was conducted only once
a year. Second, due to the limited information about past medical
history, we were unable to include coronary artery disease, heart
failure, valvular disease, or thyroid disease, which are reportedly
risk factors for AF, into the derivation of the risk models. Third,
the number of women who developed new-onset AF was small,
and thus it is possible that we were unable to evaluate the risk
model in women sufficiently. Forth, the population in the present
study comprised all workers, which might have caused a healthy
worker bias; they were able to be hired into the workforce
(Healthy Hire Effect) and continue to work for at least 2 years
(Healthy Worker Survivor Effect). Furthermore, they could also
get access to healthcare for routine disease screening and physical
exercise, which is considered a beneficial effect of work (Advantage
of Working) [50].
5. Conclusions

We developed a risk model for predicting 3-year incidence of
new-onset AF using the Minnesota code and HC data with exter-
nally validated in the Hisayama cohort from a representative pop-
ulation study in Japan, although study interpretation is limited by
small improvement of AUC. Further studies may be needed to
improve risk stratifications in HC.
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